
The build2 Repository Interface

Copyright © 2014-2025 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.18, March 2025

This revision of the document describes the build2 repository interface 0.18.x series.

Table of Contents

.................. 1Preface

............... 11 Package Submission

........... 31.1 Submission Request Manifest

............ 31.2 Submission Result Manifest

................. 42 Package CI

............. 62.1 CI Request Manifest

............. 72.2 CI Overrides Manifest

.............. 72.3 CI Result Manifest

.............. 83 Build Artifacts Upload

............ 103.1 Upload Request Manifest

............. 113.2 Upload Result Manifest

............. 114 Package Review Submission

............ 114.1 Package Review Manifest

............... 125 GitHub CI Integration

............. 125.1 GitHub CI Background

........ 155.2 Enabling CI Integration on GitHub Repository

........ 155.2.1 Adding classic branch protection rule

........... 165.2.2 Adding branch ruleset

iRevision 0.18, March 2025 The build2 Repository Interface

Table of Contents

Preface

This document describes brep, the build2 package repository web interface. For the

command line interface of brep utilities refer to the brep-load(1), brep-clean(1),

brep-migrate(1), and brep-monitor(1) man pages.

1 Package Submission

The package submission functionality allows uploading of package archives as well as addi­

tional, repository-specific information via the HTTP POST method using the multi­
part/form-data content type. The implementation in brep only handles uploading as

well as basic verification (checksum, duplicates) expecting the rest of the submission and

publishing logic to be handled by a separate entity according to the repository policy. Such an

entity can be notified by brep about a new submission as an invocation of the handler

program (as part of the HTTP request) and/or via email. It could also be a separate process

that monitors the upload data directory.

The submission request without any parameters is treated as the submission form request. If

submit-form is configured, then such a form is generated and returned. Otherwise, such a

request is treated as an invalid submission (missing parameters).

For each submission request brep performs the following steps.

1. Verify submission size limit.

The submission form-data payload size must not exceed submit-max-size.

2. Verify the required archive and sha256sum parameters are present.

The archive parameter must be the package archive upload while sha256sum must

be its 64 characters SHA256 checksum calculated in the binary mode.

3. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab

(\t), carriage return (\r), and line feed (\n).

4. Check for a duplicate submission.

Each submission is saved as a subdirectory in the submit-data directory with a

12-character abbreviated checksum as its name.

5. Save the package archive into a temporary directory and verify its checksum.

A temporary subdirectory is created in the submit-temp directory, the package

archive is saved into it using the submitted name, and its checksum is calculated and

compared to the submitted checksum.

1Revision 0.18, March 2025 The build2 Repository Interface

Preface

6. Save the submission request manifest into the temporary directory.

The submission request manifest is saved as request.manifest into the temporary

subdirectory next to the archive.

7. Make the temporary submission directory permanent.

Move/rename the temporary submission subdirectory to submit-data as an atomic

operation using the 12-character abbreviated checksum as its new name. If such a direc­

tory already exist, then this is a duplicate submission.

8. Invoke the submission handler program.

If submit-handler is configured, invoke the handler program passing to it additional

arguments specified with submit-handler-argument (if any) followed by the

absolute path to the submission directory.

The handler program is expected to write the submission result manifest to stdout and

terminate with the zero exit status. A non-zero exit status is treated as an internal error.

The handler program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the submission result manifest status values in the

[500-599] range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the submission directory and can

move/remove it. If after the handler program terminates the submission directory still

exists, then it is handled by brep depending on the handler process exit status and the

submission result manifest status value. If the process has terminated abnormally or with

a non-zero exit status or the result manifest status is in the [500-599] range (HTTP server

error), then the directory is saved for troubleshooting by appending the .fail extension

followed by a numeric extension to its name (for example, ff5a1a53d318.fail.1).

Otherwise, if the status is in the [400-499] range (HTTP client error), then the directory

is removed. If the directory is left in place by the handler or is saved for troubleshooting,

then the submission result manifest is saved as result.manifest into this directory,

next to the request manifest and archive.

If submit-handler-timeout is configured and the handler program does not exit

in the allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following submission result manifest is

implied:

status: 200
message: package submission is queued
reference: <abbrev-checksum>

9. Send the submission email.

Revision 0.18, March 20252 The build2 Repository Interface

1 Package Submission

If submit-email is configured, send an email to this address containing the submis­

sion request manifest and the submission result manifest.

10. Respond to the client.

Respond to the client with the submission result manifest and its status value as the

HTTP status code.

Check violations (max size, duplicate submissions, etc) that are explicitly mentioned above

are always reported with the submission result manifest. Other errors (for example, internal

server errors) might be reported with unformatted text, including HTML.

If the submission request contains the simulate parameter, then the submission service

simulates the specified outcome of the submission process without actually performing any

externally visible actions (e.g., publishing the package, notifying the submitter, etc). Note that

the package submission email (submit-email) is not sent for simulated submissions.

Pre-defined simulation outcome values are internal-error-text, inter­
nal-error-html, duplicate-archive, and success. The simulation outcome is

included into the submission request manifest and the handler program must at least handle

success but may recognize additional outcomes.

1.1 Submission Request Manifest

The submission request manifest starts with the below values and in that order optionally

followed by additional values in the unspecified order corresponding to the custom request

parameters.

archive: <name>
sha256sum: <sum>
timestamp: <date-time>
[simulate]: <outcome>
[client-ip]: <string>
[user-agent]: <string>

The timestamp value is in the ISO-8601 <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z
form (always UTC). Note also that client-ip can be IPv4 or IPv6.

1.2 Submission Result Manifest

The submission result manifest starts with the below values and in that order optionally

followed by additional values if returned by the handler program. If the submission is success­

ful, then the reference value must be present and contain a string that can be used to iden­

tify this submission (for example, the abbreviated checksum).

status: <http-code>
message: <string>
[reference]: <string>

3Revision 0.18, March 2025 The build2 Repository Interface

1.1 Submission Request Manifest

2 Package CI

The CI functionality allows submission of package CI requests as well as additional, reposi­

tory-specific information via the HTTP GET and POST methods using the applica­
tion/x-www-form-urlencoded or multipart/form-data parameters encoding.

The implementation in brep only handles reception as well as basic parameter verification

expecting the rest of the CI logic to be handled by a separate entity according to the repository

policy. Such an entity can be notified by brep about a new CI request as an invocation of the

handler program (as part of the HTTP request) and/or via email. It could also be a separate

process that monitors the CI data directory.

The CI request without any parameters is treated as the CI form request. If ci-form is

configured, then such a form is generated and returned. Otherwise, such a request is treated as

an invalid CI request (missing parameters).

For each CI request brep performs the following steps.

1. Verify the required repository and optional package parameters.

The repository parameter is the remote bpkg repository location that contains the

packages to be tested. If one or more package parameters are present, then only the

specified packages are tested. If no package parameters are specified, then all the pack­

ages present in the repository (but excluding complement repositories) are tested.

Each package parameter can specify either just the package name, in which case all the

versions of this package present in the repository will be tested, or both the name and

version in the <name>/<version> form (for example, libhello/1.2.3.

2. Verify the optional overrides parameter.

The overrides parameter, if specified, must be the CI overrides manifest upload.

3. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab

(\t), carriage return (\r), and line feed (\n).

4. Generate CI request id and create request directory.

For each CI request a unique id (UUID) is generated and a request subdirectory is

created in the ci-data directory with this id as its name.

5. Save the CI request manifest into the request directory.

The CI request manifest is saved as request.manifest into the request subdirectory

created on the previous step.

Revision 0.18, March 20254 The build2 Repository Interface

2 Package CI

6. Save the CI overrides manifest into the request directory.

If the CI overrides manifest is uploaded, then it is saved as overrides.manifest
into the request subdirectory.

7. Invoke the CI handler program.

If ci-handler is configured, invoke the handler program passing to it additional argu­

ments specified with ci-handler-argument (if any) followed by the absolute path

to the CI request directory.

The handler program is expected to write the CI result manifest to stdout and termi­

nate with the zero exit status. A non-zero exit status is treated as an internal error. The

handler program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the CI result manifest status values in the [500-599]

range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the CI request directory and can

move/remove it. If after the handler program terminates the request directory still exists,

then it is handled by brep depending on the handler process exit status and the CI result

manifest status value. If the process has terminated abnormally or with a non-zero exit

status or the result manifest status is in the [500-599] range (HTTP server error), then the

directory is saved for troubleshooting by appending the .fail extension to its name.

Otherwise, if the status is in the [400-499] range (HTTP client error), then the directory

is removed. If the directory is left in place by the handler or is saved for troubleshooting,

then the CI result manifest is saved as result.manifest into this directory, next to

the request manifest.

If ci-handler-timeout is configured and the handler program does not exit in the

allotted time, then it is killed and its termination is treated as abnormal.

If the handler program is not specified, then the following CI result manifest is implied:

status: 200
message: CI request is queued
reference: <request-id>

8. Send the CI request email.

If ci-email is configured, send an email to this address containing the CI request

manifest, the potentially empty CI overrides manifest, and the CI result manifest.

9. Respond to the client.

Respond to the client with the CI result manifest and its status value as the HTTP

status code.

5Revision 0.18, March 2025 The build2 Repository Interface

2 Package CI

Check violations that are explicitly mentioned above are always reported with the CI result

manifest. Other errors (for example, internal server errors) might be reported with unformat­

ted text, including HTML.

If the CI request contains the interactive parameter, then the CI service provides the

execution environment login information for each test and stops them at the specified break­

point.

Pre-defined breakpoint ids are error and warning. The breakpoint id is included into the

CI request manifest and the CI service must at least handle error but may recognize addi­

tional ids (build phase/command identifiers, etc).

If the CI request contains the simulate parameter, then the CI service simulates the speci­

fied outcome of the CI process without actually performing any externally visible actions

(e.g., testing the package, publishing the result, etc). Note that the CI request email

(ci-email) is not sent for simulated requests.

Pre-defined simulation outcome values are internal-error-text, inter­
nal-error-html, and success. The simulation outcome is included into the CI request

manifest and the handler program must at least handle success but may recognize addi­

tional outcomes.

2.1 CI Request Manifest

The CI request manifest starts with the below values and in that order optionally followed by

additional values in the unspecified order corresponding to the custom request parameters.

id: <request-id>
repository: <url>
[package]: <name>[/<version>]
[interactive]: <breakpoint>
[simulate]: <outcome>
timestamp: <date-time>
[client-ip]: <string>
[user-agent]: <string>
[service-id]: <string>
[service-type]: <string>
[service-data]: <string>
[service-action]: <action>

The package value can be repeated multiple times. The timestamp value is in the

ISO-8601 <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z form (always UTC). Note also that

client-ip can be IPv4 or IPv6.

Note that some CI service implementations may serve as backends for third-party services.

The latter may initiate CI tasks, providing all the required information via some custom proto­

col, and expect the CI service to notify it about the progress. In this case the third-party

service type as well as optionally the third-party id and custom state data can be communi­

cated to the underlying CI handler program via the respective service-* manifest values.

Also note that normally a third-party service has all the required information (repository URL,

Revision 0.18, March 20256 The build2 Repository Interface

2.1 CI Request Manifest

etc) available at the time of the CI task initiation, in which case the start value is specified

for the service-action manifest value. If that’s not the case, the CI task is only created

at the time of the initiation without calling the CI handler program. In this case the CI handler

is called later, when all the required information is asynchronously gathered by the service. In

this case the load value is specified for the service-action manifest value.

2.2 CI Overrides Manifest

The CI overrides manifest is a package manifest fragment that should be applied to all the

packages being tested. The contained values override the whole value groups they belong to,

resetting all the group values prior to being applied. Currently, only the following value

groups can be overridden:

build-email build-{warning,error}-email
builds build-{include,exclude}
*-builds *-build-{include,exclude}
*-build-config

For the package configuration-specific build constraint overrides the corresponding configura­

tion must exist in the package manifest. In contrast, the package configuration override

(*-build-config) adds a new configuration if it doesn’t exist and updates the arguments

of the existing configuration otherwise. In the former case, all the potential build constraint

overrides for such a newly added configuration must follow the corresponding

*-build-config override.

Note that the build constraints group values (both common and build package configura­

tion-specific) are overridden hierarchically so that the

[*-]build-{include,exclude} overrides don’t affect the respective [*-]builds

values.

Note also that the common and build package configuration-specific build constraints group

value overrides are mutually exclusive. If the common build constraints are overridden, then

all the configuration-specific constraints are removed. Otherwise, if any configura­

tion-specific constraints are overridden, then for the remaining configurations the build

constraints are reset to builds: none.

See Package Manifest for details on these values.

2.3 CI Result Manifest

The CI result manifest starts with the below values and in that order optionally followed by

additional values if returned by the handler program. If the CI request is successful, then the

reference value must be present and contain a string that can be used to identify this

request (for example, the CI request id).

7Revision 0.18, March 2025 The build2 Repository Interface

2.2 CI Overrides Manifest

status: <http-code>
message: <string>
[reference]: <string>

3 Build Artifacts Upload

The build artifacts upload functionality allows uploading archives of files generated as a

byproduct of the package builds. Such archives as well as additional, repository-specific infor­

mation can optionally be uploaded by the automated build bots via the HTTP POST method

using the multipart/form-data content type (see the bbot documentation for details).

The implementation in brep only handles uploading as well as basic actions and verification

(build session resolution, agent authentication, checksum verification) expecting the rest of

the upload logic to be handled by a separate entity according to the repository policy. Such an

entity can be notified by brep about a new upload as an invocation of the handler program

(as part of the HTTP request) and/or via email. It could also be a separate process that moni­

tors the upload data directory.

For each upload request brep performs the following steps.

1. Determine upload type.

The upload type must be passed via the upload parameter in the query component of

the request URL.

2. Verify upload size limit.

The upload form-data payload size must not exceed upload-max-size specific for

this upload type.

3. Verify the required session, instance, archive, and sha256sum parameters are

present. If brep is configured to perform agent authentication, then verify that the

challenge parameter is also present. See the Result Request Manifest for semantics of

the session and challenge parameters.

The archive parameter must be the build artifacts archive upload while sha256sum
must be its 64 characters SHA256 checksum calculated in the binary mode.

4. Verify other parameters are valid manifest name/value pairs.

The value can only contain UTF-8 encoded Unicode graphic characters as well as tab

(\t), carriage return (\r), and line feed (\n).

5. Resolve the session.

Resolve the session parameter value to the actual package build information.

6. Authenticate the build bot agent.

Revision 0.18, March 20258 The build2 Repository Interface

3 Build Artifacts Upload

Use the challenge parameter value and the resolved package build information to

authenticate the agent, if configured to do so.

7. Generate upload request id and create request directory.

For each upload request a unique id (UUID) is generated and a request subdirectory is

created in the upload-data directory with this id as its name.

8. Save the upload archive into the request directory and verify its checksum.

The archive is saved using the submitted name, and its checksum is calculated and

compared to the submitted checksum.

9. Save the upload request manifest into the request directory.

The upload request manifest is saved as request.manifest into the request subdi­

rectory next to the archive.

10. Invoke the upload handler program.

If upload-handler is configured, invoke the handler program passing to it additional

arguments specified with upload-handler-argument (if any) followed by the

absolute path to the upload request directory.

The handler program is expected to write the upload result manifest to stdout and

terminate with the zero exit status. A non-zero exit status is treated as an internal error.

The handler program’s stderr is logged.

Note that the handler program should report temporary server errors (service overload,

network connectivity loss, etc.) via the upload result manifest status values in the

[500-599] range (HTTP server error) rather than via a non-zero exit status.

The handler program assumes ownership of the upload request directory and can

move/remove it. If after the handler program terminates the request directory still exists,

then it is handled by brep depending on the handler process exit status and the upload

result manifest status value. If the process has terminated abnormally or with a non-zero

exit status or the result manifest status is in the [500-599] range (HTTP server error),

then the directory is saved for troubleshooting by appending the .fail extension to its

name. Otherwise, if the status is in the [400-499] range (HTTP client error), then the

directory is removed. If the directory is left in place by the handler or is saved for trou­

bleshooting, then the upload result manifest is saved as result.manifest into this

directory, next to the request manifest.

If upload-handler-timeout is configured and the handler program does not exit

in the allotted time, then it is killed and its termination is treated as abnormal.

9Revision 0.18, March 2025 The build2 Repository Interface

3 Build Artifacts Upload

If the handler program is not specified, then the following upload result manifest is

implied:

status: 200
message: <upload-type> upload is queued
reference: <request-id>

11. Send the upload email.

If upload-email is configured, send an email to this address containing the upload

request manifest and the upload result manifest.

12. Respond to the client.

Respond to the client with the upload result manifest and its status value as the HTTP

status code.

Check violations (max size, etc) that are explicitly mentioned above are always reported with

the upload result manifest. Other errors (for example, internal server errors) might be reported

with unformatted text, including HTML.

3.1 Upload Request Manifest

The upload request manifest starts with the below values and in that order optionally followed

by additional values in the unspecified order corresponding to the custom request parameters.

id: <request-id>
session: <session-id>
instance: <name>
archive: <name>
sha256sum: <sum>
timestamp: <date-time>

name: <name>
version: <version>
project: <name>
target-config: <name>
package-config: <name>
target: <target-triplet>
[tenant]: <tenant-id>
toolchain-name: <name>
toolchain-version: <standard-version>
repository-name: <canonical-name>
machine-name: <name>
machine-summary: <text>

The timestamp value is in the ISO-8601 <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z
form (always UTC).

Revision 0.18, March 202510 The build2 Repository Interface

3.1 Upload Request Manifest

3.2 Upload Result Manifest

The upload result manifest starts with the below values and in that order optionally followed

by additional values if returned by the handler program. If the upload request is successful,

then the reference value must be present and contain a string that can be used to identify

this request (for example, the upload request id).

status: <http-code>
message: <string>
[reference]: <string>

4 Package Review Submission

4.1 Package Review Manifest

The package review manifest files are per version/revision and are normally stored on the

filesystem along with other package metadata (like ownership information). Under the meta­

data root directory, a review manifest file has the following path:

<project>/<package>/<version>/reviews.manifest

For example:

hello/libhello/1.2.3+2/reviews.manifest

Note that review manifests are normally not removed when the corresponding package

archive is removed (for example, as a result of a replacement with a revision) because reviews

for subsequent versions may refer to review results of previous versions (see below).

The package review file is a manifest list with each manifest containing the below values in

an unspecified order:

reviewed-by: <string>
result-<name>: pass|fail|unchanged
[base-version]: <version>
[details-url]: <url>

For example:

reviewed-by: John Doe <john@example.org>
result-build: fail
details-url: https://github.com/build2-packaging/hello/issues/1

The reviewed-by value identifies the reviewer. For example, a deployment policy may

require a real name and email address when submitting a review.

The result-<name> values specify the review results for various aspects of the package.

At least one result value must be present and duplicates for the same aspect name are not

allowed. For example, a deployment may define the following aspect names: build (build

system), code (implementation source code), test (tests), doc (documentation).

11Revision 0.18, March 2025 The build2 Repository Interface

4 Package Review Submission

The result-<name> value must be one of pass (the review passed), fail (the review

failed), and unchanged (the aspect in question hasn’t changed compared to the previous

version, which is identified with the base-version value; see below).

The base-version value identifies the previous version on which this review is based.

The idea here is that when reviewing a new revision, a patch version, or even a minor version,

it is often easier to review the difference between the two versions than to review everything

from scratch. In such cases, if some aspects haven’t changed since the previous version, then

their results can be specified as unchanged. The base-version value must be present if

at least one result-<name> value is unchanged.

The details-url value specifies a URL that contains the details of the review (issues

identified, etc). It can only be absent if none of the result-<name> values are fail (a

failed review needs an explanation of why it failed).

5 GitHub CI Integration

This chapter describes the integration of the Package CI functionality with GitHub.

5.1 GitHub CI Background

The GitHub CI model has a number of limitations that are important to understand in order to

use the provided integration correctly. To understand the limitations, however, we first need

to understand how the integration works, at least at the high level.

GitHub supports integration of third-party CI services into the repository workflow by allow­

ing such third-party services to register for events (called web hooks in the GitHub terminol­

ogy).

This mechanism should not be confused with GitHub Actions, which is a GitHub built-in CI

service. As far as we understand, it uses ad hoc integration rather than the same integration

mechanism as available to third-party CI services.

While there are many repository workflow events, for CI the only relevant ones are:

1. Branch push (BP), which is triggered when a new commit is pushed to a branch in your

repository.

2. Pull request (PR), which is triggered when a new pull request is created on your reposi­

tory. It is also triggered when new commits are added to the existing PR.

Another relevant event is Merge queue. However, merge queues are not yet supported by this

integration.

In response to these events the third-party CI service is expected to start a number of CI jobs

(called checks in the GitHub terminology) and then report their progress and results back to

GitHub to be shown to the user, and, in case of PRs, to prevent them from being merged in

case the result is unsuccessful.

Revision 0.18, March 202512 The build2 Repository Interface

5 GitHub CI Integration

More precisely, this prevention applies more generally to any attempt to merge or push an

unchecked commit to a protected branch. For example, if the default branch is protected and

you attempt to push to it a commit that hasn’t been successfully checked, this attempt will fail.

See the next section on setting branch protection rule.

Let’s examine in more detail what exactly happens in case of a branch push and a pull request.

The branch push (BP) case is pretty straightforward: when you push a new commit to a

branch in your repository, this commit is CI’ed by the third-party service and the result is

associated with this commit. If you push another commit, the process repeats and you get a

new set of CI results associated with the new commit. The important point here is that the CI

results for each commit are associated with that commit id (called head sha in the GitHub

terminology).

The pull request (PR) case is more complicated: the aim of a PR is to merge one or more

commits from one branch (called head branch in the GitHub terminology) to another branch

(called base branch in the GitHub terminology). If the base branch can be fast-forwarded to

the head commit of the head branch, then we can CI this head commit and the result will be

representative of the merge. However, if base cannot be fast-forwarded, then a general merge

of the two branches must be performed, with potential conflict resolution, etc. And in this case

the CI result for the head commit may not necessarily represent the result of the merge.

To support the general case (when the base branch cannot be fast-forwarded) GitHub creates a

tentative merge commit (called test merge commit in the GitHub terminology) and expects the

CI service to test that commit rather than the head commit (this is what most of the major CI

integrations do). See The Many SHAs of a GitHub Pull Request for additional details.

While the PR case is more complicated, so far everything makes sense. But that ends once we

understand what GitHub associates the CI result with in case of a PR. Since the CI service is

expected to test the merge commit, it would make sense to associate the result of this test with

the merge commit. Instead, GitHub expects the CI service to report it as associated with the

head commit!

This strange decision by GitHub, which we will refer to as "head sharing", has two serious

consequences for trusting CI results when making decisions about merging PRs.

Firstly, if the branch push and/or several pull requests share the same head commit, then they

will share the CI result, regardless of the state of the PRs’ base branches. Or, to put it another

way, in the GitHub model there is a single CI result per head commit that is shared by all the

BPs and PRs with this head commit.

Secondly, if the base branch of a PR moves, the CI result associated with the PR does not get

invalidated (because the PR head hasn’t changed).

Let’s consider two representative examples of each case that show how the GitHub behavior

can lead us to making wrong decisions. But before we do that, a last bit of terminology: we

will distinguish between local PRs, those with the head branch from the same repository, and

remote PRs, those with the head branch belonging to another user/organization (called forked

13Revision 0.18, March 2025 The build2 Repository Interface

5.1 GitHub CI Background

https://www.kenmuse.com/blog/the-many-shas-of-a-github-pull-request/

PR in the GitHub terminology).

The first representative example is a feature branch: we develop a feature in a branch of our

repository and once it is ready, we create a local PR to merge it to the master/main branch.

We typically go through the PR instead of merging our branch directly in order to have the

changes reviewed by someone else. In this scenario, the head commit of our feature branch

and of the PR we created will be the same, which means our PR will share the CI result with

the feature branch push, which is presumably successful. This can lead us to merging the PR

based on this result even though the merge commit of the PR may not have the same contents

as the head commit of the result. For example, we may have forgotten to rebase our feature

branch on the base branch (master/main in our example) before creating the PR and the

base branch has moved while we developed the feature. Or the review may have taken some

time and the base branch likewise has moved in the meantime. In both these cases while the

changes to the base branch may not render our head commit unmergeable (for example, due to

conflicts), they may render our changes uncompilable or otherwise buggy once merged.

The second representative example is a single remote PR: someone creates a PR with a

feature or bugfix from their fork of our repository. There is no corresponding branch push for

this PR’s head commit in our repository so it sounds like there is only one place (the PR)

where the CI result, if associated with this head commit, will be reported in our repository and

so the head sharing should not be an issue, right? While it’s true that spatial sharing, that is

between BP and/or several PRs, is not an issue in this case, temporal sharing still is. Specifi­

cally, if the base branch moves before we examine the PR, we again may end up merging it

based on the CI results that are not representative of the merge commit.

Hopefully you see the underlying theme by now: the only way to ensure correctness in the

GitHub CI model is to make sure the PR’s head and merge commits are the same, which is

only the case when the PR base branch can be fast-forwarded to head.

Thankfully, GitHub provides a branch protection rule that prevents merging of a PR with the

head branch behind base (we will refer to it as the head-behind-base protection). Enabling of

this protection rule is a prerequisite for this CI integration to work correctly.

Note, however, that even with the head-behind-base protection enabled, some of the GitHub

behavior can be counter-intuitive.

For one, GitHub does not prevent the CI build from starting if this protection rule is violated.

While this integration checks the result of this protection rule and does not start the build if

the head is behind, the CI result may already be available (if this head is shared with a branch

push and/or another PR), in which case GitHub will show it. So you may end up with a

violated head-behind-base protection but with a successful CI result.

Another surprising consequence of the head sharing is the instantaneous availability of the CI

result, which may look suspicious. For example, if you create a PR from a local feature

branch, you may immediately see the successful CI result because it is the same as for the

branch push to the feature branch.

Revision 0.18, March 202514 The build2 Repository Interface

5.1 GitHub CI Background

Finally note that the GitHub CI model is quite wasteful of CI resources in general and the

head sharing makes this problem even worse. Specifically, GitHub CI builds every commit

indiscriminately, regardless of what was changed. So a minor tweak to README.md will

trigger a full rebuild even though nothing that needs building has changed. The head sharing

issue makes the situation worse because the CI integration cannot easily cancel an in-progress

build when a new commit is added to a PR because the result could be shared with a branch

push or another PR. Nevertheless, this integration will attempt to cancel a stale build of a

remote PR provided it’s not (currently) shared.

5.2 Enabling CI Integration on GitHub Repository

To enable the CI integration on a GitHub repository, the corresponding GitHub App must be

first installed into the user or organization account to which this repository belongs. To do this

go to GitHub Marketplace and search for "build2 CI". This should bring the list of available

build2 CI Apps to choose from. Click on the desired App and scroll to the bottom to install

it.

Once this is done, go to the account settings and open the "Applications" tab. There you

should see the App you just installed. Click on the "Configure" button next to it and in the

"Repository Access" section list the repositories you wish to CI. Then click "Save".

Once this is done, all future pushed commits and pull requests will be tested using build2

CI.

While you can stop here, it is strongly recommended to also enable a branch protection rule

that takes into account the configured CI. As discussed in the previous section, GitHub CI

model has a number of limitations and without the branch protection you may, for example,

make a decision to merge a PR based on the stale CI results.

The are two ways to enable the necessary branch protection: using the classic branch protec­

tion rule or with the new rulesets. Both of these methods should produce the same result and

are discussed in the following two sections.

Note, however, that before you can proceed to enabling branch protection, you need to trigger

at least one CI job (for example, by pushing a commit). Failed, that, the CONCLUSION check

that we will use as the required check will not yet be known in this repository.

5.2.1 Adding classic branch protection rule

Go to the repository settings and open the "Branches" tab. There click on the "Add classic

branch protection rule" (or edit an existing rule if you already have one for the branch you

wish to protect).

In the "Branch name pattern" specify the branch you would like to protect. Usually you

protect branches that should only contain successfully checked commits. So normally at least

master/main.

15Revision 0.18, March 2025 The build2 Repository Interface

5.2 Enabling CI Integration on GitHub Repository

https://github.com/marketplace/

While you can enable any other protection rules, the one that is pertinent to our problem is

"Require status checks to pass before merging". Enable it and then also enable the "Require

branches to be up to date before merging" sub-rule. Finally, in the search field type CONCLU­
SION and select it as a required check. Click "Create" (or "Save").

A note on the "Do not allow bypassing the above settings" rule: if you enable it, then reposi­

tory administrators won’t be able to push any commits to the protected branch that haven’t

been successfully checked. In other words, with this enabled, the only way to push a commit

would be to first push it to an unprotected branch, wait for the CI to complete, and then, if

successful, push it to the protected branch.

5.2.2 Adding branch ruleset

Go to the repository settings and open the "Rules/Rulesets" tab. There click on the "New

ruleset/New branch ruleset" (or edit an existing ruleset if you already have one for the branch

you wish to protect).

In the "Ruleset Name" specify an appropriate name, for example build2 CI.

In the "Target branches" specify the branch you would like to protect. Usually you protect

branches that should only contain successfully checked commits. So normally at least

master/main. If that’s your default branch, then selecting "Include default branch" should

do the trick.

While you can enable any other protection rules, the one that is pertinent to our problem is

"Require status checks to pass". Enable it and then also enable the "Require branches to be up

to date before merging" sub-rule. Finally, click on "Add checks" and in the search field type

CONCLUSION and select it as a required check. Click "Create" (or "Save changes").

A note on the "Bypass list": if you don’t add the "Repository admin" role to this list, then

repository administrators won’t be able to push any commits to the protected branch that

haven’t been successfully checked. In other words, without this bypass, the only way to push

a commit would be to first push it to an unprotected branch, wait for the CI to complete, and

then, if successful, push it to the protected branch.

Revision 0.18, March 202516 The build2 Repository Interface

5.2.2 Adding branch ruleset

	Preface
	1 Package Submission
	1.1 Submission Request Manifest
	1.2 Submission Result Manifest

	2 Package CI
	2.1 CI Request Manifest
	2.2 CI Overrides Manifest
	2.3 CI Result Manifest

	3 Build Artifacts Upload
	3.1 Upload Request Manifest
	3.2 Upload Result Manifest

	4 Package Review Submission
	4.1 Package Review Manifest

	5 GitHub CI Integration
	5.1 GitHub CI Background
	5.2 Enabling CI Integration on GitHub Repository
	5.2.1 Adding classic branch protection rule
	5.2.2 Adding branch ruleset

