The build2 Package Manager

Copyright © 2014-2024 the build2 authors.
Permission is granted to copy, distribute and/or modify this document under the terms of the MIT
License.

Revision 0. 18, November 2024
This revision of the document describes the build2 package manager 0.18. x series.

Table of Contents

[1 Package Name]

[2 Package Version|.
[3 Package Version Constralntl
{4 Package Build System Skeleton|
[5 Dependency Configuration Negotiation|
[5.1 Prefer X but Accept X or Y] .
[5.2 Use If Enabled|)
[5. 3 Disable If Enabled by Defaultl
:
(6.1 Mamfest Fonnatl
[6.2 Package Manifest| .
[6.2.2 version| .
[6.2.3 t ype, language]
[6.2.4 project| .
[6.2.5 priorityl.
[6.2.6 summary| .
[6.2.7 1icense| .
[6.2.8 topics|
[6.2.9 keywords|. ..
[6.2.10 description, package— descrlptlonl
[6.2.11 changes].
:
[6.2.13 doc—url].
[6.2.14 src—url].
[6.2.15 package—url|
6.2.16 email
[6.2.17 package— emalll
[6.2.18 build—emaill)
[6.2.19 build-warning- emalll
[6.2.20 build—error—email]
[6.2.21 depends].
[6.2.22 requires| ..
[6.2.23 tests, examples, benchmarksl
[6.2.24 builds|
[6.2.25 build- {1nclude, exclude H
[6.2.26 build—auxiliary]
[6.2.27 build-bot]
[6.2.28 *—build—config|

Revision 0.18, November 2024 The build2 Package Manager

Table of Contents

~ DN DN = =

12
13
13
13
18
19
19
20
21
21
21
21
23
24
24
25
25
25
26
26
26
26
26
26
27
27
34
36
37
39
40
41
42

Table of Contents

[6.2.29 build-file| . e 45
[6.2.30 *— {name, version, to-downstream-version}{. . . . 46

[6.3 Package List Manifest for pkg Repositories| 47
[6.3.1 sha256sum (list manifest)| 48
[6.3.2 1ocation (package manifest)| 48
[6.3.3 sha256sum (package manifest)| 48

[6.4 Package List Manifest for dir Repositories| 48
[6.4.1 1ocation] 49
[6.4.2 fragment| 49

[6.5 Repository Manifest| 49
[6.5.1 1location]|. 30

50

50
6.5.4 trust| . 30

51
6.5.6 email 32
[6.5.7 summary| 32
[6.5.8 description] 32
[6.5.9 certificate] 32
[6.5.10 fragment]| 33

[6.6 Repository List Manifest| 33
[6.6.1 min-bpkg-—version| 34
[6.6.2 compression]|. .. 34

[6.7 Signature Manifest for pkg Repositories| . 34
[6.7.1 sha256sumn| 34
[6.7.2 signature] . . . 35

[7 Binary Distribution Package Mapping| . 35
[7.1 Debian Package Mapping] 35
[7.1.1 Debian Package Mapping for Consumption| . 35
[7.1.2 Debian Package Mapping for Production| 36

[7.2 Fedora Package Mappingl 39
[7.2.1 Fedora Package Mapping for Consumption| . 39
[7.2.2 Fedora Package Mapping for Production| 61

ii The build2 Package Manager

Revision 0.18, November 2024

Preface

Preface

This document describes bpkg, the build2 package dependency manager. For the package
manager command line interface refer to the bpkg (1) man pages.

1 Package Name

The bpkg package name can contain ASCII alphabetic characters ([a-zA-Z1), digits ([0-91),
underscores (_), plus/minus (+-), and dots/periods (.). The name must be at least two characters
long with the following additional restrictions:

1. It must start with an alphabetic character.
2. It must end with an alphabetic, digit, or plus character.
3. It must not be any of the following illegal names:

build

con prn aux nul

coml com2 com3 com4 com5 comé6 com7 com8 com9
lptl 1pt2 1lpt3 1lpt4 1lpt5 1lpt6 lpt7 1lpt8 1lpt9

The use of the plus (+) character in package names is discouraged. Pluses are used in URL
encoding which makes specifying packages that contain pluses in URLs cumbersome.

The use of the dot (.) character in package names is discouraged except for distinguishing the
implementations of the same functionality for different languages. For example, 1ibfoo and
libfoo.bash.

Package name comparison is case-insensitive but the original case must be preserved for display,
in file names, etc. The reason for case-insensitive comparison is Windows file names.

If the package is a library then it is strongly recommended that you start its package name with
the 1ib prefix, for example, 1ibfoo. Some package repositories may make this a requirement
as part of their submission policy.

If a package (normally a library) supports usage of multiple major versions in the same project,
then it is recommended to append the major version number to the package name starting from
version 2.0.0, for example, 1ibfoo (before 2.0.0), libfoo2 (2.Y.Z), 1libfoo3
(3.Y.2), etc.

Revision 0.18, November 2024 The build2 Package Manager 1

2 Package Version

2 Package Version

The bpkg package version format tries to balance the need of accommodating existing software
versions on one hand and providing a reasonably straightforward comparison semantics on
another. For some background on this problem see deb-version (1) and the

Versioning| specification.

Note also that if you are starting a new project that will use the build2 toolchain, then it is
strongly recommended that you use the standard versioning scheme which is a more strictly
defined subset of semantic versioning that allows automation of many version management tasks.
See version Module for details.

The bpkg package version has the following form:

[+<epoch>-]<upstream>[-<prerel>] [+<revision>] [#<iteration>]

The epoch part should be an integer. It can be used to change to a new versioning scheme that
would be incompatible with the old one. If not specified, then epoch defaults to 1 except for a
stub version (see below) in which case it defaults to 0. The explicit zero epoch can be used if the
current versioning scheme (for example, date-based) is known to be temporary.

The upstream part is the upstream software version that this package is based on. It can only
contain alpha-numeric characters and .. The . character is used to separate the version into
components.

The prerel part is the upstream software pre-release marker, for example, alpha, beta, candidate,
etc. Its format is the same as for upstream except for two special values: the absent prerel (for
example, 1.2 . 3) signifies the maximum or final release while the empty prerel (for example,
1.2.3-) signifies the minimum or earliest possible release. The minimum release is intended to
be used for version constraints (for example, 1ibfoo < 1.2.3-)rather than actual releases.

The revision part should be an integer. It is used to version package releases that are based on the
same upstream versions. If not specified, then revision defaults to 0.

The iteration part is an integer. It is used internally by bpkg to automatically version modifica-
tions to the packaging information (specifically, to package manifest and lockfile) in external
packages that have the same upstream version and revision. As a result, the iteration cannot not
be specified by the user and is only shown in the bpkg output (for example, by pkg-status
command) in order to distinguish between package iterations with otherwise identical versions.
Note also that iteration is relative to the bpkg configuration. Or, in other words, it is an iteration
number of a package as observed by a specific configuration. As a result, two configurations can
"see" the same package state as two different iterations.

2 The build2 Package Manager Revision 0.18, November 2024

http://semver.org/
http://semver.org/

2 Package Version

Package iterations are used to support package development during which requiring the developer
to manually increment the version or revision after each modification would be impractical. This
mechanism is similar to the automatic commit versioning provided by the standard version
except that it is limited to the packaging information but works for uncommitted changes.

Version +0-0- (least possible version) is reserved and specifying it explicitly is illegal. Explic-
itly specifying this version does not make much sense since 1ibfoo < +0-0- is always false
and libfoo > +0-0- is always true. In the implementation this value is used as a special
empty version.

Version 0 (with a potential revision, for example, 0+1, 0+2) is used to signify a stub package. A
stub is a package that does not contain source code and can only be "obtained" from other
sources, for example, a system package manager. Note that at some point a stub may be
converted into a full-fledged package at which point it will be assigned a "real" version. It is
assumed that this version will always be greater than the stub version.

When displaying the package version or when using the version to derive the file name, the
default epoch value as well as zero revision and iteration values are omitted (even if they were
explicitly specified, for instance, in the package manifest). For example, +1-1.2.3+0 will be
used as 1ibfoo-1.2.3.

This versioning scheme and the choice of delimiter characters (.—+) is meant to align with
semantic versioning.

Some examples of versions:

0+1
+0-20180112
1.2.3
1.2.3-al
1.2.3-b2
1.2.3-rcl
1.2.3-alphal
1.2.3-alpha.l
1.2.3-beta.l
1.2.3+1
+2-1.2.3
+2-1.2.3-alpha.1+3
+2.2.34#1
1.2.3+1#1

+2-1.2.3+14#2

The version sorting order is epoch, upstream, prerel, revision, and finally, iteration. The
upstream and prerel parts are compared from left to right, one component at a time, as described
next.

Revision 0.18, November 2024 The build2 Package Manager 3

2 Package Version

To compare two components, first the component types are determined. A component that only
consists of digits is an integer. Otherwise, it is a string. If both components are integers, then they
are compared as integers. Otherwise, they are compared lexicographically and case-insensitively.
The reason for case-insensitive comparison is Windows file names.

A non-existent component is considered O if the other component is an integer and an empty
string if the other component is a string. For example, in 1.2 vs 1. 2. 0, the third component in
the first version is 0 and the two versions are therefore equal. As a special exception to this rule,
an absent prerel part is always greater than any non-absent part. And thus making the final
release always older than any pre-release.

This algorithm gives correct results for most commonly-used versioning schemes, for example:

1.2.3 < 12.2

l.alpha < l.beta
20151128 < 20151228
2015.11.28 < 2015.12.28

One notable versioning scheme where this approach gives an incorrect result is hex numbers
(consider A vs 12). The simplest work around is to convert such numbers to decimal. Alterna-
tively, one can fix the width of the hex number and pad all the values with leading zeros, for
example: 00A vs 01A.

It is also possible to convert the upstream and prerel parts into a canonical representation that
will produce the correct comparison result when always compared lexicographically and as a
whole. This can be useful, for example, when storing versions in the database which would other-
wise require a custom collation implementation to obtain the correct sort order.

To convert one of these parts to its canonical representation, all its string components are
converted to the lower case while all its integer components are padded with leading zeros to the
fixed length of 16 characters, with all trailing zero-only components removed. Note that this
places an implementation limit on the length of integer components which should be checked by
the implementation when converting to the canonical representation. The 16 characters limit was
chosen to still be able to represent (with some spare) components in the YYYYMMDDhhmmss
form while not (visually) bloating the database too much. As a special case, the absent prerel part
is represented as ~. Since the ASCII code for ~ is greater than any other character that could
appear in prerel, such a string will always be greater than any other representation. The empty
prerel part is represented as an empty string.

Note that because it is not possible to perform a reverse conversion without the possibility of loss
(consider 01 .AA.BB), the original parts may also have to be stored, for example, for display, to
derive package archive names, etc.

4 The build2 Package Manager Revision 0.18, November 2024

3 Package Version Constraint

In quite a few contexts the implementation needs to ignore the revision and/or iteration parts. For
example, this is needed to implement the semantics of newer revisions/iterations of packages
replacing their old ones since we do not keep multiple revisions/iterations of the same upstream
version in the same repository. As a result, in the package object model, we have a version key as
just {epoch, upstream, prerel} but also store the package revision and iteration so that it can be
shown to the user, etc.

3 Package Version Constraint

The bpkg package version constraint may follow the package name in certain contexts, such as
the manifest values and bpkg command line, to restrict the allowed package version set. It can be
specified using comparison operators, shortcut (to range) operators, or ranges and has the follow-
ing form:

<version-constraint> = <comparison> | <shortcut> | <range>
<comparison> = ('==" | ’>' | <’ | '>=" | '<=') <version>
<shortcut> = ('~ | ’~’) <version>

<range> = (*(* | "[’) <version> <version> (')’ | ’1")

The shortcut operators can only be used with standard versions (a semantic version without the
pre-release part is a standard version). They are equivalent to the following ranges. The X.Y.Zz~-
version signifies the earliest pre-release in the X.Y . Z series; see [Package Version|for details.

~X.¥Y.Z [X.Y.Z X.Y+1.0-)

~"X.Y.Z [X.Y.Z X+1.0.0-) 1if X > O
~0.Y.Z [0.Y.Z 0.Y+1.0-) i1if X ==

That is, the tilde (~) constraint allows upgrades to any further patch version while the caret (")
constraint — also to any further minor version.

Zero major version component is customarily used during early development where the minor
version effectively becomes major. As a result, the tilde constraint has special semantics for this
case.

Note that the shortuct operators can only be used with the complete, three-component versions
(X.Y.Z with the optional pre-release part per the standard version). Specifically, there is no
support for special ~X.Y or ~X semantics offered by some package manager — if desired, such
functionality can be easily achieved with ranges. Also, the 0.0.Z version is not considered
special except as having zero major component for the tilde semantics discussed above.

Note also that pre-releases do not require any special considerations when used with the shortcut
operators. For example, if package 1ibfoo is usable starting with the second beta of the 2.0.0
release, then our constraint could be expressed as:

Revision 0.18, November 2024 The build2 Package Manager 5

3 Package Version Constraint

libfoo 72.0.0-b.2

Internally, shortcuts and comparisons can be represented as ranges (that is, [v, v] for ==, (v,
inf) for >, etc). However, for display and serialization such representations should be converted
back to simple operators. While it is possible that the original manifest specified equality or
shortucts as full ranges, it is acceptable to display/serialize them as simpler operators.

Instead of a concrete value, the version in the constraint can be specified in terms of the depen-
dent package’s version (that is, the version of the package placing the constraint) using the
special $ value. For example:

libfoo ==

A constraint that contains $ is called incomplete. This mechanism is primarily useful when devel-
oping related packages that should track each other’s versions exactly or closely.

In comparison operators and ranges the $ value is replaced with the dependent version ignoring
the revision. For shortcut operators, the dependent version must be a standard version and the
following additional processing is applied depending on whether the version is a release, final
pre-release, or a snapshot pre-release.

1. For a release we set the min version patch to zero. For ~ we also set the minor version to
zero, unless the major version is zero (reduces to ~). The max version is set according to the
standard shortcut logic. For example, ~$ is completed as follows:

|
\%

[
[
[

o e
NN
v o

|

\"
=
NN
oo o
o e
w w w
o oo

|
\%

=)
=)
=)

And ~$ is completed as follows:

1.0.0 => [1.0.0 2.0.0-)

1.1.1 => [1.0.0 2.0.0-)

2. For a final pre-release the key observation is that if the patch component for ~ or minor and
patch components for ~ are not zero, then that means there has been a compatible release
and we treat this case the same as release, ignoring the pre-release part. If, however, it/they
are zero, then that means there may yet be no final release and we have to start from the first
alpha. For example, for the ~$ case:

1.2.0-a.1 => [1.2.0-a.1 1.3.0-)
1.2.0-b.2 => [1.2.0-a.1 1.3.0-)
1.2.1-a.1 => [1.2.0 1.3.0-)
1.2.2-b.2 => [1.2.0 1.3.0-)

6 The build2 Package Manager Revision 0.18, November 2024

4 Package Build System Skeleton

And for the ~$ case:

1.0.0-a.1 -> [1.0.0-a.1] 2.0.0-)
1.0.0-b.2 -> [1.0.0-a.1] 2.0.0-)
1.0.1-a.1 —> [1.0.0 2.0.0-)
1.1.0-b.2 —> [1.0.0 2.0.0-)

3. For a snapshot pre-release we distinguish two cases: a patch snapshot (the patch component
1s not zero) and a major/minor snapshot (the patch component is zero). For the patch snap-
shot case we assume that it is (most likely) developed independently of the dependency and
we treat it the same as the final pre-release case. For example, if the dependent version is
1.2.1-a.0.nnn, the dependency could be 1.2.0 or 1.2.2 (or somewhere
in-between).

For the major/minor snapshot we assume that all the packages are developed in the lockstep
and have the same X.Y.O0 version. In this case we make the range start from the earliest
possible version in this "snapshot series" and end before the final pre-release. For example
(in this case ~ and » are treated the same):

-a.1l)

1 1.2 a.l
1 0.0-b.3)

1. .0.1 1.2.0
2. .2.1 2.0.0

4 Package Build System Skeleton

There are situations where bpkg may need to evaluate buildfile expressions and fragments
before committing to a particular version of the package and therefore before actually unpacking
anything. For example, bpkg may need to evaluate a condition in the conditional dependency or
it may need to negotiate a configuration among several dependents of a package which requires it
to know this package’s configuration variable types and default values.

To solve this chicken and egg kind of problem, bpkg includes a minimal subset of the build
system files along with the package’s standard metadata (name, version, etc) into the repository
metadata (packages.manifest). This subset is called the package build system skeleton, or
just package skeleton for short, and includes the build/bootstrap.build and
build/root.build files (or their alternative naming scheme variants) as well as any files
that may be sourced by root .build.

The inclusion of build/bootstrap.build and build/root.build (if present) as well
as any build/config/*.build (or their alternative naming scheme variants) is automatic.
However, if root .build sources any files other than build/config/*.build, then they
must be specified explicitly in the package manifest using the puild—file|value.

Inside these buildfiles the skeleton load can be distinguished from normal load by examining the
build.mode variable, which is set to skeleton during the skeleton load. In particular, this
variable must be used to omit loading of build system modules that are neither built-in nor stan-

Revision 0.18, November 2024 The build2 Package Manager 7

5 Dependency Configuration Negotiation

dard pre-installed and which are therefore listed as package dependencies. Such modules are not
yet available during the skeleton load. For example:

root.build

using cxx # Ok, built-in module.
using autoconf # Ok, standard pre-installed module.

if ($build.mode != ’skeleton’)
using hello

The build.mode variable can also be used to omit parts of root .build that are expensive to
evaluate and which are only necessary during the actual build. Here is a realistic example:

root.build

using cxx

Determine the GCC plugin directory. But omit doing it during the
skeleton load.

#

if (Sbuild.mode != ’skeleton’)

{

if ($cxx.id != ’'gcc’)
fail "this project can only be built with GCC’

If plugin support is disabled, then -print-file-name will print
the name we have passed (the real plugin directory will always
be absolute).
#
plugin_dir = [dir_path] \

Sprocess.run ($cxx.path —-print-file-name=plugin)

if ("$plugin_dir" == plugin)
fail "$recall ($cxx.path) does not support plugins"

plugin_dir = $normalize (Splugin_dir)

S Dependency Configuration Negotiation

In bpkg, a dependent package may specify a desired configuration for a dependency package.
Because there could be multiple such dependents, bpkg needs to come up with a dependency
configuration that is acceptable to all of them. This process is called the dependency configura-
tion negotiation.

The desired dependency configuration is specified as part of the manifest value and
can be expressed as either a single require clause or as a pair of prefer/accept clauses.

8 The build2 Package Manager Revision 0.18, November 2024

5 Dependency Configuration Negotiation

The require clause is essentially a shortcut for specifying the prefer/accept clauses where
the accept condition simply verifies all the variable values assigned in the prefer clause. It
is, however, further restricted to the common case of only setting bool variables and only to
true to allow additional optimizations during the configuration negotiation. The remainder of
this section only deals with the general prefer/accept semantics.

While the exact format of prefer/accept is described as part of the manifest
value, for this section it is sufficient to know that the prefer clause is an arbitrary buildfile
fragment that is expected to set one or more dependency configuration variables to the values
preferred by this dependent while the accept clause is a buildfile eval context expression
that should evaluate to t rue or false indicating whether the dependency configuration values
it is evaluated on are acceptable to this dependent. For example:

libfoo 71.0.0
{

We prefer the cache but can work without it.
We need the buffer of at least 4KB.

#

prefer

{

config.libfoo.cache = true

config.libfoo.buffer = ($config.libfoo.buffer < 4096 \
? 4096 \
Sconfig.libfoo.buffer)
}

accept ($Sconfig.libfoo.buffer >= 4096)
}

The configuration negotiation algorithm can be summarized as cooperative refinement. Specifi-
cally, whenever a prefer clause of a dependent changes any configuration value, all other
dependents’ prefer clauses are re-evaluated. This process continues until there are no more
changes (success), one of the accept clauses returned false (failure), or the process starts
"yo-yo’ing" between two or more configurations (failure).

The dependents are expected to cooperate by not overriding "better" values that were set by other
dependents. Consider the following two prefer clauses:

prefer

{
config.libfoo.buffer = 4096

}

prefer
{
config.libfoo.buffer = ($config.libfoo.buffer < 4096 \
? 4096 \
Sconfig.libfoo.buffer)

Revision 0.18, November 2024 The build2 Package Manager 9

5 Dependency Configuration Negotiation

The first version is non-cooperative and should only be used if this dependent requires the buffer
to be exactly 4KB. The second version is cooperative: it will increase the buffer to the minimum
required by this dependent but will respect values above 4KB.

One case where we don’t need to worry about this is when setting the configuration variable to
the "best" possible value. One common example of this is setting a bool configuration to t rue.

With a few exceptions discussed below, a dependent must always re-set the configuration vari-
able, even if to the better value. For example, the following is an incorrect attempt at the above
cooperative prefer clause:

prefer
{
if ($Sconfig.libfoo.buffer < 4096) # Incorrect.
config.libfoo.buffer = 4096

}

The problem with the above attempt is that the default value could be greater than 4KB, in which
case bpkg will have no idea that there is a dependent relying on this configuration value.

Before each prefer clause re-evaluation, variables that were first set to their current values by
this dependent are reset to their defaults thus allowing the dependent to change its mind, for
instance, in response to other configuration changes. For example:

While we have no preference about the cache, if enabled/disabled,
we need a bigger/smaller buffer.

#

prefer

{
min_buffer = ($Sconfig.libfoo.cache ? 8192 : 4096)
config.libfoo.buffer = ($config.libfoo.buffer < $min_buffer \

? Smin_buffer \
: $config.libfoo.buffer)
}

accept ($config.libfoo.buffer >= ($config.libfoo.cache ? 8192 : 4096))

The interesting case to consider in the above example is when config.libfoo.cache
changes from t rue to false: without the reset to defaults semantics the prefer clause would
have kept the buffer at 8KB (since it’s greater than the 4KB minimum).

Currently accept 1is always evaluated after prefer and temporary variables (like
min_buffer in the above example) set in prefer are visible in accept. But it’s best not to
rely on this in case it changes in the future. For example, we may try harder to resolve the
"yo-yo’ing" case mentioned above by checking if one of the alternating configurations are accept-
able to everyone without re-evaluation.

10 The build2 Package Manager Revision 0.18, November 2024

5 Dependency Configuration Negotiation

This is also the reason why we need a separate accept in the first place. Plus, it allows for more
advanced configuration techniques where we may need to have an acceptance criteria but no pref-
erences.

Configuration variables that are set by the dependent in the prefer clause are visible in the
subsequent clauses as well as in the subsequent depends values of this dependent. Configura-
tion variables that are not set, however, are only visible until the immediately following
reflect clause. For example, in the above listing, config.libfoo.cache would still be
visible in the reflect clause if it were to follow accept but no further. As a result, if we need
to make decisions based on configuration variables that we have no preference about, they need
to be saved in the reflect clause. For example:

depends:
\
libfoo 71.0.0
{
We have no preference about the cache but need to
observe its value.
#
prefer
{
}

accept (true)

reflect
{
config.hello.libfoo_cache = $config.libfoo.cache
}
}
\

depends: libbar 71.0.0 ? ($config.hello.libfoo_cache)

It is possible to determine the origin of the configuration variable value using the
Sconfig.origin () function. It returns either undefined if the variable is undefined (only
possible if it has no default value), default if the variable has the default value from the
config directive in root .build, buildfile if the value is from a buildfile, normally
config.build, or override if the value is a command line override (that is, user configura-
tion). For example, this is how we could use it if we only wanted to change the default value
(notice that it’s the wvariable’s name and not its $-expansion that we pass to
Sconfig.origin()):

prefer
{
config.libfoo.buffer = (\
Sconfig.origin(config.libfoo.buffer) == ’"default’ \
? 4096 \

: $config.libfoo.buffer)

Revision 0.18, November 2024 The build2 Package Manager 11

5.1 Prefer X but Accept X or Y

The following sub-sections discuss a number of more advanced configuration techniques that are
based on the functionality described in this section.

5.1 Prefer X but Accept X or Y

Consider a configuration variable that is a choice between several mutually exclusive values, for
example, user interface backends that could be, say, c1i, gui, or none. In such situations it’s
common to prefer one value but being able to work with some subset of them. For example, we
could prefer gui but were also able to make do with c1i but not with none. Here is how we
could express such a configuration:

libfoo 71.0.0
{

\

We prefer ‘gui‘', can also work with ‘cli‘ but not ‘none‘.

#
prefer
{
config.libfoo.ui = (\
Sconfig.origin(config.libfoo.ui) == ’default’ || \
($config.libfoo.ui != 'gui’ && S$config.libfoo.ui != ’"cli’) \
? 'gui’ \
Sconfig.libfoo.ui)
}
accept ($config.libfoo.ui == ’'gui’ || Sconfig.libfoo.ui == 'cli’)

}

5.2 Use If Enabled

Sometimes we may want to use a feature if it is enabled by someone else but not enable it
ourselves. For example, the feature might be expensive and our use of it tangential, but if it’s
enabled anyway, then we might as well take advantage of it. Here is how we could express such a
configuration:

libfoo 71.0.0
{
Use config.libfoo.x only if enabled by someone else.
#
prefer
{
}

accept (true)
reflect

{
config.hello.libfoo_x = $config.libfoo.x

12 The build2 Package Manager Revision 0.18, November 2024

6 Manifests

5.3 Disable If Enabled by Default

Sometimes we may want to disable a feature that is enabled by default provided that nobody else
needs it. For example, the feature might be expensive and we would prefer to avoid paying the
cost if we are the only ones using this dependency. Here is how we could express such a configu-
ration:

libfoo 71.0.0
{

prefer
{
if ($Sconfig.origin(config.libfoo.x) == ’'default’)
config.libfoo.x = false

}

accept (true)

}

6 Manifests

This chapter describes the general manifest file format as well as the concrete manifests used by
bpkg.

Currently, three manifests are defined: package manifest, repository manifest, and signature
manifest. The former two manifests can also be combined into a list of manifests to form the list
of available packages and the description of a repository, respectively.

6.1 Manifest Format

A manifest is a UTF-8 encoded text restricted to the Unicode graphic characters, tabs (\t),
carriage returns (\r), and line feeds (\n). It contains a list of name-value pairs in the form:

<name>: <value>

For example:

name: libfoo
version: 1.2.3

If a value needs to be able to contain other Unicode codepoints, they should be escaped in a
value-specific manner. For example, the backslash (\) escaping described below can be extended
for this purpose.

The name can contain any characters except : and whitespaces. Newline terminates the pair
unless escaped with \ (see below). Leading and trailing whitespaces before and after name and
value are ignored except in the multi-line mode (see below).

Revision 0.18, November 2024 The build2 Package Manager 13

6.1 Manifest Format

If the first non-whitespace character on the line is #, then the rest of the line is treated as a
comment and ignored except if the preceding newline was escaped or in the multi-line mode (see
below). For example:

This is a comment.

short: This is #not a comment
long: Also \

#not a comment

The first name-value pair in the manifest file should always have an empty name. The value of
this special pair is the manifest format version. The version value shall use the default (that is,
non-multi-line) mode and shall not use any escape sequences. Currently it should be 1, for
example:

: 1
name: libfoo
version: 1.2.3

Any new name that is added without incrementing the version must be optional so that it can be
safely ignored by older implementations.

The special empty name pair can also be used to separate multiple manifests. In this case the
version may be omitted in the subsequent manifests, for example:

: 1
name: libfoo
version: 1.2.3

name: libbar
version: 2.3.4

To disable treating of a newline as a name-value pair terminator we can escape it with \. Note
that \ is only treated as an escape sequence when followed by a newline and both are simply
removed from the stream (as opposed to being replaced with a space). To enter a literal \ at the
end of the value, use the \ \ sequence. For example:

description: Long text that doesn’t fit into one line \
so it is continued on the next line.

windows—path: C:\foo\bar\\

Notice that in the final example only the last \ needs special handling since it is the only one that
is followed by a newline.

One may notice that in this newline escaping scheme a line consisting of just \ followed by a
newline has no use, except, perhaps, for visual presentation of, arguably, dubious value. For
example, this representation:

14 The build2 Package Manager Revision 0.18, November 2024

6.1 Manifest Format

description: First line. \
\

Second line.

Is semantically equivalent to:

description: First line. Second line.

As a result, such a sequence is "overloaded" to provide more useful functionality in two ways:
Firstly, if : after the name is followed on the next line by just \ and a newline, then it signals the
start of the multi-line mode. In this mode all subsequent newlines and # are treated as ordinary
characters rather than value terminators or comments until a line consisting of just \ and a
newline (the multi-line mode terminator). For example:

description:

\

First paragraph.
#

Second paragraph.
\

Expressed as a C-string, the value in the above example is:

"First paragraph.\n#\nSecond paragraph."

Originally, the multi-line mode was entered if : after the name were immediately followed by \
and a newline but on the same line. While this syntax is still recognized for backwards compati-
bility, it is deprecated and will be discontinued in the future.

Note that in the multi-line mode we can still use newline escaping to split long lines, for example:

description:

\

First paragraph that doesn’t fit into one line \
so it is continued on the next line.

Second paragraph.

\

And secondly, in the simple (that is, non-multi-line) mode, the sole \ and newline sequence is
overloaded to mean a newline. So the previous example can also be represented like this:

description: First paragraph that doesn’t fit into one \
line so it is continued on the next line.\
\

Second paragraph.

Note that the multi-line mode can be used to capture a value with leading and/or trailing whites-
paces, for example:

Revision 0.18, November 2024 The build2 Package Manager 15

6.1 Manifest Format

description:

\
test

The C-string representing this value is:

" test\n"

EOF can be used instead of a newline to terminate both simple and multi-line values. For
example the following representation results in the same value as in the previous example.

description:

\
test

<EOF>

By convention, names are all in lower case and multi-word names are separated with —. Note that
names are case-sensitive.

Also by convention, the following name suffixes are used to denote common types of values:

—-file
-url
—email

For example:

description: Inline description
description-file: README
package-url: http://www.example.com
package-email: john@example.com

Other common name suffixes (such as -feed) could be added later.

Generally, unless there is a good reason not to, we keep values lower-case (for example,
requires values such as c++11 or 1inux). An example where we use upper/mixed case
would be 1icense; it seems unlikely gplv2 would be better than GPLv2.

A number of name-value pairs described below allow for the value proper to be optionally
followed by ; and a comment. Such comments serve as additional documentation for the user
and should be one or more full sentences, that is start with a capital letter and end with a period.
Note that unlike #-style comments which are ignored, these comments are considered to be part
of the value. For example:

16 The build2 Package Manager Revision 0.18, November 2024

6.1 Manifest Format

email: foo-users@example.com ; Public mailing list.

It is recommended that you keep comments short, single-sentence. Note that non-comment semi-
colons in such values have to be escaped with a backslash, for example:

url: http://git.example.com/?p=foo\;a=tree

The only other recognized escape sequence in such values is \ \, which is replaced with a single
backslash. If a backslash is followed by any other character, then it is treated literally.

If a value with a comment is multi-line, then ; must appear on a separate line, for example:

url:

\
http://git.example.com/?p=foo;a=tree
2

Git repository tree.

\

In this case, only lines that consist of a sole non-comment semicolon need escaping, for example:

license:

\

other: strange
\;

license

\

The only other recognized escape sequence in such multi-line values is lines consisting of two or
more backslashes followed by a semicolon.

In the manifest specifications described below optional components are enclosed in square brack-
ets ([1). If the name is enclosed in [] then the name-value pair is optional, otherwise — required.
For example:

name: <name>

license: <licenses> [; <comment>]
[description]: <text>

In the above example name is required, 1icense has an optional component (comment), and
description is optional.

In certain situations (for example, shell scripts) it can be easier to parse the binary manifest repre-
sentation. The binary representation does not include comments and consists of a sequence of
name-value pairs in the following form:

<name>:<value>\0

Revision 0.18, November 2024 The build2 Package Manager 17

6.2 Package Manifest

That is, the name and the value are separated by a colon and each pair (including the last) is
terminated with the NUL character. Note that there can be no leading or trailing whitespace char-
acters around the name and any whitespaces after the colon and before the NUL terminator are
part of the value. Finally, the manifest format versions are always explicit (that is, not empty) in
binary manifest lists.

6.2 Package Manifest

The package manifest (the manifest file found in the package’s root directory) describes a
bpkg package. The manifest synopsis is presented next followed by the detailed description of
each value in subsequent sections.

The subset of the values up to and including 1icense constitute the package manifest header.
Note that the header is a valid package manifest since all the other values are optional. There is
also no requirement for the header values to appear first or to be in a specific order. In particular,
in a full package manifest they can be interleaved with non-header values.

name: <name>

version: <version>
[upstream-version]: <string>

[typel: <type>

[language] : <lang>

[project]: <name>

[priority]: <priority> [; <comment>]
summary: <text>

license: <licenses> [; <comment>]

[topics]: <topics>

[keywords]: <keywords>

[description]: <text>
[description-file]: <path> [; <comment>]
[description-type]: <text-type>
[package—-description]: <text>
[package-description—-file]: <path> [; <comment>]
[package—-description-type]: <text-type>
[changes]: <text>

[changes—-file]: <path> [; <comment>]
[changes—-type]: <text-type>

[url]: <url> [; <comment>]

[doc—url]: <url> [; <comment>]

[src—url]: <url> [; <comment>]
[package-url]: <url> [; <comment>]

[email] : <email> [; <comment>]
[package—-email]: <email> [; <comment>]
[build-email]: <email> [; <comment>]
[build-warning-email]: <email> [; <comment>]
[build-error-email]: <email> [; <comment>]
[depends]: [*] <alternatives> [; <comment>]

18 The build2 Package Manager Revision 0.18, November 2024

6.2.1 name

[requires]: [*] <alternatives> [; <comment>]

[tests]: [*] <name> [<version—-constraint>]
[examples]: [*] <name> [<version-constraint>]
[benchmarks]: [*] <name> [<version—-constraint>]

[builds]: <class—expr> [; <comment>]
[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]
[build-auxiliary]: <config> [; <comment>]
[build-auxiliary—-<name>]: <config> [; <comment>]
[build-bot]: <pub-key>

[*-build-config]: <args> [; <comment>]

[*~builds]: <class—expr> [; <comment>]
[*-build-include]: <config>[/<target>] [; <comment>]
[*~build-exclude]: <config>[/<target>] [; <comment>]
[*~build-auxiliary]: <config> [; <comment>]
[*-build-auxiliary-<name>]: <config> [; <comment>]
[*~-build-bot]: <pub-key>

[*-build-email]: <email> [; <comment>]
[*-build-warning-email]: <email> [; <comment>]
[*~build-error-email]: <email> [; <comment>]

[build-file]: <path>
[bootstrap-build]: <text>
[root-build]: <text>

[*-build]: <text>
[bootstrap-build2]: <text>
[root-build2]: <text>

[*-build2]: <text>

[*-name] : <name> [<name>...]
[*~version]: <string>
[*~to-downstream-version]: <regex>

6.2.1 name

name: <name>

The package name. See [Package Name] for the package name format description. Note that the
name case is preserved for display, in file names, etc.

6.2.2 version

version: <version>
[upstream-version]: <string>

Revision 0.18, November 2024 The build2 Package Manager 19

6.2.3 type, language

The package version. See |[Package Version| for the version format description. Note that the
version case is preserved for display, in file names, etc.

When packaging existing projects, sometimes you may want to deviate from the upstream
versioning scheme because, for example, it may not be representable as a bpkg package version
or simply be inconvenient to work with. In this case you would need to come up with an
upstream-to-downstream version mapping and use the upstream-version value to preserve
the original version for information.

6.2.3 type, language

[type]l: <type>

[language] : <lang>
<type> = <name> [, <sub-options>]
<lang> = <name>[=impl]

The package type and programming language(s).

The currently recognized package types are exe, 1ib, and other. If the type is not specified,
then if the package name starts with 1ib, then it is assumed to be 1ib and exe otherwise (see
[Package Name]| for details). Other package types may be added in the future and code that does
not recognize a certain package type should treat it as other. The type name can be followed by
a comma-separated list of sub-options. Currently, the only recognized sub-option is binless
which applies to the 1ib type indicating a header-only (or equivalent) library. For example:

type: lib,binless

The package language must be in the lower case, for example, c, c++, rust, bash. If the
language is not specified, then if the package name has an extension (as in, for example,
libbutl.bash; see [Package Name] for details) the extension is assumed to name the package
language. Otherwise, cc (unspecified c-common language) is assumed. If a package uses multi-
ple languages, then multiple 1anguage values must be specified. The languages which are only
used in a library’s implementation (as opposed to also in its interface) should be marked as such.
For example, for a C library with C++ implementation:

type: 1lib
language: c
language: c++=impl

If the use of a language, such as C++, also always implies the use of another language, such as C,
then such an implied language need not be explicitly specified.

20 The build2 Package Manager Revision 0.18, November 2024

6.2.4 project

6.2.4 project
[project]: <name>
The project this package belongs to. The project name has the same restrictions as the package

name (see [Package Name|for details) and its case is preserved for display, in directory names, etc.
If unspecified, then the project name is assumed to be the same as the package name.

Projects are used to group related packages together in order to help with organization and
discovery in repositories. For example, packages hello, 1ibhello, and 1ibhello2 could
all belong to project hello. By convention, projects of library packages are named without the
1ib prefix.

6.2.5 priority

[priority]l: <priority> [; <comment>]

<priority> = security | high | medium | low

The release priority (optional). As a guideline, use security for security fixes, high for criti-
cal bug fixes, medium for important bug fixes, and 1ow for minor fixes and/or feature releases.
If not specified, 1ow is assumed.

6.2.6 summary

summary: <text>

The short description of the package.

6.2.7 license

license: <licenses> [; <comment>]

<licenses> = <license> [, <license>]*
<license> = [<scheme>:] <name>
<scheme> = other

The package license. The default license name scheme is [SPDX License Expressionl In its
simplest form, it is just an ID of the license under which this package is distributed. An optional
comment normally gives the full name of the license, for example:

license: MPL-2.0 ; Mozilla Public License 2.0

The following table lists the most commonly used free/open source software licenses and their
SPDX license IDs:

Revision 0.18, November 2024 The build2 Package Manager 21

https://spdx.org/licenses/

6.2.7 license

MIT ; MIT License.

BSD-2-Clause ; BSD 2-Clause "Simplified" License

BSD-3-Clause ; BSD 3-Clause "New" or "Revised" License
BSD-4-Clause ; BSD 4-Clause "Original" or "Old" License
GPL-2.0-only ; GNU General Public License v2.0 only
GPL-2.0-or-later ; GNU General Public License v2.0 or later
GPL-3.0-only ; GNU General Public License v3.0 only
GPL-3.0-or-later ; GNU General Public License v3.0 or later
LGPL-2.0-only ; GNU Library General Public License v2 only
LGPL-2.0-or-later ; GNU Library General Public License v2 or later
LGPL-2.1-only ; GNU Lesser General Public License v2.1 only
LGPL-2.1-or-later ; GNU Lesser General Public License v2.l1 or later
LGPL-3.0-only ; GNU Lesser General Public License v3.0 only
LGPL-3.0-or-later ; GNU Lesser General Public License v3.0 or later
AGPL-3.0-only ; GNU Affero General Public License v3.0 only

AGPL-3.0-or-later ; GNU Affero General Public License v3.0 or later

Apache-1.0 ; Apache License 1.0
Apache-1.1 ; Apache License 1.1
Apache-2.0 ; Apache License 2.0

MPL-1.0 ; Mozilla Public License 1.0
MPL-1.1 ; Mozilla Public License 1.1
MPL-2.0 ; Mozilla Public License 2.0
BSL-1.0 ; Boost Software License 1.0
Unlicense ; The Unlicense (public domain)

If the package is licensed under multiple licenses, then an SPDX license expression can be used
to specify this, for example:

license: Apache-2.0 OR MIT
license: MIT AND BSD-2-Clause

A custom license or extra conditions can be expressed either using the license reference mecha-
nism of the SPDX license expression or using the other scheme (described below). For
example:

license: LicenseRef-My-MIT-Like; Custom MIT-alike license
license: other: MIT with extra attribution requirements

The other license name scheme can be used to specify licenses that are not defined by SPDX.
The license names in this scheme are free form with case-insensitive comparison. The following
names in this scheme have predefined meaning:

22 The build2 Package Manager Revision 0.18, November 2024

6.2.8 topics

other: public domain ; Released into the public domain

other: available source ; Not free/open source with public source code
other: proprietary ; Not free/open source

other: TODO ; License is not yet decided

For new projects [The Unlicense| disclaimer with the Unlicense SPDX ID is recommended
over other: public domain.

To support combining license names that use different schemes, the 1icense manifest value
can contain a comma-separated list of license names. This list has the AND semantics, that is, the
user must comply with all the licenses listed. To capture alternative licensing options (the OR
semantics), multiple 1icense manifest values are used, for example:

license: GPL-2.0-only, other: available source
license: other: proprietary

For complex licensing situations it is recommended to add comments as an aid to the user, for
example:

license: LGPL-2.l-only AND MIT ; If linking with GNU TLS.
license: BSD-3-Clause ; If linking with OpenSSL.

For backwards compatibility with existing packages, the following (deprecated) scheme-less
values on the left are recognized as aliases for the new values on the right:

BSD2 BSD-2-Clause

BSD3 BSD-3-Clause

BSD4 BSD-4-Clause

GPLV2 GPL-2.0-only

GPLv3 GPL-3.0-only

LGPLv2 LGPL-2.0-only
LGPLv2.1 LGPL-2.1-only

LGPLv3 LGPL-3.0-only

AGPLvV3 AGPL-3.0-only

ASLvl Apache-1.0

ASLvl.1l Apache-1.1

ASLv2 Apache-2.0

MPLv2 MPL-2.0

public domain other: public domain
available source other: available source
proprietary other: proprietary
TODO other: TODO

6.2.8 topics

[topics]: <topics>

<topics> = <topic> [, <topic>]*

Revision 0.18, November 2024 The build2 Package Manager 23

https://unlicense.org/

6.2.9 keywords

The package topics (optional). The format is a comma-separated list of up to five potentially
multi-word concepts that describe this package. For example:

topics: xml parser, xml serializer

6.2.9 keywords
[keywords]: <keywords>

<keywords> = <keyword> [<keyword>]*

The package keywords (optional). The format is a space-separated list of up to five words that
describe this package. Note that the package and project names as well as words from its
summary are already considered to be keywords and need not be repeated in this value.

6.2.10 description, package—description

[description]: <text>

[description-file]: <path> [; <comment>]
[description-type]: <text-type>
[package—-description]: <text>
[package—-description-file]: <path> [; <comment>]
[package—-description-type]: <text-type>

The detailed description of the project (description) and package (package—-descrip-
tion). If the package description is not specified, it is assumed to be the same as the project
description. It only makes sense to specify the package-description value if the project
and package are maintained separately. A description can be provided either inline as a text frag-
ment or by referring to a file within a package (for example, README), but not both. For
package—description—-file the recommended file name is PACKAGE-README or
README-PACKAGE.

In the web interface (brep) the description is displayed according to its type. Currently,
pre-formatted plain text, |GitHub-Flavored Markdown| and [CommonMark| are supported with the
following *-type values, respectively:

text/plain
text/markdown; variant=GFM
text/markdown; variant=CommonMark

If just text /markdown is specified, then the GitHub-Flavored Markdown (which is a superset
of CommonMark) is assumed.

If a description type is not explicitly specified and the description is specified as *—file, then
an attempt to derive the type from the file extension is made. Specifically, the .md and .mark-
down extensions are mapped to text /markdown, the .txt and no extension are mapped to
text/plain, and all other extensions are treated as an unknown type, similar to unknown
*—type values. And if a description is not specified as a file, text /plain is assumed.

24 The build2 Package Manager Revision 0.18, November 2024

https://github.github.com/gfm
https://spec.commonmark.org/current

6.2.11 changes

6.2.11 changes

[changes]: <text>
[changes—-file]: <path> [; <comment>]
[changes—-type]: <text-type>

The description of changes in the release.

The tricky aspect is what happens if the upstream release stays the same (and has, say, a NEWS
file to which we point) but we need to make another package release, for example, to apply a crit-
ical patch.

Multiple changes values can be present which are all concatenated in the order specified, that
is, the first value is considered to be the most recent (similar to ChangeLog and NEWS files).
For example:

changes: 1.2.3-2: applied upstream patch for critical bug bar
changes: 1.2.3-1: applied upstream patch for critical bug foo
changes—file: NEWS

Or:

changes:

\

1.2.3-2
- applied upstream patch for critical bug bar
- regenerated documentation

1.

N

.3-1
— applied upstream patch for critical bug foo

\
changes—-file: NEWS

In the web interface (brep) the changes are displayed according to their type, similar to the
package description (see the [description|value for details). If the changes type is not explic-
itly specified, then the types deduced for individual changes values must all be the same.

6.2.12 url

[url]: <url> [; <comment>]

The project home page URL.

6.2.13 doc—url

[doc—url]: <url> [; <comment>]

Revision 0.18, November 2024 The build2 Package Manager 25

6.2.14 src-url

The project documentation URL.

6.2.14 src—url

[src-url]: <url> [; <comment>]

The project source repository URL.
6.2.15 package—url
[package-url]: <url> [; <comment>]

The package home page URL. If not specified, then assumed to be the same as url. It only
makes sense to specify this value if the project and package are maintained separately.

6.2.16 email

[email]: <email> [; <comment>]

The project email address. For example, a support mailing list.
6.2.17 package—email

[package—-email]: <email> [; <comment>]

The package email address. If not specified, then assumed to be the same as email. It only
makes sense to specify this value if the project and package are maintained separately.

6.2.18 build-email

[build-email]: <email> [; <comment>]

The build notification email address. It is used to send build result notifications by automated
build bots. If unspecified, then no build result notifications for this package are sent by email.

For backwards compatibility with existing packages, if it is specified but empty, then this is the
same as unspecified.

6.2.19 build-warning-email

[build-warning-email]: <email> [; <comment>]

The build warning notification email address. Unlike build-email, only build warning and
error notifications are sent to this email.

26 The build2 Package Manager Revision 0.18, November 2024

6.2.20 build-error—-email

[build-error-email] : <email> [; <comment>]

6.2.20 build-error-email

The build error notification email address. Unlike build-email, only build error notifications

are sent to this email.

6.2.21 depends

[depends]: [*] <alternatives> [; <comment>]

Single-line form:

<alternatives> = <alternative> [’|’ <alternative>]*
<alternative> = <dependencies> [’?’ <enable-cond>] [<reflect-var>]
<dependencies> = <dependency> | \

"{’ <dependency> [<dependency>]* '}’ [<version-constraint>]
<dependency> = <name> [<version-constraint>]
<enable-cond> = ' (’ <buildfile-eval-expr> ')’
<reflect-var> = <config-var> =’ <value>

Multi-line form:

<alternatives>

<alternative>[
14 14

<alternative>]*

<alternative> =

<dependencies>
I{I
[

"enable’ <enable-cond>

"require’

I{I
<buildfile-fragment>

I}I

1

'prefer’

I{I
<buildfile-fragment>

I}I

"accept’ <accept-cond>

"reflect’
I{I

Revision 0.18, November 2024 The build2 Package Manager

27

6.2.21 depends

<buildfile-fragment>

<accept-cond> = ' (’ <buildfile-eval-expr> ')’

The dependency packages. The most common form of a dependency is a package name followed
by the optional version constraint. For example:

depends: libhello 71.0.0

See |Package Version Constraint| for the format and semantics of the version constraint. Instead of
a concrete value, the version in the constraint can also be specified in terms of the dependent
package’s version (that is, its value) using the special $ value. This mechanism is
primarily useful when developing related packages that should track each other’s versions exactly
or closely. For example:

name: sqglite3
version: 3.18.2
depends: libsglite3 ==

If multiple packages are specified within a single depends value, they must be grouped with
{ }. This can be useful if the packages share a version constraint. The group constraint applies to
all the packages in the group that do not have their own constraint. For example:

depends: { libboost-any libboost-log libboost-uuid ~1.77.1 } ~1.77.0

If the depends value starts with *, then it is a build-time dependency. Otherwise it is run-time.
For example:

depends: * byacc >= 20210619

Most of the build-time dependencies are expected to be tools such as code generators, so you can
think of * as the executable mark printed by 1s. An important difference between the two kinds
of dependencies is that in case of cross-compilation a build-time dependency must be built for the
host machine, not the target. Build system modules are also build-time dependencies.

Two special build-time dependency names are recognized and checked in an ad hoc manner:
build2 (the build2 build system) and bpkg (the build?2 package manager). This allows us
to specify the minimum required build system and package manager versions, for example:

depends: * build2 >= 0.15.0
depends: * bpkg >= 0.15.0

If you are developing or packaging a project that uses features from the not yet released (staged)
version of the build2 toolchain, then you can use the pre-release version in the constraint. For
example:

28 The build2 Package Manager Revision 0.18, November 2024

6.2.21 depends

depends: * build2 >= 0.16.0-
depends: * bpkg >= 0.16.0-

A dependency can be conditional, that is, it is only enabled if a certain condition is met. For
example:

depends: libposix—-getopt 71.0.0 ? ($cxx.target.class == ’'windows’)

The condition after ? inside () is abuildfile eval context expression that should evaluate to
true or false, as if it were specified in the buildfile if directive (see Expansion and
Quoting and Conditions (i f-else) for details).

The condition expression is evaluated after loading the package build system skeleton, that is,
after loading its root .build (see[Package Build System Skeleton|for details). As a result, vari-
able values set by build system modules that are loaded in root.build as well as the
package’s configuration (including previously reflected; see below) or computed values can be
referenced in dependency conditions. For example, given the following root .build:

root.build

using cxx

MinGW ships POSIX <getopt.h>.

#

need_getopt = ($cxx.target.class == ’'windows’ && \
Scxx.target.system != ‘mingw32’)

config [bool] config.hello.regex ?= false

We could have the following conditional dependencies:

depends: libposix—-getopt 71.0.0 ? ($need_getopt) ; Windows && !MinGW.
depends: libposix-regex 71.0.0 ? (Sconfig.hello.regex && \
Scxx.target.class == ’'windows’)

The first depends value in the above example also shows the use of an optional comment. It’s a
good idea to provide it if the condition is not sufficiently self-explanatory.

A dependency can "reflect” configuration variables to the subsequent depends values and to the
package configuration. This can be used to signal whether a conditional dependency is enabled or
which dependency alternative was selected (see below). The single-line form of depends can
only reflect one configuration variable. For example:

depends: libposix-regex 71.0.0 \

? (Scxx.target.class == 'windows’) \
config.hello.external_regex=true

Revision 0.18, November 2024 The build2 Package Manager 29

6.2.21 depends

root.build

using cxx

config [bool] config.hello.external_regex ?= false
buildfile

libs =

if $config.hello.external_regex
import libs += libposix-regex%lib{posix-regex}

exe{hello}: ... $libs

In the above example, if the hello package is built for Windows, then the dependency on
libposix-regex will be enabled and the package will be configured with
config.hello.external_regex=true. This is used in the buildfile to decide
whether to import 1ibposix-regex. While in this example it would have probably been
easier to just duplicate the check for Windows in the buildfile (or, better yet, factor this
check to root .build and share the result via a computed variable between manifest and
buildfile), the reflect mechanism is the only way to communicate the selected dependency
alternative (discussed next).

An attempt to set a reflected configuration variable that is overridden by the user is an error. In a
sense, configuration variables that are used to reflect information should be treated as the
package’s implementation details if the package management is involved. If, however, the
package is configured without bpkg’s involvement, then these variables could reasonably be
provided as user configuration.

If you feel the need to allow a reflected configuration variable to also potentially be supplied as
user configuration, then it’s probably a good sign that you should turn things around: make the
variable only user-configurable and use the enable condition instead of reflect. Alternatively, you
could try to recognize and handle user overrides with the help of the $config.origin ()
function discussed in[Dependency Configuration Negotiation|

While multiple depends values are used to specify multiple packages with the AND semantics,
inside depends we can specify multiple packages (or groups of packages) with the OR seman-
tics, called dependency alternatives. For example:

depends: libmysglclient >= 5.0.3 | libmariadb ~10.2.2

When selecting an alternative, bpkg only considers packages that are either already present in
the build configuration or are selected as dependencies by other packages, picking the first alter-
native with a satisfactory version constraint and an acceptable configuration. As a result, the
order of alternatives expresses a preference. If, however, this does not yield a suitable alternative,

30 The build2 Package Manager Revision 0.18, November 2024

6.2.21 depends

then bpkg fails asking the user to make the selection.

For example, if the package with the above dependency is called 1ibhello and we build it in a
configuration that already has both libmysglclient and libmariadb, then bpkg will
select 1ibmysglclient, provided the existing version satisfies the version constraint. If,
however, there are no existing packages in the build configuration and we attempt to build just
libhello, then bpkg will fail asking the user to pick one of the alternatives. If we wanted to
make bpkg select 1ibmariadb we could run:

$ bpkg build libhello ?libmariadb

While bpkg’s refusal to automatically pick an alternative that would require building a new
package may at first seem unfriendly to the user, practical experience shows that such extra
user-friendliness would rarely justify the potential confusion that it may cause.

Also note that it’s not only the user that can pick a certain alternative but also a dependent
package. Continuing with the above example, if we had hel1lo that depended on 1ibhello but
only supported MariaDB (or provided a configuration variable to explicitly select the database),
then we could have the following in its manifest:

depends: libmariadb ; Select MariaDB in libhello.
depends: libhello 71.0.0

Dependency alternatives can be combined with all the other features discussed above: groups,
conditional dependencies, and reflect. As mentioned earlier, reflect is the only way to communi-
cate the selection to subsequent depends values and the package configuration. For example:

depends: libmysglclient >= 5.0.3 config.hello.db="mysqgl’ | \
libmariadb 710.2.2 ? ($cxx.target.class != ’'windows’) \
config.hello.db='mariadb’

depends: libz 71.2.1100 ? ($config.hello.db == 'mysqgl’)

If an alternative is conditional and the condition evaluates to £alse, then this alternative is not
considered. If all but one alternative are disabled due to conditions, then this becomes an ordinary
dependency. If all the alternatives are disabled due to conditions, then the entire dependency is
disabled. For example:

depends: libmysglclient >= 5.0.3 ? ($config.hello.db == "mysqgl’) | \
libmariadb ~10.2.2 ? ($config.hello.db == 'mariadb’)

While there is no need to use the dependency alternatives in the above example (since the alterna-
tives are mutually exclusive), it makes for good documentation of intent.

Besides as a single line, the depends value can also be specified in a multi-line form which,
besides potentially better readability, provides additional functionality. In the multi-line form,
each dependency alternative occupies a separate line and | can be specified either at the end of

Revision 0.18, November 2024 The build2 Package Manager 31

6.2.21 depends

the dependency alternative line or on a separate line. For example:

depends:

\

libmysglclient >= 5.0.3 ? ($config.hello.db == 'mysqgl’) |
libmariadb 710.2.2 ? ($config.hello.db == ’'mariadb’)
\

A dependency alternative can be optionally followed by a block containing a number of clauses.
The enable clause is the alternative way to specify the condition for a conditional dependency
while the reflect clause is the alternative way to specify the reflected configuration variable.
The block may also contain #-style comments, similar to buildfile. For example:

depends:

\

libmysglclient >= 5.0.3
{

reflect

{
config.hello.db = "mysqgl’

}
|

libmariadb 710.2.2

{
TODO: MariaDB support on Windows.
#

enable ($cxx.target.class != 'windows’)

reflect

{
config.hello.db = 'mariadb’

While the enable clause is essentially the same as its inline ? variant, the reflect clause is
an arbitrary buildfile fragment that can have more complex logic and assign multiple config-
uration variables. For example:

libmariadb ~10.2.2
{

reflect
{
if ($cxx.target.class == ’'windows’)
config.hello.db = 'mariadb-windows’
else
config.hello.db = "mariadb-posix’

32 The build2 Package Manager Revision 0.18, November 2024

6.2.21 depends

The multi-line form also allows us to express our preferences and requirements for the depen-
dency configuration. If all we need is to set one or more bool configuration variables to true
(which usually translates to enabling one or more features), then we can use the require
clause. For example:

libmariadb 710.2.2
{

require

{

config.libmariadb.cache = true

if ($cxx.target.class != 'windows’)
config.libmariadb.tls = true

For more complex dependency configurations instead of require we can use the prefer and
accept clauses. The prefer clause can set configuration variables of any type and to any
value in order to express the package’s preferred configuration while the accept condition eval-
uates whether any given configuration is acceptable. If used instead of require, both prefer
and accept must be present. For example:

libmariadb 710.2.2
{
We prefer the cache but can work without it.
We need the buffer of at least 4KB.
#
prefer

{

config.libmariadb.cache = true

config.libmariadb.buffer = (Sconfig.libmariadb.buffer < 4096 \
? 4096 \
Sconfig.libmariadb.buffer)

accept ($config.libmariadb.buffer >= 4096)

The require clause is essentially a shortcut for specifying the prefer/accept clauses where
the accept condition simply verifies all the variable values assigned in the prefer clause. It
is, however, further restricted to the common case of only setting bool variables and only to
true to allow additional optimizations during the configuration negotiation.

The require and prefer clauses are arbitrary buildfile fragments similar to reflect
while the accept clause is a buildfile eval context expression that should evaluate to t rue
or false, similar to enable.

Revision 0.18, November 2024 The build2 Package Manager 33

6.2.22 requires

Given the require and prefer/accept clauses of all the dependents of a particular depen-
dency, bpkg tries to negotiate a configuration acceptable to all of them as described in
[dency Configuration Negotiation|

All the clauses are evaluated in the specified order, that is, enable, then require or
prefer/accept, and finally reflect, with the (negotiated, in case of prefer) configura-
tion values set by preceding clauses available for examination by the subsequent clauses in this
depends value as well as in all the subsequent ones. For example:

depends:

\

libmariadb 710.2.2
{

prefer

{

config.libmariadb.cache = true
config.libmariadb.buffer = (Sconfig.libmariadb.buffer < 4096 \
? 4096 \
Sconfig.libmariadb.buffer)
accept ($config.libmariadb.buffer >= 4096)
reflect

{
config.hello.buffer = $config.libmariadb.buffer

depends: liblru 71.0.0 ? ($config.libmariadb.cache)

The above example also highlights the difference between the require/prefer and reflect
clauses that is easy to mix up: in require/prefer we set the dependency’s while in reflect
we set the dependent’s configuration variables.

6.2.22 requires

[requires]: [*] <alternatives> [; <comment>]
<alternatives> = <alternative> [’|’ <alternative>]*
<alternative> = <requirements> [’?’ [<enable-cond>]] [<reflect-var>]
<requirements> = [<requirement>] | \
"{’ <requirement> [<requirement>]* '}’ [<version-constraint>]
<requirement> = <name> [<version-constraint>]
<enable-cond> = '’ (’ <buildfile-eval-expr> ')’
<reflect-var> = <config-var> ’'=’ <value>

34 The build2 Package Manager Revision 0.18, November 2024

6.2.22 requires

The package requirements other than other packages. Such requirements are normally checked in
an ad hoc way during package configuration by its buildfiles and the primary purpose of
capturing them in the manifest is for documentation. However, there are some special require-
ments that are recognized by the tooling (see below). For example:

requires: c++11
requires: linux | windows | macos
requires: libc++ ? (Smacos) ; libc++ if using Clang on Mac OS.

The format of the requires value is similar to with the following differences. The
requirement name (with or without version constraint) can mean anything (but must still be a
valid package name). Only the enable and reflect clauses are permitted. There is a simpli-
fied syntax with either the requirement or enable condition or both being empty and where the
comment carries all the information (and is thus mandatory). For example:

requires: ; X11 libs.

requires: ? ($windows) ; Only 64-bit.
requires: ? ; Only 64-bit if on Windows.
requires: x86_64 ? ; Only if on Windows.

Note that requires can also be used to specify dependencies on system libraries, that is, the
ones not to be packaged. In this case it may make sense to also specify the version constraint. For
example:

requires: libxll >= 1.7.2

To assist potential future automated processing, the following pre-defined requirement names
should be used for the common requirements:

c++98
c++03
c++11
c++14
c++17
c++20
c++23

posix
linux
macos
freebsd
openbsd
netbsd
windows

gcc[_X.Y.Z] ; For example: gcc_6, gcc_4.9, gcc_5.0.0

clang[_X.Y] ; For example: clang 6, clang 3.4, clang_3.4.1
msvc[_N.U] ; For example: msvc_14, msvc_15.3

Revision 0.18, November 2024 The build2 Package Manager 35

6.2.23 tests, examples, benchmarks

The following pre-defined requirement names are recognized by automated build bots:

bootstrap
host

The boot strap value should be used to mark build system modules that require bootstrapping.
The host value should be used to mark packages, such source code generators, that are normally
specified as build-time dependencies by other packages and therefore should be built in a host
configuration. See the bbot documentation for details.

6.2.23 tests, examples, benchmarks

[tests]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]
[examples]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]
[benchmarks]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]
<package> = <name> [<version—-constraint>]

<enable-cond> = ’ (’ <buildfile-eval-expr> ')’

<reflect-var> = <config-var> ’'=’ <value>

Separate tests, examples, and benchmarks packages. If the value starts with *, then the primary
package is a build-time dependency for the specified package. Otherwise it is run-time. See the

value for details on build-time dependencies.

These packages are built and tested by automated build bots together with the primary package
(see the bbot documentation for details). This, in particular, implies that these packages must be
available from the primary package’s repository or its complement repositories, recursively. The
recommended naming convention for these packages is the primary package name followed by
-tests, —examples, or -benchmarks, respectively. For example:

name: hello
tests: hello-tests
examples: hello-examples

See [Package Version Constraint| for the format and semantics of the optional version constraint.
Instead of a concrete value, it can also be specified in terms of the primary package’s version (see

the value for details), for example:

tests: hello-tests ~$

Note that normally the tests, etc., packages themselves (we’ll call them all test packages for short)
do not have an explicit dependency on the primary package (in a sense, the primary package has a
special test dependency on them). They are also not built by automated build bots separately from
their primary package but may have their own build constraints, for example, to be excluded from
building on some platforms where the primary package is still built, for example:

36 The build2 Package Manager Revision 0.18, November 2024

6.2.24 builds

name: hello-tests
builds: -windows

Also note that a test package may potentially be used as a test dependency for multiple primary
packages. In this case a primary package normally needs to reflect to the test package the fact that
it is the one being tested. This can be achieved by setting the test package’s configuration variable
(see the[depends|value for details on reflection). For example:

name: hello-foo
tests: hello-tests config.hello_tests.test=hello-foo

name: hello-bar
tests: hello-tests config.hello_tests.test=hello-bar

If it is plausible that the test package may also be built explicitly, for example, to achieve a more
complicated setup (test multiple main packages simultaneously, etc), then the test dependencies
need to be made conditional in the primary packages so that the explicit configuration is preferred
over the reflections (see the value for details on conditional dependencies). For
example:

name: hello-foo
tests: hello-tests \
? (!$defined(config.hello_tests.test)) config.hello_tests.test=hello-foo

name: hello-bar
tests: hello-tests \
? (!$defined(config.hello_tests.test)) config.hello_tests.test=hello-bar

Note that in contrast to the value, both the reflection and condition refer to the vari-
ables defined not by the package which specifies the test dependency (primary package), but the
package such a dependency refers to (test package).

6.2.24 builds

[builds]: [<class-uset> ’':’] [<class-expr>] [; <comment>]
<class-uset> = <class—-name> [<class-name>]*

<class—expr> = <class-term> [<class-term>]*

<class-term> = (’+’|’—’|’&’)[’!’](<class—name> | " (" <class—expr> ’)’)

The common package build target configurations. They specify the target configuration classes
the package should or should not be built for by automated build bots, unless overridden by a
package configuration-specific value (see|*—build—config|for details). For example:

builds: -windows

Build target configurations can belong to multiple classes with their names and semantics varying
between different build bot deployments. However, the pre-defined none, default, all,
host, and buildz2 classes are always provided. If no builds value is specified in the package

Revision 0.18, November 2024 The build2 Package Manager 37

6.2.24 builds

manifest, then the default class is assumed.

A target configuration class can also derive from another class in which case configurations that
belong to the derived class are treated as also belonging to the base class (or classes, recursively).
See the Build Configurations page of the build bot deployment for the list of available target
configurations and their classes.

The builds value consists of an optional underlying class set (<class—uset>) followed by a
class set expression (<class-expr>). The underlying set is a space-separated list of class
names that define the set of build target configurations to consider. If not specified, then all the
configurations belonging to the default class are assumed. The class set expression can then
be used to exclude certain configurations from this initial set.

The class expression is a space-separated list of terms that are evaluated from left to right. The
first character of each term determines whether the build target configuration that belong to its set
are added to (+), subtracted from (-), or intersected with (&) the current set. If the second charac-
ter in the term is !, then its set of configuration is inverted against the underlying set. The term
itself can be either the class name or a parenthesized expression. Some examples (based on the

deployment):

builds: none ; None.

builds: all ; All (suitable for libraries).
builds: all : &host ; All host (suitable for tools).
builds: default ; All default.

builds: default : &host ; Default host.

builds: default legacy ; All default and legacy.
builds: default legacy : &host ; Default and legacy host.
builds: -windows ; Default except Windows.
builds: all : —-windows ; All except Windows.

builds: all : —-mobile ; All except mobile.

builds: all : &gcc ; All with GCC only.

builds: all : &gcc—8+ ; All with GCC 8 and up only.
builds: all : &gcc -optimized ; All GCC without optimization.

builds: all : &gcc &(+linux +macos) ; All GCC on Linux and Mac OS.

Notice that the colon and parentheses must be separated with spaces from both preceding and
following terms.

Multiple builds values are evaluated in the order specified and as if they were all part of a
single expression. Only the first value may specify the underlying set. The main reason for having
multiple values is to provide individual reasons (as the builds value comments) for different
parts of the expression. For example:

builds: default experimental ; Only modern compilers are supported.
builds: —-gcc ; GCC is not supported.
builds: -clang ; Clang is not supported.

38 The build2 Package Manager Revision 0.18, November 2024

https://ci.cppget.org/?build-configs

6.2.25 build-{include, exclude}

builds: default
builds: - (+macos &gcc) ; Homebrew GCC is not supported.

The builds value comments are used by the web interface (brep) to display the reason for the
build target configuration exclusion.

After evaluating all the builds values, the final configuration set can be further fine-tuned
using thefouild-{include, exclude }|patterns.

6.2.25build-{include, exclude}

[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]

The common package build inclusions and exclusions. The build-include and
build-exclude values further reduce the configuration set produced by evaluating the
values. The config and rarget values are filesystem wildcard patterns which are matched
against the build target configuration names and target names (see the bbot documentation for
details). In particular, the * wildcard matches zero or more characters within the name compo-
nent while the ** sequence matches across the components. Plus, wildcard-only pattern compo-
nents match absent name components. For example:

build-exclude: windows** # matches windows_10-msvc_15
build-exclude: macos*-gcc** # matches macos_10.13-gcc_8.1-03
build-exclude: linux-gcc*-* # matches linux-gcc_8.1 and linux-gcc_8.1-03

The exclusion and inclusion patterns are applied in the order specified with the first match deter-
mining whether the package will be built for this configuration and target. If none of the patterns
match (or none we specified), then the package is built.

As an example, the following value will exclude 32-bit builds for the MSVC 14 compiler:

build-exclude: *-msvc_14**/i?86-** ; Linker crash.

As another example, the following pair of values will make sure that a package is only built on
Linux:

build-include: linux**
build-exclude: ** ; Only supported on Linux.

Note that the comment of the matching exclusion is used by the web interface (brep) to display
the reason for the build target configuration exclusion.

Revision 0.18, November 2024 The build2 Package Manager 39

6.2.26 build-auxiliary

6.2.26 build-auxiliary

[build-auxiliary]: <config> [; <comment>]
[build-auxiliary-<name>]: <config> [; <comment>]

The common package build auxiliary configurations. The build-auxiliary values can be
used to specify auxiliary configurations that provide additional components which are required
for building or testing a package and that are impossible or impractical to provide as part of the
build configuration itself. For example, a package may need access to a suitably configured
database, such as PostgreSQL, in order to run its tests. Currently no more than 9 auxiliary config-
urations can be specified.

The config value is a filesystem wildcard patterns which is matched against the auxiliary configu-
ration names (which are in turn derived from auxiliary machine names; see the bbot documenta-
tion for details). In particular, the * wildcard matches zero or more characters within the name
component while the ** sequence matches across the components. Plus, wildcard-only pattern
components match absent name components. For example:

build-auxiliary: linux_debian_1l2-postgresqgl_16
build-auxiliary: linux_*-postgresqgl_*
build-auxiliary: *-postgresqgl**

If multiple auxiliary configurations match the specified pattern, then one is picked at random for
every build.

If multiple auxiliary configurations are required, then they must be given distinct names with the
name component. For example:

build-auxiliary-pgsgl: *-postgresqgl_*
build-auxiliary-mysqgl: *-mysqgl_*

Another example:

build-auxiliary-primary: *-postgresqgl_*
build-auxiliary-secondary: *-postgresqgl_*

Auxiliary machines communicate information about their setup to the build machine using envi-
ronment variables (see auxiliary-environment for details). For example, an auxiliary
machine that provides a test PostgreSQL database may need to communicate the host IP address
and port on which it can be accessed as well as the user to login as and the database name to use.
For example:

DATABASE_HOST=192.168.0.1
DATABASE_PORT=5432
DATABASE_USER=test
DATABASE_NAME=test

40 The build2 Package Manager Revision 0.18, November 2024

6.2.27 build-bot

If the auxiliary configuration is specified as build-auxiliary—-<name>, then capitalized
and sanitized name_ is used as a prefix in the environment variables corresponding to the
machine. For example, for the auxiliary configurations specified as:

build-auxiliary-pg-sgl: *-postgresqgl_*
build-auxiliary-my-sgl: *-mysqgl_*

The environment variables could be:

PG_SQL_DATABASE_HOST=192.168.0.1
PG_SQL_DATABASE_PORT=5432

MY_SQL_DATABASE_HOST=192.168.0.2
MY_SQL_DATABASE_PORT=3306

The auxiliary environment variables are in effect for the entire build. The recommended place to
propagate them to the package configuration is the *~build-config value. For example:

build-auxiliary: *-postgresqgl_*
default-build-config:

\

config.hello.pgsgl_host=$getenv (DATABASE_HOST)
config.hello.pgsgl_port=$getenv (DATABASE_PORT)

\

6.2.27 build-bot

[build-bot]: <pub-key>

The common package build custom bot public key (see build2 build bot manual for back-
ground). Multiple build-bot values can be specified to list several custom build bots. If speci-
fied, then such custom bots will be used instead of (note: not in addition to) the default bots to
build this package. Custom bots can be used, for example, to accommodate packages that have
special requirements, such as proprietary dependencies, and which cannot be fulfilled using the
default bots. The public key should be in the PEM format. For example:

build-bot:

MIICIjANBgkghkiGOwOBAQEFAAOCAG8AMIICCgKCAGEAWS1iP5pyU9ebC/nD3d7z
1H2d1KmUyiX0Z8POVKhLREdOB3rM59bPcnbRB4HMIhj0J0hUBvS8xb4u5udCPToa
x0A/LMWZ6claiivNtJ3CdLVI8ek1WANUg5WXOugqIQDKXw2 ZpGbwDwCOh6aHSWVg
98N9AQx0ZMmMWz 3ghRyxPfh+GeJ05uj20hU9FeUdxeqUcgdT/UcMZ3+7KYbwr+Uqg
/HCoX1BmN6nvzhQGHvJIIZ2IcjvOQOAUrPmpSZNO1Zr3ZEpkHM3hJWNLu3nt JLGBQ
0aT5kG31igFyr9g3M3c4J8cO0AWrnDjvi0gnCy jNwaW+gIpatmCNT43DmgYr9£fQLWO
UHusburz53AbXsl12zu3gZzkb0irlShatkMggQagqaU0/+zwlLnoZ+rvmn2XV97UukK
LFKMKXCnyi22G65IZHGk JBVAPuUvsX6RgLNyner/QtkDJTbfhkt InbG08dCPQV1EF
10tcYKMTn8IS5P2VmMMO6SXXDLMSAUBbS5DASEY6Ca6JBB8g06S9sgGgXgQFysAnZsl
VEgMopf8WZgj23x+DX+9KKT2pVn jowRvBAntuCDoO75gWoETDNnCQXEei /PbyamPg

Revision 0.18, November 2024 The build2 Package Manager 41

6.2.28 *-build-config

9+NjNsTDn67iJTGncZbII+eciY2YiFHM6GMzBPsUY1Qcxiu04X36jWom2rwuw3 7K
OFDbGI3uY4LnhwmDFLbjtk8CAWEAAQ==

Note that such custom build bots must offer the same set of machines (or a subset thereof) as the
default bots. In other words, you cannot invent new build configuration names (and the corre-
sponding machines) with custom build bots — for that you would need to run your own brep
deployment. Note also that the list of machines offered by custom bots should be consistent with
the build configurations enabled by the package (see for details). For example, if the
package enables a configuration that is not offered by any of the custom bots listed, then this
configuration will remain unbuilt forever.

Note that custom build bot public keys are publicly known and nothing prevents someone else
from specifying your bot’s public key in their own package and thus triggering a build on your
bot of a potentially rogue package. As a result, carefully consider the information that you make
available in your custom machines (which will be easy to exfiltrate) as well as the environment in
which you run your custom bots (which can potentially be compromised). In the future, bbot
may offer mechanisms to restrict the names and locations of packages that it is allowed to build.

6.2.28 *~build-config

[*~build-config]: <args> [; <comment>]

<args> = [[[+|—]<prefix>:](<option>|<config—var>)]* \
[(+|—)<prefix>:]* \
[<dependency-spec>]* \
[

<package-specific-vars>]*

<dependency-spec> = [{ <config-var> [<config-var>]* }+] <dependency>
<dependency> = (?[sys:]|sys:)<name>[<version—spec>]

<version-spec> = /<version> | <version-constraint>
<package-specific-vars> = { <config-var> [<config-var>]* }+ <name>
[*~builds]: <class-expr> [; <comment>]

[*~build-include]: <config>[/<target>] [; <comment>]
[*~build-exclude]: <config>[/<target>] [; <comment>]
[*~build-auxiliary]: <config> [; <comment>]
[*~build-auxiliary—-<name>]: <config> [; <comment>]

[*~build-bot]: <pub-key>

[*-build-email]: <email> [; <comment>]
[*-build-warning-email]: <email> [; <comment>]
[*-build-error-email]: <email> [; <comment>]

The package build configurations where the substring matched by * in *-build-config
denotes the configuration name. If specified, then the package is built in these configurations by
automated build bots in addition to the default configuration (which is called default).

42 The build2 Package Manager Revision 0.18, November 2024

6.2.28 *-build-config

The *-build-config values contain whitespace separated lists of potentially
double/single-quoted package configuration arguments. The global (as opposed to
package-specific) options and variables can be prefixed with the build bot worker script step ids
or a leading portion thereof to restrict it to a specific step, operation, phase, or tool (see bbot
worker step ids). The prefix can optionally begin with the + or — character (in this case the argu-
ment can be omitted) to enable or disable the respective step (see the list of worker steps which
can be enabled or disabled). Unprefixed global options, variables, and dependencies are passed to
the bpkg-pkg-build(l) command at the bpkg.configure.build step. The
package-specific configuration variables for this and/or the separate test packages are passed to
bpkg-pkg-build(1l) at the bpkg.configure.build and bpkg.test-sepa-
rate-installed.configure.build steps. The dependencies of these packages can be
configured at these steps in various configurations by specifying the package-specific
—-—config—-uuid option(s) and configuration variables or the [?]sys: prefix (see configura-
tion UUIDs). For example:

network-build-config: config.libfoo.network=true; Enable networking API.

cache-build-config:

\
config.libfoo.cache=true
config.libfoo.buffer=4096
2

Enable caching.

\

libbar—-network-build-config:

\

{ config.libbar.network=true }+ ?libbar
2

Enable networking API in libbar.

\

older-libz-build-config: "?libz ~1.0.0"; Test with older libz version.

sys—-build-config:

\

?sys:libbar ?sys:libz

2

Test with system dependencies.

\

bindist-build-config:

\

+bpkg.bindist.debian:--recursive=full

—bbot.sys-install:

+bbot .bindist.upload:

14

Generate and upload binary distribution package but don’t test its installation.

\

load-tests-build-config:
\

Revision 0.18, November 2024 The build2 Package Manager 43

6.2.28 *-build-config

{ config.libfoo_tests.load=true }+ libfoo-tests
2

Enable load testing.

\

default-build-config:
Configure libbar-tests package’s dependency libfoo as system on the
bpkg.test-separate-installed.configure.build step, since it is

already installed as a dependency of libbar.

——config-uuid=00000000-0000-0000-0000-000000000005 }+ ?sys:libfoo/*

e e e dE A

Note that options with values can only be specified using the single argument notation, for
example, ——verbose=4.

The package build configuration can override the common build target configurations set (speci-
fied with and [ouild—{include, exclude}) by specifying the matching
*-pbuilds and/or *~build-{include, exclude} values. For example:

network-builds: linux; Only supported on Linux.
network-build-config: config.libfoo.network=true; Enable networking API.

Note that the common build target configurations set is overridden hierarchically meaning that
the *~build-{include, exclude} overrides don’t discard the common builds values.

The package build configuration can override the common build auxiliary machines. Note that
the auxiliary machine set 1is overridden entirely, meaning that specifying one
*—build-auxiliary value discard all the common build-auxiliary values for this
package configuration.

The package build configuration can override the common build custom bots. Note that the
custom bot set is overridden entirely, meaning that specifying one *-build-bot value discards
all the common build-bot values for this package configuration.

The package build configuration can override the common build notification email addresses
(specified with [pbuild-email}fouild-warning—email] and[ouild-error—email) by
specifying the matching *~build-email and/or *~build-{warning, error}-email
values. For example:

bindist-build-config:

\

+bpkg.bindist.debian:--recursive=full

+bbot .bindist.upload:

7

Generate and upload binary distribution package.
\

bindist-build-error-email: builds@example.org

44 The build2 Package Manager Revision 0.18, November 2024

6.2.29 build-file

Note that to disable all the build notification emails for a specific package build configuration,
specify the empty *~build-email value. For example:

sys-build-config: ?sys:libz; Test with system dependencies.
sys—-build-email:

The default configuration should normally build the package with no configuration arguments
and for the common target build configurations set. While not recommended, this can be overrid-
den by using the special default configuration name. For example:

default-build-config: config.libfoo.cache=true

6.2.29 build-file
[build-file]: <path>

[bootstrap-build]: <text>
[root-build]: <text>
[*-build]: <text>

[bootstrap-build2]: <text>
[root-build2]: <text>
[*-build2]: <text>

The contents of the mandatory bootstrap.build file, optional root .build file, and addi-
tional files included by root.build, or their alternative naming scheme variants (boot-—
strap.build2, etc). Packages with the alternative naming scheme should use the *~build2
values instead of *~build. See|Package Build System Skeleton|for background.

These files must reside in the package’s build/ subdirectory and have the .build extension
(or their alternative names). They can be provided either inline as text fragments or, for additional
files, by referring to them with a path relative to this subdirectory, but not both. The
—puild/-build2 manifest value name prefixes must be the file paths relative to this subdi-
rectory with the extension stripped.

As an example, the following values correspond to the build/config/common.build file:
build-file: config/common.build

config/common-build:

\

config [bool] config.libhello.fancy ?= false
\

And the following values correspond to the build2/config/common.build2 file in a
package with the alternative naming scheme:

Revision 0.18, November 2024 The build2 Package Manager 45

6.2.30 *-{name, version, to-downstream-version}

build-file: config/common.build2

config/common-build2:

\

config [bool] config.libhello.fancy ?= false
\

If unspecified, then the package’s bootstrap.build, root.build, and
build/config/*.build files (or their alternative names) will be automatically added, for
example, when the [package list manifest|is created.

6.2.30 *—{name, version, to-downstream-version}

[<distribution>-name]: <name> [<name>...]
[<distribution>-version]: <string>
[<distribution>-to-downstream-version]: <regex>

<distribution> = <name>|[_<version>]
<regex> = /<pattern>/<replacement>/

The binary distribution package name and version mapping. The —name value specifies the
distribution package(s) this bpkg package maps to. If unspecified, then appropriate name(s) are
automatically derived from the bpkg package name (name)). Similarly, the ~version value
specifies the distribution package version. If unspecified, then the upstream-version value
is used if specified and the bpkg version otherwise. While the -to-down-
stream—-version values specify the reverse mapping, that is, from the distribution version to
the bpkg version. If unspecified or none match, then the appropriate part of the distribution
version is used. For example:

name: libssl

version 1.1.1+18

debian-name: libssll.l libssl-dev

debian-version: 1.1.1n

debian-to-downstream-version: /1\.1\.1l[a-z]/1.1.1/
debian-to-downstream-version: /([3-91)\. ([0-9]+)\. ([0-9]1+)/\1.\2.\3/

If upstream-version is specified but the the distribution package version should be the same
as the bpkg package version, then the special $ —version value can be used. For example:

debian-version: $

The <distribution> name prefix consists of the distribution name followed by the optional
distribution version. If the version is omitted, then the value applies to all versions. Some exam-
ples of distribution names and versions:

46 The build2 Package Manager Revision 0.18, November 2024

6.3 Package List Manifest for pkg Repositories

debian
debian_10
ubuntu_16.04
fedora_32
rhel_8.5
freebsd_12.1
windows_10
macos_10
macos_10.15
macos_12

Note also that some distributions are like others (for example, ubuntu is like debian) and the
corresponding "base" distribution values are considered if no "derived" values are specified.

The —name value is used both during package consumption as a system package and production
with the bpkg—-pkg-bindist (1) command. During production, if multiple mappings match,
then the value with the highest matching distribution version from the package manifest with
the latest version is used. If it’s necessary to use different names for the generated binary pack-
ages (called "non-native packages" in contrast to "native packages" that come from the distribu-
tion), the special 0 distribution version can be used to specify such a mapping. For example:

name: libsqglite3
debian_9-name: libsglite3-0 libsglite3-dev
debian_O-name: libsglite3 libsglite3-dev

Note that this special non-native mapping is ignored during consumption and a deviation in the
package names that it introduces may make it impossible to use native and non-native binary
packages interchangeably, for example, to satisfy dependencies.

The exact format of the —name and —version values and the distribution version part that is
matched against the —~to-downstream-version pattern are distribution-specific. For details,
see [Debian Package Mapping] and [Fedora Package Mapping|

6.3 Package List Manifest for pkg Repositories

The package list manifest (the packages.manifest file found in the pkg repository root
directory) describes the list of packages available in the repository. First comes a manifest that
describes the list itself (referred to as the list manifest). The list manifest synopsis is presented
next:

sha256sum: <sum>

After the list manifest comes a (potentially empty) sequence of package manifests. These mani-
fests shall not contain any *—file or incomplete values (such values should be
converted to their inline versions or completed, respectively) but must contain the *-build
values (unless the corresponding files are absent) and the following additional (to package mani-
fest) values:

Revision 0.18, November 2024 The build2 Package Manager 47

6.4 Package List Manifest for dir Repositories

location: <path>
sha256sum: <sum>

The detailed description of each value follows in the subsequent sections.

6.3.1 sha256sum (list manifest)

sha256sum: <sum>

The SHA256 checksum of the repositories.manifest file (described below) that corre-
sponds to this repository. The sum value should be 64 characters long (that is, just the SHA256
value, no file name or any other markers), be calculated in the binary mode, and use lower-case
letters.

This checksum is used to make sure that the repositories.manifest file that was fetched
is the same as the one that was used to create the packages.manifest file. This also means
that if repositories.manifest is modified in any way, then packages.manifest
must be regenerated as well.

6.3.2 location (package manifest)

location: <path>

The path to the package archive file relative to the repository root. It should be in the POSIX
representation.

if the repository keeps multiple versions of the package and places them all into the repository
root directory, it can get untidy. With Locat ion we allow for sub-directories.

6.3.3 sha256sum (package manifest)

sha256sum: <sum>

The SHA256 checksum of the package archive file. The sum value should be 64 characters long
(that is, just the SHA256 value, no file name or any other markers), be calculated in the binary
mode, and use lower-case letters.

6.4 Package List Manifest for dir Repositories
The package list manifest (the packages.manifest file found in the dir repository root

directory) describes the list of packages available in the repository. It is a (potentially empty)
sequence of manifests with the following synopsis:

48 The build2 Package Manager Revision 0.18, November 2024

6.5 Repository Manifest

location: <path>
[fragment]: <string>

The detailed description of each value follows in the subsequent sections. The fragment value
can only be present in a merged packages.manifest file for a multi-fragment repository.

As an example, if our repository contained the src/ subdirectory that in turn contained the
libfoo and foo packages, then the corresponding packages.manifest file could look like
this:

: 1
location: src/libfoo/

location: src/foo/

6.4.1 location

location: <path>

The path to the package directory relative to the repository root. It should be in the POSIX repre-
sentation.

6.4.2 fragment

[fragment]: <string>

The repository fragment id this package belongs to.

6.5 Repository Manifest

The repository manifest (only used as part of the repository manifest list described below)
describes a pkg, dir, or git repository. The manifest synopsis is presented next followed by
the detailed description of each value in subsequent sections.

[location]: <uri>

[typel: pkg|dir|git

[role]: base|prerequisite|complement
[trust]: <fingerprint>

[url]: <url>

[email] : <email> [; <comment>]
[summary]: <text>

[description]: <text>

[certificate]: <pem>

[fragment]: <string>

See also the Repository Chaining documentation for further information @ @ TODO.

Revision 0.18, November 2024 The build2 Package Manager 49

6.5.1 location

6.5.1 location

[location]: <uri>

The repository location. The location can and must only be omitted for the base repository. Since
we got hold of its manifest, then we presumably already know the location of the base repository.
If the location is a relative path, then it is treated as relative to the base repository location.

For the git repository type the relative location does not inherit the URL fragment from the base
repository. Note also that the remote git repository locations normally have the .git extension
that is stripped when a repository is cloned locally. To make the relative locations usable in both
contexts, the .git extension should be ignored if the local prerequisite repository with the
extension does not exist while the one without the extension does.

While POSIX systems normally only support POSIX paths (that is, forward slashes only),
Windows is generally able to handle both slash types. As a result, it is recommended that POSIX
paths are always used in the location values, except, perhaps, if the repository is explicitly
Windows-only by, for example, having a location that is an absolute Windows path with the drive
letter. The bpkg package manager will always try to represent the location as a POSIX path and
only fallback to the native representation if that is not possible (for example, there is a drive letter
in the path).

6.5.2 type
[typel: pkg|dir|git

The repository type. The type must be omitted for the base repository. If the type is omitted for a
prerequisite/complement repository, then it is guessed from its location value as described in
bpkg-rep—add(1).

6.5.3 role

[role]: base|prerequisite|complement

The repository role. The role value can be omitted for the base repository only.

6.5.4 trust

[trust]: <fingerprint>

The repository fingerprint to trust. The trust value can only be specified for prerequisite and
complement repositories and only for repository types that support authentication (currently only
pkqg). The fingerprint value should be an SHA256 repository fingerprint represented as 32
colon-separated hex digit pairs. The repository in question is only trusted for use as a prerequisite
or complement of this repository. If it is also used by other repositories or is added to the configu-
ration by the user, then such uses cases are authenticated independently.

50 The build2 Package Manager Revision 0.18, November 2024

6.5.5 url

6.5.5url

[url]: <url>

The repository’s web interface (brep) URL. It can only be specified for the base repository (the
web interface URLs for prerequisite/complement repositories can be extracted from their respec-
tive manifests).

For example, given the following url value:

url: https://example.org/hello/

The package details page for libfoo located in this repository will be
https://example.org/hello/libfoo.

The web interface URL can also be specified as relative to the repository location (the 1oca-
tion value). In this case url should start with two path components each being either . or . .. If
the first component is . ., then the www, pkg or bpkg domain component, if any, is removed
from the 1ocation URL host, just like when deriving the repository name.

Similarly, if the second component is . ., then the pkg or bpkg path component, if any, is
removed from the 1ocation URL path, again, just like when deriving the repository name.

Finally, the version component is removed from the 1ocation URL path, the rest (after the two
./. . components) of the url value is appended to it, and the resulting path is normalized with
all remaining . . and . applied normally.

For example, assuming repository location is:

https://pkg.example.org/test/pkg/l/hello/stable

The following listing shows some of the possible combinations (the <> marker is used to high-
light the changes):

.. -> https://pkg.example.org/test/pkg/hello/stable
VAN -> https://< >example.org/test/pkg/hello/stable
.. -> https://pkg.example.org/test/< >hello/stable
AR -> https://< >example.org/test/< >hello/stable
VANV -> https://pkg.example.org/test/pkg/hello< >
../../../.. => https://< >example.org/test< >

The rationale for the relative web interface URLSs is to allow deployment of the same repository
to slightly different configuration, for example, during development, testing, and public use. For
instance, for development we may use the https://example.org/pkg/ setup while in
production it becomes https://pkg.example.org/. By specifying the web interface loca-
tion as, say, ../., we can run the web interface at these respective locations using a single
repository manifest.

Revision 0.18, November 2024 The build2 Package Manager 51

6.5.6 email

6.5.6 email

[email]: <email> [; <comment>]

The repository email address. It must and can only be specified for the base repository. The email
address 1s displayed by the web interface (brep) in the repository about page and could be used
to contact the maintainers about issues with the repository.

6.5.7 summary

[summary]: <text>

The short description of the repository. It must and can only be specified for the base repository.

6.5.8 description

[description]: <text>
The detailed description of the repository. It can only be specified for the base repository.

In the web interface (brep) the description is formatted into one or more paragraphs using blank
lines as paragraph separators. Specifically, it is not represented as <pre> so any kind of addi-
tional plain text formatting (for example, lists) will be lost and should not be used in the descrip-
tion.

6.5.9 certificate

[certificate]: <pem>

The X.509 certificate for the repository. It should be in the PEM format and can only be specified
for the base repository. Currently only used for the pkg repository type.

The certificate should contain the CN and O components in the subject as well as the email:
component in the subject alternative names. The CN component should start with name: and
continue with the repository name prefix/wildcard (without trailing slash) that will be used to
verify the repository name(s) that are authenticated with this certificate. See bpkg—reposi-
tory-signing (1) for details.

If this value is present then the packages.manifest file must be signed with the correspond-
ing private key and the signature saved in the signature.manifest file. See

for details.

52 The build2 Package Manager Revision 0.18, November 2024

6.6 Repository List Manifest

6.5.10 fragment

[fragment]: <string>

The repository fragment id this repository belongs to.

6.6 Repository List Manifest

@ @ TODO See the Repository Chaining document for more information on the terminology and
semantics.

The repository list manifest (the repositories.manifest file found in the repository root
directory) describes the repository. It starts with an optional header manifest optionally followed
by a sequence of repository manifests consisting of the base repository manifest (that is, the
manifest for the repository that is being described) as well as manifests for its prerequisite and
complement repositories. The individual repository manifests can appear in any order and the
base repository manifest can be omitted.

The fragment values can only be present in a merged repositories.manifest file for a
multi-fragment repository.

As an example, a repository manifest list for the math/test ing repository could look like this:

math/testing

#

: 1

min-bpkg-version: 0.14.0

email: math-pkg@example.org
summary: Math package repository

role: complement
location: ../stable

role: prerequiste
location: https://pkg.example.org/l/misc/testing

Here the first manifest describes the base repository itself, the second manifest — a complement
repository, and the third manifest — a prerequisite repository. Note that the complement reposi-
tory’s location is specified as a relative path. For example, if the base repository location were:

https://pkg.example.org/1l/math/testing

Then the completement’s location would be:

Revision 0.18, November 2024 The build2 Package Manager 53

6.7 Signature Manifest for pkg Repositories

https://pkg.example.org/l/math/stable

The header manifest synopsis is presented next followed by the detailed description of each value
in subsequent sections.

[min-bpkg-version]: <ver>
[compression]: <compressions>
6.6.1 min-bpkg-version
[min-bpkg-version]: <ver>

The earliest version of bpkg that is compatible with this repository. Note that if specified, it must
be the first value in the header.

6.6.2 compression

[compression]: <compressions>

<compressions> = <compression> [<compression>]*

Available compressed variants of the packages.manifest file. The format is a space-sepa-
rated list of the compression methods. The none method means no compression. Absent
compression value is equivalent to specifying it with the none value.

6.7 Signature Manifest for pkg Repositories

The signature manifest (the signature.manifest file found in the pkg repository root
directory) contains the signature of the repository’s packages.manifest file. In order to
detect the situation where the downloaded signature.manifest and packages.mani-
fest files belong to different updates, the manifest contains both the checksum and the signature
(which is the encrypted checksum). We cannot rely on just the signature since a mismatch could
mean either a split update or tampering. The manifest synopsis is presented next followed by the
detailed description of each value in subsequent sections.

sha256sum: <sum>
signature: <sig>

6.7.1 sha256sum

sha256sum: <sum>

The SHA256 checksum of the packages .manifest file. The sum value should be 64 charac-
ters long (that is, just the SHA256 value, no file name or any other markers), be calculated in the
binary mode, and use lower-case letters.

54 The build2 Package Manager Revision 0.18, November 2024

7 Binary Distribution Package Mapping

6.7.2 signature

signature: <sig>

The signature of the packages.manifest file. It should be calculated by encrypting the
above sha256sum value with the repository certificate’s private key and then base64-encod-
ing the result.

7 Binary Distribution Package Mapping
7.1 Debian Package Mapping

This section describes the distribution package mapping for Debian and alike (Ubuntu, etc).

7.1.1 Debian Package Mapping for Consumption

A library in Debian is normally split up into several packages: the shared library package (e.g.,
libfool where 1 is the ABI version), the development files package (e.g., 1ibfoo-dev), the
documentation files package (e.g., libfoo-doc), the debug symbols package (e.g.,
libfool-dbg), and the architecture-independent files (e.g., 1ibfool-common). All the
packages except —dev are optional and there is quite a bit of variability. Here are a few exam-
ples:

libsglite3-0 libsglite3-dev

libssll.l libssl-dev libssl-doc
libssl3 libssl-dev libssl-doc

libcurld4 libcurléd-openssl-dev libcurlé4-doc
libcurl3—-gnutls libcurl4-gnutls-dev libcurlé4-doc

Note that while most library package names in Debian start with 1ib (per the policy), there are
exceptions (e.g., z1iblg zliblg-dev). The header-only library package names may or may
not start with 1ib and end with —dev (e.g., 1ibeigen3-dev, rapidjson-dev, catch?2).
Also note that manual —dbg packages are obsolete in favor of automatic —dbgsym packages
from Debian 9.

For executable packages there is normally no —dev packages but ~dbg, —doc, and —~common
are plausible.

Based on that, our approach when trying to automatically map a bpkg library package name to
Debian package names is to go for the —dev package first and figure out the shared library
package from that based on the fact that the —dev package should have the == dependency on
the shared library package with the same version and its name should normally start with the
—dev package’s stem.

Revision 0.18, November 2024 The build2 Package Manager 55

7.1.2 Debian Package Mapping for Production

The format of the debian-name (or alike) manifest value is a comma-separated list of one or
more package groups:

<package-group> [, <package-group>...]

Where each <package—group> is the space-separated list of one or more package names:

<package—-name> [<package-name>...]

All the packages in the group should be "package components" (for the lack of a better term) of
the same "logical package", such as —~dev, —doc, —common packages. They normally have the
same version.

The first group is called the main group and the first package in the group is called the main
package. Note that all the groups are consumed (installed) but only the main group is produced
(packaged).

We allow/recommend specifying the —dev package instead of the main package for libraries (see
for details), seeing that we are capable of detecting the main package automatically (see
above). If the library name happens to end with —dev (which poses an ambiguity), then the
—dev package should be specified explicitly as the second package to disambiguate this situa-
tion.

The Debian package version has the [<epoch>:]<upstream>[-<revision>] form (see
deb-version (5) for details). If no explicit mapping to the bpkg version is specified with the
debian-to-downstream-version (or alike) manifest values or none match, then we fall-
back to using the <upstream> part as the bpkg version. If explicit mapping is specified, then
we match it against the [<epoch>:]<upstream> parts ignoring <revision>.

7.1.2 Debian Package Mapping for Production

The same debian—-name (or alike) manifest values as used for consumption are also used to
derive the package names for production except here we have the option to specify alternative
non-native package names using the special debian_0O-name (or alike) value. If only the —dev
package is specified, then the main package name is derived from that by removing the —dev
suffix. Note that regardless of whether the main package name is specified or not, the
bpkg-pkg-bindist (1) command may omit generating the main package for a binless
library.

The generated binary package version can be specified with the debian-version (or alike)
manifest value. If it’s not specified, then the upstream-version is used if specified. Other-
wise, the bpkg version is translated to the Debian version as described next.

56 The build2 Package Manager Revision 0.18, November 2024

7.1.2 Debian Package Mapping for Production

To recap, a Debian package version has the following form:

[<epoch>:]<upstream>[-<revision>]

For details on the ordering semantics, see the Version control file field documentation in
the Debian Policy Manual. While overall unsurprising, one notable exception is ~, which sorts
before anything else and is commonly used for upstream pre-releases. For example,
1.0~betal~svnl245 sorts earlier than 1. 0~betal, which sorts earlier than 1. O.

There are also various special version conventions (such as all the revision components in
1.4-5+debl0ul~bpo9ul) but they all appear to express relationships between native pack-
ages and/or their upstream and thus do not apply to our case.

To recap, the bpkg version has the following form (see [Package Version|for details):

[+<epoch>-]<upstream>[-<prerel>] [+<revision>]

Let’s start with the case where neither distribution (debian-version) nor upstream version
(upstream-version) is specified and we need to derive everything from the bpkg version
(what follows is as much description as rationale).

<epoch>
On one hand, if we keep our (as in, bpkg) epoch, it won’t necessarily match Debian’s
native package epoch. But on the other it will allow our binary packages from different
epochs to co-exist. Seeing that this can be easily overridden with a custom distribution
version (see below), we keep it.

Note that while the Debian start/default epoch is 0, ours is 1 (we use the 0 epoch for stub
packages). So we shift this value range.

<upstream>[—-<prerel>]
Our upstream version maps naturally to Debian’s. That is, our upstream version
format/semantics is a subset of Debian’s.

If this is a pre-release, then we could fail (that is, don’t allow pre-releases) but then we won’t
be able to test on pre-release packages, for example, to make sure the name mapping is
correct. Plus sometimes it’s useful to publish pre-releases. We could ignore it, but then such
packages will be indistinguishable from each other and the final release, which is not ideal.
On the other hand, Debian has the mechanism (~) which is essentially meant for this, so we
use it. We will use <prerel> as is since its format is the same as upstream and thus should
map naturally.

<revision>
Similar to epoch, our revision won’t necessarily match Debian’s native package revision.
But on the other hand it will allow us to establish a correspondence between source and

Revision 0.18, November 2024 The build2 Package Manager 57

7.1.2 Debian Package Mapping for Production

binary packages. Plus, upgrades between binary package revisions will be handled naturally.
Seeing that we allow overriding the revision with a custom distribution version (see below),
we keep it.

Note also that both Debian and our revision start/default is 0. However, it is Debian’s
convention to start revision from 1. But it doesn’t seem worth it for us to do any shifting
here and so we will use our revision as is.

Another related question is whether we should also include some metadata that identifies the
distribution and its version that this package is for. The strongest precedent here is probably
Ubuntu’s PPA. While there doesn’t appear to be a consistent approach, one can often see
versions like these:

~ppal~ubuntul4.04.1,
.2.1~ubuntu20.04.1~ppal
—Oubuntul~ubuntu23.04~ppal

N =N

1.0-1
.4-5-1
2.12.2

Seeing that this is a non-sortable component (what in semver would be called "build meta-
data"), using ~ is probably not the worst choice.

So we follow this lead and add the ~<ID><VERSION_ID> os—-release (5) component
to revision. Note that this also means we will have to make the O revision explicit. For
example:

l1~debianl0
O~ubuntu20.04

1.2.3-

1.2.3-
The next case to consider is when we have the upstream version (upstream-version mani-
fest value). After some rumination it feels correct to use it in place of the
<epoch>-<upstream> components in the above mapping (upstream version itself cannot
have epoch). In other words, we will add the pre-release and revision components from the bpkg
version. If this is not the desired semantics, then it can always be overridden with the distribution
version (see below).

Finally, we have the distribution version. The Debian <epoch> and <upstream> components
are straightforward: they should be specified by the distribution version as required. This leaves
pre-release and revision. It feels like in most cases we would want these copied over from the
bpkg version automatically — it’s too tedious and error-prone to maintain them manually.
However, we want the user to have the full override ability. So instead, if empty revision is speci-
fied, asin 1.2.3—, then we automatically add the bpkg revision. Similarly, if empty pre-release
is specified, as in 1.2.3~, then we add the bpkg pre-release. To add both automatically, we
would specify 1.2 .3~- (other combinationsare 1.2.3~b.1-and 1.2.3~-1).

58 The build2 Package Manager Revision 0.18, November 2024

7.2 Fedora Package Mapping

Note also that per the Debian version specification, if upstream contains : and/or —, then epoch
and/or revision must be specified explicitly, respectively. Note that the bpkg upstream version
may not contain either.

7.2 Fedora Package Mapping

This section describes the distribution package mapping for Fedora and alike (Red Hat Enterprise
Linux, Centos, etc).

7.2.1 Fedora Package Mapping for Consumption

A library in Fedora is normally split up into several packages: the shared library package (e.g.,
libfoo), the development files package (e.g., 1ibfoo-devel), the static library package
(e.g., libfoo-static; may also be placed into the —devel package), the documentation files
package (e.g., libfoo-doc), the debug symbols and source files packages (e.g.,
libfoo-debuginfo and libfoo-debugsource), and the common or architecture-inde-
pendent files (e.g., 1ibfoo—-common). All the packages except —devel are optional and there
is quite a bit of variability. In particular, the 1ib prefix in 1ibfoo is not a requirement (unlike
in Debian) and is normally present only if upstream name has it (see some examples below).

For application packages there is normally no —devel packages but —debug*, —doc, and
—common are plausible.

For mixed packages which include both applications and libraries, the shared library package
normally has the —1ibs suffix (e.g., foo-1ibs).

A package name may also include an upstream version based suffix if multiple versions of the
package can be installed simultaneously (e.g., 1ibfool.1l libfool.l-devel, 1ibfoo2
libfoo2-devel).

Terminology-wise, the term "base package" (sometime also "main package") normally refers to
either the application or shared library package (as decided by the package maintainer in the spec
file) with the suffixed packages (-devel, —doc, etc) called "subpackages".

Here are a few examples:
libpg libpg-devel

zlib zlib-devel zlib-static
catch-devel

eigen3-devel eigen3-doc

xerces—c xerces-c-devel xerces-c-doc

Revision 0.18, November 2024 The build2 Package Manager 59

7.2.1 Fedora Package Mapping for Consumption

libsigc++20 libsigc++20-devel libsigc++20-doc
libsigc++30 libsigc++30-devel libsigc++30-doc

icu libicu libicu-devel libicu-doc

openssl openssl-libs openssl-devel openssl-static
openssll.l openssll.l-devel

curl libcurl libcurl-devel
sglite sglite-libs sglite-devel sqglite-doc

community-mysqgl community-mysgl-libs community-mysgl-devel
community-mysgl-common community-mysgl-server

ncurses ncurses-libs ncurses-c++-1ibs ncurses-devel ncurses-static

keyutils keyutils-1libs keyutils—-libs-devel

Note that while we support arbitrary —debug* sub-package names for consumption, we only
generate <main-package>-debug*.

Based on that, our approach when trying to automatically map a bpkg library package name to
Fedora package names is to go for the —devel package first and figure out the shared library
package from that based on the fact that the —devel package should have the == dependency on
the shared library package with the same version and its name should normally start with the
—devel package’s stem and potentially end with the —1ibs suffix. If failed to find the —devel
package, we re-try but now using the bpkg project name instead of the package name (see, for
example, openssl, sqglite).

The format of the fedora—-name (or alike) manifest value value is a comma-separated list of
one or more package groups:

<package-group> [, <package-group>...]
Where each <package—group> is the space-separated list of one or more package names:
<package—-name> [<package-name>...]

All the packages in the group should belong to the same "logical package", such as —devel,
—doc, —common packages. They normally have the same version.

The first group is called the main group and the first package in the group is called the main
package. Note that all the groups are consumed (installed) but only the main group is produced
(packaged).

(Note that above we use the term "logical package" instead of "base package" since the main
package may not be the base package, for example being the —1ibs subpackage.)

60 The build2 Package Manager Revision 0.18, November 2024

7.2.2 Fedora Package Mapping for Production

We allow/recommend specifying the —devel package instead of the main package for libraries
(see for details), seeing that we are capable of detecting the main package automatically
(see above). If the library name happens to end with —~devel (which poses an ambiguity), then
the —devel package should be specified explicitly as the second package to disambiguate this
situation.

The Fedora package version has the [<epoch>:]<version>-<release> form (see Fedora
Package Versioning Guidelines for details). If no explicit mapping to the bpkg version is speci-
fied with the fedora-to-downstream—version (or alike) manifest values or none match,
then we fallback to using the <version> part as the bpkg version. If explicit mapping is speci-
fied, then we match it against the [<epoch>:]<version> parts ignoring <release>.

7.2.2 Fedora Package Mapping for Production

The same fedora—-name (or alike) manifest values as used for consumption are also used to
derive the package names for production except here we have the option to specify alternative
non-native package names using the special fedora_O-name (or alike) value. If only the
—-devel package is specified, then the main package name is derived from that by removing the
—devel suffix. Note that regardless of whether the main package name is specified or not, the
bpkg-pkg-bindist (1) command may omit generating the main package for a binless
library.

The generated binary package version can be specified with the fedora-version (or alike)
manifest value. If it’s not specified, then the upstream-version is used if specified. Other-
wise, the bpkg version is translated to the Fedora version as described next.

To recap, a Fedora package version has the following form:

[<epoch>:]<version>—-<release>

Where <release> has the following form:

<release-number>[.<distribution-tag>]

For details on the ordering semantics, see the Fedora Versioning Guidelines. While overall unsur-
prising, the only notable exceptions are ~, which sorts before anything else and is commonly used
for upstream pre-releases, and ~, which sorts after anything else and is supposedly used for
upstream post-release snapshots. For example, 0.1.0~alpha.1-1.£fc35 sorts earlier than
0.1.0-1.£fc35.

To recap, the bpkg version has the following form (see [Package Version|for details):

Revision 0.18, November 2024 The build2 Package Manager 61

7.2.2 Fedora Package Mapping for Production

[+<epoch>-]<upstream>[-<prerel>] [+<revision>]

Let’s start with the case where neither distribution (fedora-version) nor upstream version
(upstream-version) is specified and we need to derive everything from the bpkg version
(what follows is as much description as rationale).

<epoch>
On one hand, if we keep our (as in, bpkg) epoch, it won’t necessarily match Fedora’s native
package epoch. But on the other it will allow our binary packages from different epochs to
co-exist. Seeing that this can be easily overridden with a custom distribution version (see
below), we keep it.

Note that while the Fedora start/default epoch is 0, ours is 1 (we use the 0 epoch for stub
packages). So we shift this value range.

<upstream>[—-<prerel>]
Our upstream version maps naturally to Fedora’s <version>. That is, our upstream
version format/semantics is a subset of Fedora’s <version>.

If this is a pre-release, then we could fail (that is, don’t allow pre-releases) but then we won’t
be able to test on pre-release packages, for example, to make sure the name mapping is
correct. Plus sometimes it’s useful to publish pre-releases. We could ignore it, but then such
packages will be indistinguishable from each other and the final release, which is not ideal.
On the other hand, Fedora has the mechanism (~) which is essentially meant for this, so we
use it. We will use <prerel> as is since its format is the same as <upstream> and thus
should map naturally.

<revision>
Similar to epoch, our revision won’t necessarily match Fedora’s native package release
number. But on the other hand it will allow us to establish a correspondence between source
and binary packages. Plus, upgrades between binary package releases will be handled natu-
rally. Also note that the revision is mandatory in Fedora. Seeing that we allow overriding the
releases with a custom distribution version (see below), we use it.

Note that the Fedora start release number is 1 and our revision is 0. So we shift this value
range.

Also we automatically add the trailing distribution tag (. £c35, .el18, etc) to the Fedora
release. The tag is deduced automatically unless overridden on the command line (see
bpkg-pkg-bindist (1) command for details).

The next case to consider is when we have the upstream version (upstream-version mani-
fest value). After some rumination it feels correct to use it in place of the
<epoch>-<upstream> components in the above mapping (upstream version itself cannot

62 The build2 Package Manager Revision 0.18, November 2024

7.2.2 Fedora Package Mapping for Production

have epoch). In other words, we will add the pre-release and revision components from the bpkg
version. If this is not the desired semantics, then it can always be overridden with the distribution
version (see below).

Finally, we have the distribution version. The Fedora <epoch> and <version> components
are straightforward: they should be specified by the distribution version as required. This leaves
pre-release and release. It feels like in most cases we would want these copied over from the
bpkg version automatically — it’s too tedious and error-prone to maintain them manually.
However, we want the user to have the full override ability. So instead, if empty release is speci-
fied, asin 1.2 .3—, then we automatically add the bpkg revision. Similarly, if empty pre-release
is specified, as in 1.2.3~, then we add the bpkg pre-release. To add both automatically, we
would specify 1.2 .3~- (other combinations are 1.2.3~b.1- and 1.2.3~-1). If specified,
the release must not contain the distribution tag, since it is deduced automatically unless overrid-
den on the command line (see bpkg-—pkg-bindist (1) command for details). Also, since the
release component is mandatory in Fedora, if it is omitted together with the separating dash we
will add the release 1 automatically.

Note also that per the RPM spec file format documentation neither version nor release compo-
nents may contain : or —. Note that the bpkg upstream version may not contain either.

Revision 0.18, November 2024 The build2 Package Manager 63

	Preface
	1 Package Name
	2 Package Version
	3 Package Version Constraint
	4 Package Build System Skeleton
	5 Dependency Configuration Negotiation
	5.1 Prefer X but Accept X or Y
	5.2 Use If Enabled
	5.3 Disable If Enabled by Default

	6 Manifests
	6.1 Manifest Format
	6.2 Package Manifest
	6.2.1 name
	6.2.2 version
	6.2.3 type, language
	6.2.4 project
	6.2.5 priority
	6.2.6 summary
	6.2.7 license
	6.2.8 topics
	6.2.9 keywords
	6.2.10 description, package-description
	6.2.11 changes
	6.2.12 url
	6.2.13 doc-url
	6.2.14 src-url
	6.2.15 package-url
	6.2.16 email
	6.2.17 package-email
	6.2.18 build-email
	6.2.19 build-warning-email
	6.2.20 build-error-email
	6.2.21 depends
	6.2.22 requires
	6.2.23 tests, examples, benchmarks
	6.2.24 builds
	6.2.25 build-{include, exclude}
	6.2.26 build-auxiliary
	6.2.27 build-bot
	6.2.28 *-build-config
	6.2.29 build-file
	6.2.30 *-{name, version, to-downstream-version}

	6.3 Package List Manifest for pkg Repositories
	6.3.1 sha256sum (list manifest)
	6.3.2 location (package manifest)
	6.3.3 sha256sum (package manifest)

	6.4 Package List Manifest for dir Repositories
	6.4.1 location
	6.4.2 fragment

	6.5 Repository Manifest
	6.5.1 location
	6.5.2 type
	6.5.3 role
	6.5.4 trust
	6.5.5 url
	6.5.6 email
	6.5.7 summary
	6.5.8 description
	6.5.9 certificate
	6.5.10 fragment

	6.6 Repository List Manifest
	6.6.1 min-bpkg-version
	6.6.2 compression

	6.7 Signature Manifest for pkg Repositories
	6.7.1 sha256sum
	6.7.2 signature

	7 Binary Distribution Package Mapping
	7.1 Debian Package Mapping
	7.1.1 Debian Package Mapping for Consumption
	7.1.2 Debian Package Mapping for Production

	7.2 Fedora Package Mapping
	7.2.1 Fedora Package Mapping for Consumption
	7.2.2 Fedora Package Mapping for Production

