
The build2 Repository Interface

Copyright © 2014-2025 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.18, March 2025

This revision of the document describes the build2 repository interface 0.18.x series.

Table of Contents

................... 1Preface

................ 11 Package Submission

............ 31.1 Submission Request Manifest

............ 41.2 Submission Result Manifest

.................. 42 Package CI

.............. 72.1 CI Request Manifest

.............. 72.2 CI Overrides Manifest

............... 82.3 CI Result Manifest

............... 83 Build Artifacts Upload

............. 113.1 Upload Request Manifest

............. 113.2 Upload Result Manifest

.............. 124 Package Review Submission

............. 124.1 Package Review Manifest

............... 135 GitHub CI Integration

.............. 135.1 GitHub CI Background

........ 165.2 Enabling CI Integration on GitHub Repository

......... 175.2.1 Adding classic branch protection rule

............ 175.2.2 Adding branch ruleset

iRevision 0.18, March 2025 The build2 Repository Interface

Table of Contents

Preface

This document describes brep, the build2 package repository web interface. For the command

line interface of brep utilities refer to the brep-load(1), brep-clean(1),

brep-migrate(1), and brep-monitor(1) man pages.

1 Package Submission

The package submission functionality allows uploading of package archives as well as additional,

repository-specific information via the HTTP POST method using the multi­
part/form-data content type. The implementation in brep only handles uploading as well

as basic verification (checksum, duplicates) expecting the rest of the submission and publishing

logic to be handled by a separate entity according to the repository policy. Such an entity can be

notified by brep about a new submission as an invocation of the handler program (as part of the

HTTP request) and/or via email. It could also be a separate process that monitors the upload data

directory.

The submission request without any parameters is treated as the submission form request. If

submit-form is configured, then such a form is generated and returned. Otherwise, such a

request is treated as an invalid submission (missing parameters).

For each submission request brep performs the following steps.

1. Verify submission size limit.

The submission form-data payload size must not exceed submit-max-size.

2. Verify the required archive and sha256sum parameters are present.

The archive parameter must be the package archive upload while sha256sum must be

its 64 characters SHA256 checksum calculated in the binary mode.

3. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab (\t),

carriage return (\r), and line feed (\n).

4. Check for a duplicate submission.

Each submission is saved as a subdirectory in the submit-data directory with a 12-char­

acter abbreviated checksum as its name.

1Revision 0.18, March 2025 The build2 Repository Interface

Preface

5. Save the package archive into a temporary directory and verify its checksum.

A temporary subdirectory is created in the submit-temp directory, the package archive is

saved into it using the submitted name, and its checksum is calculated and compared to the

submitted checksum.

6. Save the submission request manifest into the temporary directory.

The submission request manifest is saved as request.manifest into the temporary

subdirectory next to the archive.

7. Make the temporary submission directory permanent.

Move/rename the temporary submission subdirectory to submit-data as an atomic oper­

ation using the 12-character abbreviated checksum as its new name. If such a directory

already exist, then this is a duplicate submission.

8. Invoke the submission handler program.

If submit-handler is configured, invoke the handler program passing to it additional

arguments specified with submit-handler-argument (if any) followed by the abso­

lute path to the submission directory.

The handler program is expected to write the submission result manifest to stdout and

terminate with the zero exit status. A non-zero exit status is treated as an internal error. The

handler program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the submission result manifest status values in the

[500-599] range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the submission directory and can move/remove

it. If after the handler program terminates the submission directory still exists, then it is

handled by brep depending on the handler process exit status and the submission result

manifest status value. If the process has terminated abnormally or with a non-zero exit status

or the result manifest status is in the [500-599] range (HTTP server error), then the directory

is saved for troubleshooting by appending the .fail extension followed by a numeric

extension to its name (for example, ff5a1a53d318.fail.1). Otherwise, if the status is

in the [400-499] range (HTTP client error), then the directory is removed. If the directory is

left in place by the handler or is saved for troubleshooting, then the submission result mani­

fest is saved as result.manifest into this directory, next to the request manifest and

archive.

Revision 0.18, March 20252 The build2 Repository Interface

1 Package Submission

If submit-handler-timeout is configured and the handler program does not exit in

the allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following submission result manifest is

implied:

status: 200
message: package submission is queued
reference: <abbrev-checksum>

9. Send the submission email.

If submit-email is configured, send an email to this address containing the submission

request manifest and the submission result manifest.

10. Respond to the client.

Respond to the client with the submission result manifest and its status value as the

HTTP status code.

Check violations (max size, duplicate submissions, etc) that are explicitly mentioned above are

always reported with the submission result manifest. Other errors (for example, internal server

errors) might be reported with unformatted text, including HTML.

If the submission request contains the simulate parameter, then the submission service simu­

lates the specified outcome of the submission process without actually performing any externally

visible actions (e.g., publishing the package, notifying the submitter, etc). Note that the package

submission email (submit-email) is not sent for simulated submissions.

Pre-defined simulation outcome values are internal-error-text, inter­
nal-error-html, duplicate-archive, and success. The simulation outcome is

included into the submission request manifest and the handler program must at least handle

success but may recognize additional outcomes.

1.1 Submission Request Manifest

The submission request manifest starts with the below values and in that order optionally

followed by additional values in the unspecified order corresponding to the custom request

parameters.

archive: <name>
sha256sum: <sum>
timestamp: <date-time>
[simulate]: <outcome>
[client-ip]: <string>
[user-agent]: <string>

3Revision 0.18, March 2025 The build2 Repository Interface

1.1 Submission Request Manifest

The timestamp value is in the ISO-8601 <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form

(always UTC). Note also that client-ip can be IPv4 or IPv6.

1.2 Submission Result Manifest

The submission result manifest starts with the below values and in that order optionally followed

by additional values if returned by the handler program. If the submission is successful, then the

reference value must be present and contain a string that can be used to identify this submis­

sion (for example, the abbreviated checksum).

status: <http-code>
message: <string>
[reference]: <string>

2 Package CI

The CI functionality allows submission of package CI requests as well as additional, reposi­

tory-specific information via the HTTP GET and POST methods using the applica­
tion/x-www-form-urlencoded or multipart/form-data parameters encoding. The

implementation in brep only handles reception as well as basic parameter verification expecting

the rest of the CI logic to be handled by a separate entity according to the repository policy. Such

an entity can be notified by brep about a new CI request as an invocation of the handler

program (as part of the HTTP request) and/or via email. It could also be a separate process that

monitors the CI data directory.

The CI request without any parameters is treated as the CI form request. If ci-form is config­

ured, then such a form is generated and returned. Otherwise, such a request is treated as an

invalid CI request (missing parameters).

For each CI request brep performs the following steps.

1. Verify the required repository and optional package parameters.

The repository parameter is the remote bpkg repository location that contains the pack­

ages to be tested. If one or more package parameters are present, then only the specified

packages are tested. If no package parameters are specified, then all the packages present

in the repository (but excluding complement repositories) are tested.

Each package parameter can specify either just the package name, in which case all the

versions of this package present in the repository will be tested, or both the name and

version in the <name>/<version> form (for example, libhello/1.2.3.

Revision 0.18, March 20254 The build2 Repository Interface

2 Package CI

2. Verify the optional overrides parameter.

The overrides parameter, if specified, must be the CI overrides manifest upload.

3. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab (\t),

carriage return (\r), and line feed (\n).

4. Generate CI request id and create request directory.

For each CI request a unique id (UUID) is generated and a request subdirectory is created in

the ci-data directory with this id as its name.

5. Save the CI request manifest into the request directory.

The CI request manifest is saved as request.manifest into the request subdirectory

created on the previous step.

6. Save the CI overrides manifest into the request directory.

If the CI overrides manifest is uploaded, then it is saved as overrides.manifest into

the request subdirectory.

7. Invoke the CI handler program.

If ci-handler is configured, invoke the handler program passing to it additional argu­

ments specified with ci-handler-argument (if any) followed by the absolute path to

the CI request directory.

The handler program is expected to write the CI result manifest to stdout and terminate

with the zero exit status. A non-zero exit status is treated as an internal error. The handler

program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the CI result manifest status values in the [500-599]

range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the CI request directory and can move/remove

it. If after the handler program terminates the request directory still exists, then it is handled

by brep depending on the handler process exit status and the CI result manifest status

value. If the process has terminated abnormally or with a non-zero exit status or the result

manifest status is in the [500-599] range (HTTP server error), then the directory is saved for

troubleshooting by appending the .fail extension to its name. Otherwise, if the status is in

the [400-499] range (HTTP client error), then the directory is removed. If the directory is left

5Revision 0.18, March 2025 The build2 Repository Interface

2 Package CI

in place by the handler or is saved for troubleshooting, then the CI result manifest is saved as

result.manifest into this directory, next to the request manifest.

If ci-handler-timeout is configured and the handler program does not exit in the

allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following CI result manifest is implied:

status: 200
message: CI request is queued
reference: <request-id>

8. Send the CI request email.

If ci-email is configured, send an email to this address containing the CI request mani­

fest, the potentially empty CI overrides manifest, and the CI result manifest.

9. Respond to the client.

Respond to the client with the CI result manifest and its status value as the HTTP status

code.

Check violations that are explicitly mentioned above are always reported with the CI result mani­

fest. Other errors (for example, internal server errors) might be reported with unformatted text,

including HTML.

If the CI request contains the interactive parameter, then the CI service provides the execu­

tion environment login information for each test and stops them at the specified breakpoint.

Pre-defined breakpoint ids are error and warning. The breakpoint id is included into the CI

request manifest and the CI service must at least handle error but may recognize additional ids

(build phase/command identifiers, etc).

If the CI request contains the simulate parameter, then the CI service simulates the specified

outcome of the CI process without actually performing any externally visible actions (e.g., testing

the package, publishing the result, etc). Note that the CI request email (ci-email) is not sent

for simulated requests.

Pre-defined simulation outcome values are internal-error-text, inter­
nal-error-html, and success. The simulation outcome is included into the CI request

manifest and the handler program must at least handle success but may recognize additional

outcomes.

Revision 0.18, March 20256 The build2 Repository Interface

2 Package CI

2.1 CI Request Manifest

The CI request manifest starts with the below values and in that order optionally followed by

additional values in the unspecified order corresponding to the custom request parameters.

id: <request-id>
repository: <url>
[package]: <name>[/<version>]
[interactive]: <breakpoint>
[simulate]: <outcome>
timestamp: <date-time>
[client-ip]: <string>
[user-agent]: <string>
[service-id]: <string>
[service-type]: <string>
[service-data]: <string>
[service-action]: <action>

The package value can be repeated multiple times. The timestamp value is in the ISO-8601

<YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form (always UTC). Note also that client-ip
can be IPv4 or IPv6.

Note that some CI service implementations may serve as backends for third-party services. The

latter may initiate CI tasks, providing all the required information via some custom protocol, and

expect the CI service to notify it about the progress. In this case the third-party service type as

well as optionally the third-party id and custom state data can be communicated to the underlying

CI handler program via the respective service-* manifest values. Also note that normally a

third-party service has all the required information (repository URL, etc) available at the time of

the CI task initiation, in which case the start value is specified for the service-action

manifest value. If that’s not the case, the CI task is only created at the time of the initiation

without calling the CI handler program. In this case the CI handler is called later, when all the

required information is asynchronously gathered by the service. In this case the load value is

specified for the service-action manifest value.

2.2 CI Overrides Manifest

The CI overrides manifest is a package manifest fragment that should be applied to all the pack­

ages being tested. The contained values override the whole value groups they belong to, resetting

all the group values prior to being applied. Currently, only the following value groups can be

overridden:

build-email build-{warning,error}-email
builds build-{include,exclude}
*-builds *-build-{include,exclude}
*-build-config

7Revision 0.18, March 2025 The build2 Repository Interface

2.1 CI Request Manifest

For the package configuration-specific build constraint overrides the corresponding configuration

must exist in the package manifest. In contrast, the package configuration override

(*-build-config) adds a new configuration if it doesn’t exist and updates the arguments of

the existing configuration otherwise. In the former case, all the potential build constraint over­

rides for such a newly added configuration must follow the corresponding *-build-config

override.

Note that the build constraints group values (both common and build package configura­

tion-specific) are overridden hierarchically so that the [*-]build-{include,exclude}

overrides don’t affect the respective [*-]builds values.

Note also that the common and build package configuration-specific build constraints group

value overrides are mutually exclusive. If the common build constraints are overridden, then all

the configuration-specific constraints are removed. Otherwise, if any configuration-specific

constraints are overridden, then for the remaining configurations the build constraints are reset to

builds: none.

See Package Manifest for details on these values.

2.3 CI Result Manifest

The CI result manifest starts with the below values and in that order optionally followed by addi­

tional values if returned by the handler program. If the CI request is successful, then the refer­
ence value must be present and contain a string that can be used to identify this request (for

example, the CI request id).

status: <http-code>
message: <string>
[reference]: <string>

3 Build Artifacts Upload

The build artifacts upload functionality allows uploading archives of files generated as a byprod­

uct of the package builds. Such archives as well as additional, repository-specific information can

optionally be uploaded by the automated build bots via the HTTP POST method using the

multipart/form-data content type (see the bbot documentation for details). The imple­

mentation in brep only handles uploading as well as basic actions and verification (build session

resolution, agent authentication, checksum verification) expecting the rest of the upload logic to

be handled by a separate entity according to the repository policy. Such an entity can be notified

by brep about a new upload as an invocation of the handler program (as part of the HTTP

request) and/or via email. It could also be a separate process that monitors the upload data direc­

tory.

Revision 0.18, March 20258 The build2 Repository Interface

3 Build Artifacts Upload

For each upload request brep performs the following steps.

1. Determine upload type.

The upload type must be passed via the upload parameter in the query component of the

request URL.

2. Verify upload size limit.

The upload form-data payload size must not exceed upload-max-size specific for this

upload type.

3. Verify the required session, instance, archive, and sha256sum parameters are

present. If brep is configured to perform agent authentication, then verify that the chal­
lenge parameter is also present. See the Result Request Manifest for semantics of the

session and challenge parameters.

The archive parameter must be the build artifacts archive upload while sha256sum
must be its 64 characters SHA256 checksum calculated in the binary mode.

4. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab (\t),

carriage return (\r), and line feed (\n).

5. Resolve the session.

Resolve the session parameter value to the actual package build information.

6. Authenticate the build bot agent.

Use the challenge parameter value and the resolved package build information to authen­

ticate the agent, if configured to do so.

7. Generate upload request id and create request directory.

For each upload request a unique id (UUID) is generated and a request subdirectory is

created in the upload-data directory with this id as its name.

8. Save the upload archive into the request directory and verify its checksum.

The archive is saved using the submitted name, and its checksum is calculated and compared

to the submitted checksum.

9Revision 0.18, March 2025 The build2 Repository Interface

3 Build Artifacts Upload

9. Save the upload request manifest into the request directory.

The upload request manifest is saved as request.manifest into the request subdirec­

tory next to the archive.

10. Invoke the upload handler program.

If upload-handler is configured, invoke the handler program passing to it additional

arguments specified with upload-handler-argument (if any) followed by the abso­

lute path to the upload request directory.

The handler program is expected to write the upload result manifest to stdout and termi­

nate with the zero exit status. A non-zero exit status is treated as an internal error. The

handler program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the upload result manifest status values in the [500-599]

range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the upload request directory and can

move/remove it. If after the handler program terminates the request directory still exists,

then it is handled by brep depending on the handler process exit status and the upload

result manifest status value. If the process has terminated abnormally or with a non-zero exit

status or the result manifest status is in the [500-599] range (HTTP server error), then the

directory is saved for troubleshooting by appending the .fail extension to its name. Other­

wise, if the status is in the [400-499] range (HTTP client error), then the directory is

removed. If the directory is left in place by the handler or is saved for troubleshooting, then

the upload result manifest is saved as result.manifest into this directory, next to the

request manifest.

If upload-handler-timeout is configured and the handler program does not exit in

the allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following upload result manifest is implied:

status: 200
message: <upload-type> upload is queued
reference: <request-id>

11. Send the upload email.

If upload-email is configured, send an email to this address containing the upload

request manifest and the upload result manifest.

Revision 0.18, March 202510 The build2 Repository Interface

3 Build Artifacts Upload

12. Respond to the client.

Respond to the client with the upload result manifest and its status value as the HTTP

status code.

Check violations (max size, etc) that are explicitly mentioned above are always reported with the

upload result manifest. Other errors (for example, internal server errors) might be reported with

unformatted text, including HTML.

3.1 Upload Request Manifest

The upload request manifest starts with the below values and in that order optionally followed by

additional values in the unspecified order corresponding to the custom request parameters.

id: <request-id>
session: <session-id>
instance: <name>
archive: <name>
sha256sum: <sum>
timestamp: <date-time>

name: <name>
version: <version>
project: <name>
target-config: <name>
package-config: <name>
target: <target-triplet>
[tenant]: <tenant-id>
toolchain-name: <name>
toolchain-version: <standard-version>
repository-name: <canonical-name>
machine-name: <name>
machine-summary: <text>

The timestamp value is in the ISO-8601 <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form

(always UTC).

3.2 Upload Result Manifest

The upload result manifest starts with the below values and in that order optionally followed by

additional values if returned by the handler program. If the upload request is successful, then the

reference value must be present and contain a string that can be used to identify this request

(for example, the upload request id).

status: <http-code>
message: <string>
[reference]: <string>

11Revision 0.18, March 2025 The build2 Repository Interface

3.1 Upload Request Manifest

4 Package Review Submission

4.1 Package Review Manifest

The package review manifest files are per version/revision and are normally stored on the filesys­

tem along with other package metadata (like ownership information). Under the metadata root

directory, a review manifest file has the following path:

<project>/<package>/<version>/reviews.manifest

For example:

hello/libhello/1.2.3+2/reviews.manifest

Note that review manifests are normally not removed when the corresponding package archive is

removed (for example, as a result of a replacement with a revision) because reviews for subse­

quent versions may refer to review results of previous versions (see below).

The package review file is a manifest list with each manifest containing the below values in an

unspecified order:

reviewed-by: <string>
result-<name>: pass|fail|unchanged
[base-version]: <version>
[details-url]: <url>

For example:

reviewed-by: John Doe <john@example.org>
result-build: fail
details-url: https://github.com/build2-packaging/hello/issues/1

The reviewed-by value identifies the reviewer. For example, a deployment policy may

require a real name and email address when submitting a review.

The result-<name> values specify the review results for various aspects of the package. At

least one result value must be present and duplicates for the same aspect name are not allowed.

For example, a deployment may define the following aspect names: build (build system),

code (implementation source code), test (tests), doc (documentation).

The result-<name> value must be one of pass (the review passed), fail (the review

failed), and unchanged (the aspect in question hasn’t changed compared to the previous

version, which is identified with the base-version value; see below).

Revision 0.18, March 202512 The build2 Repository Interface

4 Package Review Submission

The base-version value identifies the previous version on which this review is based. The

idea here is that when reviewing a new revision, a patch version, or even a minor version, it is

often easier to review the difference between the two versions than to review everything from

scratch. In such cases, if some aspects haven’t changed since the previous version, then their

results can be specified as unchanged. The base-version value must be present if at least

one result-<name> value is unchanged.

The details-url value specifies a URL that contains the details of the review (issues identi­

fied, etc). It can only be absent if none of the result-<name> values are fail (a failed

review needs an explanation of why it failed).

5 GitHub CI Integration

This chapter describes the integration of the Package CI functionality with GitHub.

5.1 GitHub CI Background

The GitHub CI model has a number of limitations that are important to understand in order to use

the provided integration correctly. To understand the limitations, however, we first need to under­

stand how the integration works, at least at the high level.

GitHub supports integration of third-party CI services into the repository workflow by allowing

such third-party services to register for events (called web hooks in the GitHub terminology).

This mechanism should not be confused with GitHub Actions, which is a GitHub built-in CI

service. As far as we understand, it uses ad hoc integration rather than the same integration mech­

anism as available to third-party CI services.

While there are many repository workflow events, for CI the only relevant ones are:

1. Branch push (BP), which is triggered when a new commit is pushed to a branch in your

repository.

2. Pull request (PR), which is triggered when a new pull request is created on your repository.

It is also triggered when new commits are added to the existing PR.

Another relevant event is Merge queue. However, merge queues are not yet supported by this

integration.

In response to these events the third-party CI service is expected to start a number of CI jobs

(called checks in the GitHub terminology) and then report their progress and results back to

GitHub to be shown to the user, and, in case of PRs, to prevent them from being merged in case

the result is unsuccessful.

13Revision 0.18, March 2025 The build2 Repository Interface

5 GitHub CI Integration

More precisely, this prevention applies more generally to any attempt to merge or push an

unchecked commit to a protected branch. For example, if the default branch is protected and you

attempt to push to it a commit that hasn’t been successfully checked, this attempt will fail. See the

next section on setting branch protection rule.

Let’s examine in more detail what exactly happens in case of a branch push and a pull request.

The branch push (BP) case is pretty straightforward: when you push a new commit to a branch in

your repository, this commit is CI’ed by the third-party service and the result is associated with

this commit. If you push another commit, the process repeats and you get a new set of CI results

associated with the new commit. The important point here is that the CI results for each commit

are associated with that commit id (called head sha in the GitHub terminology).

The pull request (PR) case is more complicated: the aim of a PR is to merge one or more commits

from one branch (called head branch in the GitHub terminology) to another branch (called base

branch in the GitHub terminology). If the base branch can be fast-forwarded to the head commit

of the head branch, then we can CI this head commit and the result will be representative of the

merge. However, if base cannot be fast-forwarded, then a general merge of the two branches must

be performed, with potential conflict resolution, etc. And in this case the CI result for the head

commit may not necessarily represent the result of the merge.

To support the general case (when the base branch cannot be fast-forwarded) GitHub creates a

tentative merge commit (called test merge commit in the GitHub terminology) and expects the CI

service to test that commit rather than the head commit (this is what most of the major CI integra­

tions do). See The Many SHAs of a GitHub Pull Request for additional details.

While the PR case is more complicated, so far everything makes sense. But that ends once we

understand what GitHub associates the CI result with in case of a PR. Since the CI service is

expected to test the merge commit, it would make sense to associate the result of this test with the

merge commit. Instead, GitHub expects the CI service to report it as associated with the head

commit!

This strange decision by GitHub, which we will refer to as "head sharing", has two serious conse­

quences for trusting CI results when making decisions about merging PRs.

Firstly, if the branch push and/or several pull requests share the same head commit, then they will

share the CI result, regardless of the state of the PRs’ base branches. Or, to put it another way, in

the GitHub model there is a single CI result per head commit that is shared by all the BPs and

PRs with this head commit.

Secondly, if the base branch of a PR moves, the CI result associated with the PR does not get

invalidated (because the PR head hasn’t changed).

Revision 0.18, March 202514 The build2 Repository Interface

5.1 GitHub CI Background

https://www.kenmuse.com/blog/the-many-shas-of-a-github-pull-request/

Let’s consider two representative examples of each case that show how the GitHub behavior can

lead us to making wrong decisions. But before we do that, a last bit of terminology: we will

distinguish between local PRs, those with the head branch from the same repository, and remote

PRs, those with the head branch belonging to another user/organization (called forked PR in the

GitHub terminology).

The first representative example is a feature branch: we develop a feature in a branch of our

repository and once it is ready, we create a local PR to merge it to the master/main branch. We

typically go through the PR instead of merging our branch directly in order to have the changes

reviewed by someone else. In this scenario, the head commit of our feature branch and of the PR

we created will be the same, which means our PR will share the CI result with the feature branch

push, which is presumably successful. This can lead us to merging the PR based on this result

even though the merge commit of the PR may not have the same contents as the head commit of

the result. For example, we may have forgotten to rebase our feature branch on the base branch

(master/main in our example) before creating the PR and the base branch has moved while we

developed the feature. Or the review may have taken some time and the base branch likewise has

moved in the meantime. In both these cases while the changes to the base branch may not render

our head commit unmergeable (for example, due to conflicts), they may render our changes

uncompilable or otherwise buggy once merged.

The second representative example is a single remote PR: someone creates a PR with a feature or

bugfix from their fork of our repository. There is no corresponding branch push for this PR’s

head commit in our repository so it sounds like there is only one place (the PR) where the CI

result, if associated with this head commit, will be reported in our repository and so the head

sharing should not be an issue, right? While it’s true that spatial sharing, that is between BP

and/or several PRs, is not an issue in this case, temporal sharing still is. Specifically, if the base

branch moves before we examine the PR, we again may end up merging it based on the CI results

that are not representative of the merge commit.

Hopefully you see the underlying theme by now: the only way to ensure correctness in the

GitHub CI model is to make sure the PR’s head and merge commits are the same, which is only

the case when the PR base branch can be fast-forwarded to head.

Thankfully, GitHub provides a branch protection rule that prevents merging of a PR with the

head branch behind base (we will refer to it as the head-behind-base protection). Enabling of this

protection rule is a prerequisite for this CI integration to work correctly.

Note, however, that even with the head-behind-base protection enabled, some of the GitHub

behavior can be counter-intuitive.

For one, GitHub does not prevent the CI build from starting if this protection rule is violated.

While this integration checks the result of this protection rule and does not start the build if the

head is behind, the CI result may already be available (if this head is shared with a branch push

and/or another PR), in which case GitHub will show it. So you may end up with a violated

15Revision 0.18, March 2025 The build2 Repository Interface

5.1 GitHub CI Background

head-behind-base protection but with a successful CI result.

Another surprising consequence of the head sharing is the instantaneous availability of the CI

result, which may look suspicious. For example, if you create a PR from a local feature branch,

you may immediately see the successful CI result because it is the same as for the branch push to

the feature branch.

Finally note that the GitHub CI model is quite wasteful of CI resources in general and the head

sharing makes this problem even worse. Specifically, GitHub CI builds every commit indiscrimi­

nately, regardless of what was changed. So a minor tweak to README.md will trigger a full

rebuild even though nothing that needs building has changed. The head sharing issue makes the

situation worse because the CI integration cannot easily cancel an in-progress build when a new

commit is added to a PR because the result could be shared with a branch push or another PR.

Nevertheless, this integration will attempt to cancel a stale build of a remote PR provided it’s not

(currently) shared.

5.2 Enabling CI Integration on GitHub Repository

To enable the CI integration on a GitHub repository, the corresponding GitHub App must be first

installed into the user or organization account to which this repository belongs. To do this go to

GitHub Marketplace and search for "build2 CI". This should bring the list of available build2
CI Apps to choose from. Click on the desired App and scroll to the bottom to install it.

Once this is done, go to the account settings and open the "Applications" tab. There you should

see the App you just installed. Click on the "Configure" button next to it and in the "Repository

Access" section list the repositories you wish to CI. Then click "Save".

Once this is done, all future pushed commits and pull requests will be tested using build2 CI.

While you can stop here, it is strongly recommended to also enable a branch protection rule that

takes into account the configured CI. As discussed in the previous section, GitHub CI model has

a number of limitations and without the branch protection you may, for example, make a decision

to merge a PR based on the stale CI results.

The are two ways to enable the necessary branch protection: using the classic branch protection

rule or with the new rulesets. Both of these methods should produce the same result and are

discussed in the following two sections.

Note, however, that before you can proceed to enabling branch protection, you need to trigger at

least one CI job (for example, by pushing a commit). Failed, that, the CONCLUSION check that

we will use as the required check will not yet be known in this repository.

Revision 0.18, March 202516 The build2 Repository Interface

5.2 Enabling CI Integration on GitHub Repository

https://github.com/marketplace/

5.2.1 Adding classic branch protection rule

Go to the repository settings and open the "Branches" tab. There click on the "Add classic branch

protection rule" (or edit an existing rule if you already have one for the branch you wish to

protect).

In the "Branch name pattern" specify the branch you would like to protect. Usually you protect

branches that should only contain successfully checked commits. So normally at least

master/main.

While you can enable any other protection rules, the one that is pertinent to our problem is

"Require status checks to pass before merging". Enable it and then also enable the "Require

branches to be up to date before merging" sub-rule. Finally, in the search field type CONCLU­
SION and select it as a required check. Click "Create" (or "Save").

A note on the "Do not allow bypassing the above settings" rule: if you enable it, then repository

administrators won’t be able to push any commits to the protected branch that haven’t been

successfully checked. In other words, with this enabled, the only way to push a commit would be

to first push it to an unprotected branch, wait for the CI to complete, and then, if successful, push

it to the protected branch.

5.2.2 Adding branch ruleset

Go to the repository settings and open the "Rules/Rulesets" tab. There click on the "New

ruleset/New branch ruleset" (or edit an existing ruleset if you already have one for the branch you

wish to protect).

In the "Ruleset Name" specify an appropriate name, for example build2 CI.

In the "Target branches" specify the branch you would like to protect. Usually you protect

branches that should only contain successfully checked commits. So normally at least

master/main. If that’s your default branch, then selecting "Include default branch" should do

the trick.

While you can enable any other protection rules, the one that is pertinent to our problem is

"Require status checks to pass". Enable it and then also enable the "Require branches to be up to

date before merging" sub-rule. Finally, click on "Add checks" and in the search field type

CONCLUSION and select it as a required check. Click "Create" (or "Save changes").

A note on the "Bypass list": if you don’t add the "Repository admin" role to this list, then reposi­

tory administrators won’t be able to push any commits to the protected branch that haven’t been

successfully checked. In other words, without this bypass, the only way to push a commit would

be to first push it to an unprotected branch, wait for the CI to complete, and then, if successful,

push it to the protected branch.

17Revision 0.18, March 2025 The build2 Repository Interface

5.2.1 Adding classic branch protection rule

	Preface
	1 Package Submission
	1.1 Submission Request Manifest
	1.2 Submission Result Manifest

	2 Package CI
	2.1 CI Request Manifest
	2.2 CI Overrides Manifest
	2.3 CI Result Manifest

	3 Build Artifacts Upload
	3.1 Upload Request Manifest
	3.2 Upload Result Manifest

	4 Package Review Submission
	4.1 Package Review Manifest

	5 GitHub CI Integration
	5.1 GitHub CI Background
	5.2 Enabling CI Integration on GitHub Repository
	5.2.1 Adding classic branch protection rule
	5.2.2 Adding branch ruleset

