
The build2 Build Bot

Copyright © 2014-2025 the build2 authors (see the AUTHORS file).

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.18, May 2025

This revision of the document describes the build2 build bot 0.18.x series.

Table of Contents

.................. 1Preface

................. 11 Introduction

................. 12 Architecture

............... 22.1 Configurations

.......... 22.1.1 Build Machine Configuration

.......... 32.1.2 Build Target Configuration

.......... 42.1.3 Build Package Configuration

........ 42.1.4 Auxiliary Machines and Configurations

............ 52.2 Machine Header Manifest

................ 52.2.1 id

............... 52.2.2 name

.............. 62.2.3 summary

............... 62.2.4 role

......... 62.2.5 ram-minimum, ram-maximum

.............. 62.3 Machine Manifest

............... 62.3.1 type

............... 62.3.2 mac

.............. 72.3.3 options

.............. 72.3.4 changes

............... 72.4 Task Manifest

............... 82.4.1 name

.............. 82.4.2 version

............ 82.4.3 repository-url

........... 82.4.4 repository-type

............... 92.4.5 trust

.... 92.4.6 requires, tests, examples, benchmarks

.......... 92.4.7 dependency-checksum

.............. 92.4.8 machine

........... 92.4.9 auxiliary-machine

.............. 102.4.10 target

............ 102.4.11 environment

......... 102.4.12 auxiliary-environment

............ 112.4.13 target-config

........... 112.4.14 package-config

............... 112.4.15 host

............ 112.4.16 warning-regex

............ 122.4.17 interactive

........... 122.4.18 worker-checksum

.............. 122.5 Result Manifest

............... 132.5.1 name

.............. 132.5.2 version

.............. 132.5.3 status

.............. 142.5.4 *-status

............... 142.5.5 *-log

iRevision 0.18, May 2025 The build2 Build Bot

Table of Contents

........... 142.5.6 dependency-checksum

............. 142.5.7 worker-checksum

.............. 142.6 Task Request Manifest

................ 152.6.1 agent

............. 152.6.2 toolchain-name

............ 152.6.3 toolchain-version

............ 152.6.4 interactive-mode

............ 152.6.5 interactive-login

.............. 162.6.6 fingerprint

............. 162.6.7 auxiliary-ram

.............. 162.7 Task Response Manifest

............... 162.7.1 session

............... 162.7.2 challenge

.............. 172.7.3 result-url

.............. 172.7.4 *-upload-url

............. 172.7.5 agent-checksum

.............. 172.8 Result Request Manifest

............... 172.8.1 session

............... 172.8.2 challenge

............. 182.8.3 agent-checksum

................ 182.9 Worker Logic

............ 392.9.1 Bindist Result Manifest

............... 402.10 Controller Logic

Revision 0.18, May 2025ii The build2 Build Bot

Table of Contents

Preface

This document describes bbot, the build2 build bot. For the build bot command line inter­

face refer to the bbot-agent(1) and bbot-worker(1) man pages.

1 Introduction

2 Architecture

The bbot architecture includes several layers for security and manageability. At the top we

have a bbot running in the controller mode. The controller monitors various build sources

for build tasks. For example, a controller may poll a brep instances for any new packages to

build as well as monitor a git repository for any new commits to test. There can be several

layers of controllers with brep being just a special kind. A machine running a bbot instance

in the controller mode is called a controller host.

Below the controllers we have a bbot running in the agent mode normally on Build OS. The

agent polls its controllers for build tasks to perform. A machine running a bbot instance in

the agent mode is called a build host.

The actual building is performed in the virtual machines and/or containers that are executed

on the build host. Inside virtual machines/containers, bbot is running in the worker mode and

receives build tasks from its agent. Virtual machines and containers running a bbot instance

in the worker mode are collectively called build machines.

In addition to a build machine, a build task may also require one or more auxiliary machines

which provide additional components that are required for building or testing a package and

that are impossible or impractical to provide as part of the build machine itself.

Let’s now examine the workflow in the other direction, that is, from a worker to a controller.

Once a build machine (plus auxiliary machines, if any) are booted (by the agent), the worker

inside the build machine connects to the TFTP server running on the build host and down­

loads the build task manifest. It then proceeds to perform the build task and uploads the build

artifacts archive, if any, followed by the build result manifest (which includes build logs) to

the TFTP server.

Unlike build machines, auxiliary machines are not expected to run bbot. Instead, on boot,

they are expected to upload to the TFTP server a list of environment variables to propagate to

the build machine (see the auxiliary-environment task manifest value as well as

Worker Logic for details).

Once an agent receives a build task for a specific build machine, it goes through the following

steps. First, it creates a directory on its TFTP server with the machine name as its name and

places the build task manifest inside. Next, it makes a throw-away snapshot of the build

machine and boots it. After booting the build machine, the agent monitors the machine direc­

tory on its TFTP server for the build result manifest (uploaded by the worker once the build

1Revision 0.18, May 2025 The build2 Build Bot

Preface

has completed). Once the result manifest is obtained, the agent shuts down the build machine

and discards its snapshot.

To obtain a build task the agent polls via HTTP/HTTPS one or more controllers. Before each

poll request the agent enumerates the available build machines and sends this information as

part of the request. The controller responds with a build task manifest that identifies a specific

build machine to use.

In the task request the agent specifies if only non-interactive, interactive, or both build kinds

are supported. If interactive builds are supported, it additionally provides the login informa­

tion for interactive build sessions. If the controller responds with an interactive build task,

then its manifest specifies the breakpoint the worker must stop the task execution at and

prompt the user whether to continue or abort the execution. The user can log into the build

machine, potentially perform some troubleshooting, and, when done, either answer the prompt

or just shutdown the machine.

If the controller has higher-level controllers (for example, brep), then it aggregates the avail­

able build machines from its agents and polls these controllers (just as an agent would),

forwarding build tasks to suitable agents. In this case we say that the controller act as an

agent. The controller may also be configured to monitor build sources, such as SCM reposito­

ries, directly in which case it generates build tasks itself.

In this architecture the build results and optional build artifacts are propagated up the chain:

from a worker, to its agent, to its controller, and so on. A controller that is the final destination

of a build result uses email to notify interested parties of the outcome. For example, brep
would send a notification to the package owner if the build failed. Similarly, a bbot
controller that monitors a git repository would send an email to a committer if their commit

caused a build failure. The email would include a link (normally HTTP/HTTPS) to the build

logs hosted by the controller. The build artifacts, such as generated binary distribution pack­

ages, are normally made available for the interested parties to download. See Build Artifacts

Upload for details on the brep controller’s implementation of the build artifacts upload

handling.

2.1 Configurations

The bbot architecture distinguishes between a build machine configuration, build target

configuration, and a build package configuration. The machine configuration captures the

operating system, installed compiler toolchain, and so on. The same build machine may be

used to "generate" multiple build target configurations. For example, the same machine can

normally be used to produce debug/optimized builds.

2.1.1 Build Machine Configuration

The machine configuration is approximately encoded in its machine name. The machine name

is a list of components separated with -. Components cannot be empty and must contain only

alpha-numeric characters, underscores, dots, and pluses with the whole id being a

portably-valid path component.

Revision 0.18, May 20252 The build2 Build Bot

2.1 Configurations

The encoding is approximate in a sense that it captures only what’s important to distinguish in

a particular bbot deployment.

The first three components normally identify the architecture, operating system, and optional

variant. They have the following recommended form:

<arch>-[<class>_]<os>[_<version>][-<variant>]

For example:

x86_64-windows
x86_64-windows_10
x86_64-windows_10.1607
x86_64-windows_10-devmode
x86_64-bsd_freebsd_10
x86_64-linux_ubuntu_16.04
x86_64-linux_rhel_9.2-bindist
aarch64-macos_10.12

The last component normally identifies the installed compiler toolchain and has the following

recommended form:

<id>[_<version>][_<vendor>][_<runtime>]

For example:

gcc
gcc_6
gcc_6.3
gcc_6.3_mingw_w64
clang_3.9
clang_3.9_libc++
msvc_14
msvc_14.3
clang_15.0_msvc_msvc_17.6
clang_16.0_llvm_msvc_17.6

Some examples of complete machine names:

x86_64-windows_10-msvc_14.3
x86_64-macos_10.12-clang_10.0
aarch64-linux_ubuntu_16.04-gcc_6.3
aarch64-linux_rhel_9.2-bindist-gcc_11

2.1.2 Build Target Configuration

Similarly, the build target configuration is encoded in a configuration name using the same

overall format. As described in Controller Logic, target configurations are generated from

machine configurations. As a result, it usually makes sense to have the first component iden­

tify the operating systems and the second component – the compiler toolchain with the rest

identifying a particular target configuration variant, for example, optimized, sanitized, etc:

3Revision 0.18, May 2025 The build2 Build Bot

2.1.2 Build Target Configuration

[<class>_]<os>[_<version>]-<toolchain>[-<variant>]

For example:

windows_10-msvc_17.6
windows_10-msvc_17.6-O2
windows_10-msvc_17.6-static_O2
windows_10-msvc_17.6-relocatable
windows_10-clang_16.0_llvm_msvc_17.6_lld
linux_debian_12-clang_16_libc++-static_O3

Note that there is no <arch> component in a build target configuration: this information is

best conveyed as part of <target> as described in Controller Logic.

2.1.3 Build Package Configuration

A package can be built in multiple package configurations per target configuration. A build

package configuration normally specifies the options and/or the package configuration vari­

ables that need to be used for the build. It may also include the information regarding the

dependency packages which need to additionally be configured. The build package configura­

tions originate from the package manifest *-build-config, *-builds,

*-build-include, and *-build-exclude values. See Package Manifest for more

information on these values.

2.1.4 Auxiliary Machines and Configurations

Besides the build machine and the build configuration that is derived from it, a package build

may also involve one or more auxiliary machines and the corresponding auxiliary configura­

tions.

An auxiliary machine provides additional components that are required for building or testing

a package and that are impossible or impractical to provide as part of the build machine itself.

For example, a package may need access to a suitably configured database, such as Post­

greSQL, in order to run its tests.

The auxiliary machine name follows the same overall format as the build machine name

except that the last component captures the information about the additional component in

question rather than the compiler toolchain. For example:

x86_64-linux_debian_12-postgresql_16
aarch64-linux_debian_12-mysql_8

The auxiliary configuration name is automatically derived from the machine name by remov­

ing the <arch> component. For example:

linux_debian_12-postgresql_16
linux_debian_12-mysql_8

Revision 0.18, May 20254 The build2 Build Bot

2.1.3 Build Package Configuration

Note that there is no generation of multiple auxiliary configurations from the same auxiliary

machine since that would require some communication of the desired configuration variant to

the machine.

2.2 Machine Header Manifest

@@ TODO: need ref to general manifest overview in bpkg, or, better yet, move it to libbutl

and ref to that from both places.

The build machine header manifest contains basic information about a build machine on the

build host. A list of machine header manifests is sent by bbot agents to controllers. The

manifest synopsis is presented next followed by the detailed description of each value in

subsequent sections.

id: <machine-id>
name: <machine-name>
summary: <string>
[role]: build|auxiliary
[ram-minimum]: <kib>
[ram-maximum]: <kib>

For example:

id: x86_64-windows_10-msvc_14-1.3
name: x86_64-windows_10-msvc_14
summary: Windows 10 build 1607 with VC 14 update 3

id: aarch64-linux_debian_12-postgresql_16-1.0
name: aarch64-linux_debian_12-postgresql_16
summary: Debian 12 with PostgreSQL 16 test user/database
role: auxiliary
ram-minimum: 2097152
ram-maximum: 4194304

2.2.1 id

id: <machine-id>

The unique machine version/revision/build identifier. For virtual machines this can be the disk

image checksum. For a container this can be UUID that is re-generated every time a container

filesystem is altered.

Note that we assume that a different machine identifier is assigned on any change that may

affect the build result.

2.2.2 name

name: <machine-name>

The machine name.

5Revision 0.18, May 2025 The build2 Build Bot

2.2 Machine Header Manifest

2.2.3 summary

summary: <string>

The one-line description of the machine.

2.2.4 role

[role]: build|auxiliary

The machine role. If unspecified, then build is assumed.

2.2.5 ram-minimum, ram-maximum

[ram-minimum]: <kib>
[ram-maximum]: <kib>

The minimum and the maximum amount of RAM in KiB that the machine requires. The

maximum amount is interpreted as the amount beyond which there will be no benefit. If

unspecified, then it is assumed the machine will run with any minimum amount a deployment

will provide and will always benefit from more RAM, respectively. Neither value should be

0.

2.3 Machine Manifest

The build machine manifest contains the complete description of a build machine on the build

host (see the Build OS documentation for their origin and location). The machine manifest

starts with the machine header manifest with all the header values appearing before any

non-header values. The non-header part of manifest synopsis is presented next followed by

the detailed description of each value in subsequent sections.

type: kvm|nspawn
[mac]: <addr>
[options]: <machine-options>
[changes]: <text>

2.3.1 type

type: kvm|nspawn

The machine type. Valid values are kvm (QEMU/KVM virtual machine) and nspawn

(systemd-nspawn container).

2.3.2 mac

[mac]: <addr>

The fixed MAC address for the machine. Must be in the hexadecimal, comma-separated

format. For example:

Revision 0.18, May 20256 The build2 Build Bot

2.3 Machine Manifest

mac: de:ad:be:ef:de:ad

If it is not specified, then a random address is generated on the first machine bootstrap which

is then reused for each build/re-bootstrap. Note that if you specify a fixed address, then the

machine can only be used by a single bbot agent.

2.3.3 options

[options]: <machine-options>

The list of machine options. The exact semantics is machine type-dependent (see below). A

single level of quotes (either single or double) is removed in each option before being passed

on. Options can be separated with spaces or newlines.

For kvm machines, if this value is present, then it replaces the default network and disk

configuration when starting the QEMU/KVM hypervisor. The options are pre-processed by

replacing the question mark in ifname=? and mac=? strings with the network interface and

MAC address, respectively.

2.3.4 changes

[changes]: <text>

The description of machine changes in this version.

Multiple changes values can be present which are all concatenated in the order specified,

that is, the first value is considered to be the most recent. For example:

changes: 1.1: initial version
changes: 1.2: increased disk size to 30GB

Or:

changes:
\
1.1
 - initial version

1.2
 - increased disk size to 30GB
 - upgraded bootstrap baseutils
\

2.4 Task Manifest

The task manifest describes a build task. It consists of two groups of values. The first group

defines the package to build. The second group defines the build configuration to use for

building the package. The manifest synopsis is presented next followed by the detailed

description of each value in subsequent sections.

7Revision 0.18, May 2025 The build2 Build Bot

2.4 Task Manifest

name: <package-name>
version: <package-version>
#location: <package-url>
repository-url: <repository-url>
[repository-type]: pkg|git|dir
[trust]: <repository-fp>
[requires]: <package-requirements>
[tests]: <dependency-package>
[examples]: <dependency-package>
[benchmarks]: <dependency-package>
[dependency-checksum]: <checksum>

machine: <machine-name>
[auxiliary-machine]: <machine-name>
[auxiliary-machine-<name>]: <machine-name>
target: <target-triplet>
[environment]: <environment-name>
[auxiliary-environment]: <environment-vars>
[target-config]: <tgt-config-args>
[package-config]: <pkg-config-args>
[host]: true|false
[warning-regex]: <warning-regex>
[interactive]: <breakpoint>
[worker-checksum]: <checksum>

2.4.1 name

name: <package-name>

The package name to build.

2.4.2 version

version: <package-version>

The package version to build.

2.4.3 repository-url

repository-url: <repository-url>

The URL of the repository that contains the package and its dependencies.

2.4.4 repository-type

[repository-type]: pkg|git|dir

The repository type (see repository-url for details). Alternatively, the repository type

can be specified as part of the URL scheme. See bpkg-repository-types(1) for

details.

Revision 0.18, May 20258 The build2 Build Bot

2.4.1 name

2.4.5 trust

[trust]: <repository-fp>

The SHA256 repository certificate fingerprint to trust (see the bpkg --trust option for

details). This value may be specified multiple times to establish the authenticity of multiple

certificates. If the special yes value is specified, then all repositories will be trusted without

authentication (see the bpkg --trust-yes option).

Note that while the controller may return a task with trust values, whether they will be used

is up to the agent’s configuration. For example, some agents may only trust their inter­

nally-specified fingerprints to prevent the "man in the middle" attacks.

2.4.6 requires, tests, examples, benchmarks

The primary package manifest values that need to be known by the bbot worker before it

retrieves the primary package manifest. See Package Manifest for more information on these

values.

The controller copies these values from the primary package manifest, except those tests,

examples, and benchmarks values which should be excluded from building due to their

builds, build-include, and build-exclude manifest values.

2.4.7 dependency-checksum

[dependency-checksum]: <checksum>

The package dependency checksum received as a part of the previous build task result (see

Result Manifest).

2.4.8 machine

machine: <machine-name>

The name of the build machine to use.

2.4.9 auxiliary-machine

[auxiliary-machine]: <machine-name>
[auxiliary-machine-<name>]: <machine-name>

The names of the auxiliary machines to use. These values correspond to the build-auxil­
iary and build-auxiliary-<name> values in the package manifest. While there each

value specifies an auxiliary configuration pattern, here it specifies the concrete auxiliary

machine name that was picked by the controller from the list of available auxiliary machines

(sent as part of the task request) that match this pattern.

9Revision 0.18, May 2025 The build2 Build Bot

2.4.5 trust

2.4.10 target

target: <target-triplet>

The target to build for.

Compared to the autotools terminology, the machine value corresponds to --build (the

machine we are building on) and target – to --host (the machine we are building for).

While we use essentially the same target triplet format as autotools for target, it is not

flexible enough for machine.

2.4.11 environment

[environment]: <environment-name>

The name of the build environment to use. See Worker Logic for details.

2.4.12 auxiliary-environment

[auxiliary-environment]: <environment-vars>

The environment variables describing the auxiliary machines. If any auxil­
iary-machine* values are specified, then after starting such machines, the agent prepares

a combined list of environment variables that were uploaded by such machines and passes it

in this value to the worker.

The format of this value is a list of environment variable assignments one per line, in the

form:

<name>=<value>

Whitespaces before <name>, around =, and after <value> as well as blank lines and lines

that start with # are ignored. The <name> part must only contain capital alphabetic, numeric,

and _ characters. The <value> part as a whole can be single (’ ’) or double (" ") quoted. For

example:

DATABASE_HOST=192.168.0.1
DATABASE_PORT=1245
DATABASE_USER=’John "Johnny" Doe’
DATABASE_NAME=" test database "

If the corresponding machine is specified as auxiliary-machine-<name>, then its

environment variables are prefixed with capitalized <name>_. For example:

auxiliary-machine-pgsql: x86_64-linux_debian_12-postgresql_16
auxiliary-environment:
\
PGSQL_DATABASE_HOST=192.168.0.1
PGSQL_DATABASE_PORT=1245
...
\

Revision 0.18, May 202510 The build2 Build Bot

2.4.10 target

2.4.13 target-config

[target-config]: <tgt-config-args>

The additional target configuration options and variables. A single level of quotes (either

single or double) is removed in each value before being passed to bpkg. For example, the

following value:

target-config: config.cc.coptions="-O3 -stdlib=’libc++’"

Will be passed to bpkg as the following (single) argument:

config.cc.coptions=-O3 -stdlib=’libc++’

Values can be separated with spaces or newlines. See Controller Logic for details.

2.4.14 package-config

[package-config]: <pkg-config-args>

The primary package manifest *-build-config value for the build configuration the

build task is issued for. See Package Manifest for more information on this value. A single

level of quotes (either single or double) is removed in each value before being passed to

bpkg. For example, the following value:

package-config: "?libcurl ~7.76.0"

Will be passed to bpkg as the following (single) argument:

?libcurl ~7.76.0

Values can be separated with spaces or newlines. See Controller Logic for details.

2.4.15 host

[host]: true|false

If true, then the build target configuration is self-hosted. If not specified, false is

assumed. See Controller Logic for details.

2.4.16 warning-regex

[warning-regex]: <warning-regex>

Additional regular expressions that should be used to detect warnings in the build logs. Note

that only the first 512 bytes of each log line is considered.

A single level of quotes (either single or double) is removed in each expression before being

used for search. For example, the following value:

11Revision 0.18, May 2025 The build2 Build Bot

2.4.13 target-config

warning-regex: "warning C4\d{3}: "

Will be treated as the following (single) regular expression (with a trailing space):

warning C4\d{3}:

Expressions can be separated with spaces or newlines. They will be added to the following

default list of regular expressions that detect the build2 toolchain warnings:

^warning:
^.+: warning:

Note that this built-in list also covers GCC and Clang warnings (for the English locale).

2.4.17 interactive

[interactive]: <breakpoint>

The task execution step to stop at. Can only be present if the agent has specified interac­
tive-mode with either the true or both value in the task request.

The breakpoint can either be a primary step id of the worker script or the special error or

warning value. There is also the special none value which never interrupts the task execu­

tion. See Worker Logic for details.

2.4.18 worker-checksum

[worker-checksum]: <checksum>

The worker checksum received as a part of the previous build task result (see Result Mani­

fest).

2.5 Result Manifest

The result manifest describes a build result. The manifest synopsis is presented next followed

by the detailed description of each value in subsequent sections.

name: <package-name>
version: <package-version>

status: <status>
[configure-status]: <status>
[update-status]: <status>
[test-status]: <status>
[install-status]: <status>
[bindist-status]: <status>
[sys-install-status]: <status>
[test-installed-status]: <status>
[sys-uninstall-status]: <status>
[uninstall-status]: <status>
[upload-status]: <status>

[configure-log]: <text>
[update-log]: <text>

Revision 0.18, May 202512 The build2 Build Bot

2.5 Result Manifest

[test-log]: <text>
[install-log]: <text>
[bindist-log]: <text>
[sys-install-log]: <text>
[test-installed-log]: <text>
[sys-uninstall-log]: <text>
[uninstall-log]: <text>
[upload-log]: <text>

[worker-checksum]: <checksum>
[dependency-checksum]: <checksum>

2.5.1 name

name: <package-name>

The package name from the task manifest.

2.5.2 version

version: <package-version>

The package version from the task manifest.

2.5.3 status

status: <status>

The overall (cumulative) build result status. Valid values are:

skip # Package update and subsequent operations were skipped.
success # All operations completed successfully.
warning # One or more operations completed with warnings.
error # One or more operations completed with errors.
abort # One or more operations were aborted.
abnormal # One or more operations terminated abnormally.
interrupt # Task execution has been interrupted.

The abort status indicates that the operation has been aborted by bbot, for example,

because it was consuming too many resources and/or was taking too long. Note that a task can

be aborted both by the bbot worker as well as the agent. In the later case the whole machine

is shut down and no operation-specific status or logs will be included (@@ Maybe we should

just include ’log:’ with commands that start VM, for completeness?).

The abnormal status indicates that the operation has terminated abnormally, for example,

due to the package manager or build system crash.

The interrupt status indicates that the task execution has been interrupted, for example, to

reassign resources to a higher priority task.

Note that the overall status value should appear before any per-operation *-status

values.

13Revision 0.18, May 2025 The build2 Build Bot

2.5.1 name

The skip status indicates that the received from the controller build task checksums have not

changed and the task execution has therefore been skipped under the assumption that it would

have produced the same result. See agent-checksum, worker-checksum, and

dependency-checksum for details.

2.5.4 *-status

[*-status]: <status>

The per-operation result status. Note that the *-status values should appear in the same

order as the corresponding operations were performed and for each *-status there should

be the corresponding *-log value. Currently supported operation names:

configure
update
test
install
bindist
sys-install
test-installed
sys-uninstall
uninstall
upload

2.5.5 *-log

[*-log]: <text>

The per-operation result log. Note that the *-log values should appear last and in the same

order as the corresponding *-status values. For the list of supported operation names refer

to the *-status value description.

2.5.6 dependency-checksum

[dependency-checksum]: <checksum>

The package dependency checksum obtained as a byproduct of the package configuration

operation. See bpkg-pkg-build(1) command’s --rebuild-checksum option for

details.

2.5.7 worker-checksum

[worker-checksum]: <checksum>

The version of the worker logic used to perform the package build task.

2.6 Task Request Manifest

An agent (or controller acting as an agent) sends a task request to its controller via

HTTP/HTTPS POST method (@@ URL/API endpoint). The task request starts with the task

request manifest followed by a list of machine header manifests. The task request manifest

Revision 0.18, May 202514 The build2 Build Bot

2.6 Task Request Manifest

synopsis is presented next followed by the detailed description of each value in subsequent

sections.

The controller is expected to pick each offered machine header manifest only once. If an agent

is capable of running multiple instances of the same machine, then it must send the matching

number of machine header manifests for such a machine.

agent: <name>
toolchain-name: <name>
toolchain-version: <standard-version>
[interactive-mode]: false|true|both
[interactive-login]: <login>
[fingerprint]: <agent-fingerprint>
[auxiliary-ram]: <kib>

2.6.1 agent

agent: <name>

The name of the agent host (hostname). The name should be unique in a particular bbot

deployment.

2.6.2 toolchain-name

toolchain-name: <name>

The build2 toolchain name being used by the agent.

2.6.3 toolchain-version

toolchain-version: <standard-version>

The build2 toolchain version being used by the agent.

2.6.4 interactive-mode

[interactive-mode]: false|true|both

The agent’s capability to perform build tasks only non-interactively (false), only interac­

tively (true), or both (both).

If it is not specified, then the false value is assumed.

2.6.5 interactive-login

[interactive-login]: <login>

The login information for the interactive build session. Must be present only if interac­
tive-mode is specified with the true or both value.

15Revision 0.18, May 2025 The build2 Build Bot

2.6.1 agent

2.6.6 fingerprint

[fingerprint]: <agent-fingerprint>

The SHA256 fingerprint of the agent’s public key. An agent may be configured not to use the

public key-based authentication in which case it does not include this value. However, the

controller may be configured to require the authentication in which case it should respond

with the 401 (unauthorized) HTTP status code.

2.6.7 auxiliary-ram

[auxiliary-ram]: <kib>

The amount of RAM in KiB that is available for running auxiliary machines. If unspecified,

then assume there is no hard limit (that is, the agent can allocate up to the host’s available

RAM minus the amount required to run the build machine).

2.7 Task Response Manifest

A controller sends the task response manifest in response to the task request initiated by an

agent. The response is delivered as a result of the POST method. The task response starts with

the task response manifest optionally followed by the task manifest. The task response mani­

fest synopsis is presented next followed by the detailed description of each value in subse­

quent sections.

session: <id>
[challenge]: <text>
[result-url]: <url>
[*-upload-url]: <url>
[agent-checksum]: <checksum>

2.7.1 session

session: <id>

The identifier assigned to this session by the controller. An empty value indicates that the

controller has no tasks at this time in which case all the following values as well as the task

manifest are absent.

2.7.2 challenge

[challenge]: <text>

The random, 64 characters long string (nonce) used to challenge the agent’s private key. If

present, then the agent must sign this string and include the signature in the result request (see

below).

The signature should be calculated by encrypting the string with the agent’s private key and

then base64-encoding the result.

Revision 0.18, May 202516 The build2 Build Bot

2.7 Task Response Manifest

2.7.3 result-url

[result-url]: <url>

The URL to POST (upload) the result request to.

2.7.4 *-upload-url

[*-upload-url]: <url>

The URLs to upload the build artifacts to, if any, via the HTTP POST method using the

multipart/form-data content type (see Build Artifacts Upload for details on the upload

protocol). The substring matched by * in *-upload-url denotes the upload type.

2.7.5 agent-checksum

[agent-checksum]: <checksum>

The agent checksum received as a part of the previous build task result request (see Result

Request Manifest).

2.8 Result Request Manifest

On completion of a task an agent (or controller acting as an agent) sends the result (upload)

request to the controller via the POST method using the URL returned in the task response

(see above). The result request starts with the result request manifest followed by the result

manifest. Note that there is no result response and only a successful but empty POST result is

returned. The result request manifest synopsis is presented next followed by the detailed

description of each value in subsequent sections.

session: <id>
[challenge]: <text>
[agent-checksum]: <checksum>

2.8.1 session

session: <session-id>

The session id as returned by the controller in the task response.

2.8.2 challenge

[challenge]: <text>

The answer to the private key challenge as posed by the controller in the task response. It

must be present only if the challenge value was present in the task response.

17Revision 0.18, May 2025 The build2 Build Bot

2.8 Result Request Manifest

2.8.3 agent-checksum

[agent-checksum]: <checksum>

The version of the agent logic used to perform the package build task.

2.9 Worker Logic

The bbot worker builds each package in a build environment that is established for a particu­

lar build target. The environment has three components: the execution environment (environ­

ment variables, etc), build system modules, as well as configuration options and variables.

Setting up of the execution environment is performed by an executable (script, batch file, etc).

Specifically, upon receiving a build task, if it specifies the environment name then the worker

looks for the environment setup executable with this name in a specific directory and for the

executable called default otherwise. Not being able to locate the environment executable is

an error.

In addition to the environment executable, if the task requires any auxiliary machines, then the

auxiliary-environment value from the task manifest is incorporated into the execu­

tion environment.

Specifically, once the environment setup executable is determined, the worker re-executes

itself in the auxiliary environment and as that executable passing to it as command line argu­

ments the target name, the path to the bbot worker to be executed once the environment is

setup, and any additional options that need to be propagated to the re-executed worker. The

environment setup executable is executed in the build directory as its current working direc­

tory. The build directory contains the build task task.manifest file.

The environment setup executable sets up the necessary execution environment for example

by adjusting PATH or running a suitable vcvars batch file. It then re-executes itself as the

bbot worker passing to it as command line arguments (in addition to worker options) the list

of build system modules (<env-modules>) and the list of configuration options and vari­

ables (<env-config-args>). The environment setup executable must execute the bbot
worker in the build directory as the current working directory.

The re-executed bbot worker then proceeds to test the package from the repository by

executing the following commands, collectively called a worker script. Each command has a

unique step id that can be used as a breakpoint and normally as a prefix in the

<tgt-config-args>, <env-config-args>, and <env-modules> values as

discussed in Controller Logic as well as in the <pkg-config-args> and

<pkg-config-hook-*> values (see below). The <>-values are from the task manifest

and the environment though some are assigned by the worker during the script execution

(configuration directories, UUIDs, etc). In particular, the <pkg-config-args> (prefixed

global options and configuration variables), <pkg-config-hook-script> and

<pkg-config-hook-script-args> (prefixed hook script path and arguments),

<pkg-config-opts> (unprefixed options), <pkg-config-vars> (unprefixed config­

Revision 0.18, May 202518 The build2 Build Bot

2.9 Worker Logic

uration variables), <pkg-config-govrs> (always unprefixed global variable overrides),

<dependency-name>, <dependency-version-constraint>, and

<dep-config-vars> values result from parsing the package-config task manifest

value. The <*-uuid> values are assigned as follows:

target-uuid: 00000000-0000-0000-0000-000000000001
host-uuid: 00000000-0000-0000-0000-000000000002
module-uuid: 00000000-0000-0000-0000-000000000003
install-uuid: 00000000-0000-0000-0000-000000000004
target-installed-uuid: 00000000-0000-0000-0000-000000000005
host-installed-uuid: 00000000-0000-0000-0000-000000000006
module-installed-uuid: 00000000-0000-0000-0000-000000000007

Some prefix step ids have fallback step ids which are used in the absence of the primary step

id values. If the prefix step id differs from the breakpoint step id and/or has the fallback step

ids, then they are listed in parenthesis: the prefix id before the colon and the fallback ids after

it.

Some commands have no target configuration or environment options or variables. Such

commands have only breakpoint step ids associated, which are listed in square brackets.

Outcome of some steps can be amended by hooks -- scripts written in the Shellscript language

that are executed by bbot worker right before (*.pre step) or after (*.post step) these

steps. Such scripts are distributed as a part of the main package. The hook commands origi­

nate from the *-build-config package manifest value as the script path (relative to the

package’s root directory) followed by its arguments, all prefixed with the respective hook step

id. See Package Manifest for more information on this value. Note that since the hook steps

are disabled by default, one of the hook’s prefixes needs to begin with + to enable this hook

(in this case the argument can be omitted). Each hook is executed in a newly created tempo­

rary directory as it working directory. Currently supported hooks:

bpkg.bindist.archive.post

See the worker scripts below for details on the execution point of each hook.

While executing the script, the worker may set some environment variables either for the

entire build or for specific commands. The BUILD2_VAR_OVR environment variable is set to

<pkg-config-govrs>, one override per line. The BBOT_MAIN_PACKAGE_CONFIG
and BBOT_INSTALL_CONFIG variables are set to the paths of build configuration directo­

ries where the main package is being built for test and install, respectively. The

BBOT_TARGET_CONFIG, BBOT_HOST_CONFIG, and BBOT_MODULE_CONFIG variables

are set to the paths of the target, host, and module build configuration directories, respec­

tively, if created. Also the worker modifies the PATH environment variable by prepending the

installation directory of the package’s executables. The lifetimes of these environment vari­

ables or their modifications are as follows:

BUILD2_VAR_OVR entire build

BBOT_MAIN_PACKAGE_CONFIG bpkg.configure.build: bpkg-pkg-build(1)
BBOT_INSTALL_CONFIG bpkg.configure.build: bpkg-pkg-build(1)
BBOT_TARGET_CONFIG bpkg.configure.build: bpkg-pkg-build(1)

19Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

BBOT_HOST_CONFIG bpkg.configure.build: bpkg-pkg-build(1)
BBOT_MODULE_CONFIG bpkg.configure.build: bpkg-pkg-build(1)

PATH b.test-installed.configure
 b.test-installed.test
 bpkg.test-separate-installed.configure.build
 bpkg.test-separate-installed.update
 bpkg.test-separate-installed.test

Note that the worker script varies for different primary package types. The bbot worker clas­

sifies the primary package based on the configuration type in which it is built: module (build

system module packages), host (packages such as source code generators, marked with the

requires: host manifest value; see Package Manifest for details), and target (all

other packages).

Note also that the *.configure.build step configures potentially multiple packages

(primary package, tests, etc) in potentially multiple configurations by always using the

bpkg.global.configure.build prefix step id for global (as opposed to

package-specific) bpkg-pkg-build(1) options. The bpkg.global.config­
ure.build prefix id has no fallback ids.

Note finally that if no configuration variables are specified in the main package configuration,

then the worker adds the config.<name>.develop=false configuration variable for

the main package at the bpkg.configure.build step to trigger its package skeleton

creation and loading. It also adds this variable for external test packages at this step and for

the same purpose. This makes sure that these packages can be used as dependencies of depen­

dents with configuration clauses. To keep the below listings concise, these variables are not

shown.

Worker script for target packages:

bpkg.create (bpkg.target.create : b.create, bpkg.create)
#
bpkg -V create --uuid <target-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

bpkg.configure.add
#
bpkg -v add <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch --trust <repository-fp>

bpkg.configure.build (
bpkg.global.configure.build,
(bpkg.target.configure.build : b.configure, bpkg.configure.build))
#
bpkg -v build --configure-only \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-opts>] \
 [{ <pkg-config-vars> }+] <package-name>/<package-version> \
 [([{ <test-config-vars> }+] \
 <test-package-name>[<test-version-constraint>])...] \
 [([{ <dep-config-vars> }+] \

Revision 0.18, May 202520 The build2 Build Bot

2.9 Worker Logic

 (?|sys:)<dependency-name> \
 [<dependency-version-constraint>])...] \
 [?sys:<dependency-name>[<dependency-version-constraint>]...] \
 [({ --config-uuid <target-uuid> [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name> \
 [<dependency-version-constraint>])...]

bpkg.update
#
bpkg -v update <package-name>

If the test operation is supported by the package:
#
{
 # bpkg.test
 #
 bpkg -v test <package-name>
}

For each (runtime) tests, examples, or benchmarks package referred
to by the task manifest:
#
{
 # bpkg.test-separate.update (: bpkg.update)
 #
 bpkg -v update <package-name>

 # bpkg.test-separate.test (: bpkg.test)
 #
 bpkg -v test <package-name>
}

If the install operation is supported by the package,
config.install.root is specified, and no
bpkg.bindist.{debian,fedora,archive} step is enabled:
#
{
 # bpkg.install
 #
 bpkg -v install <package-name>

 # If bbot.install.ldconfig step is enabled:
 #
 {
 # bbot.install.ldconfig
 #
 sudo ldconfig
 }
}

If the install operation is supported by the package and
bpkg.bindist.{debian,fedora,archive} step is enabled:
#
{
 # bpkg.bindist.{debian,fedora,archive}
 #
 bpkg -v bindist --distribution <distribution> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 <package-name>

 # If both the bpkg.bindist.archive and bpkg.bindist.archive.post
 # steps are enabled:

21Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

 #
 {
 # bpkg.bindist.archive.post
 #
 bx -v <pkg-config-hook-script> <pkg-config-hook-script-args> \
 <distribution-package-file>...
 }
}

If the install operation is supported by the package and
bbot.sys-install step is enabled:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-install.apt-get.update
 #
 sudo apt-get update

 # bbot.sys-install.apt-get.install
 #
 sudo apt-get install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-install.dnf.install
 #
 sudo dnf install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # For each package file:
 #
 {
 # bbot.sys-install.tar.extract
 #
 [sudo] tar -xf <distribution-package-file> \
 <env-config-args> <tgt-config-args> <pkg-config-args>
 }

 # If bbot.sys-install.ldconfig step is enabled:
 #
 {
 # bbot.sys-install.ldconfig
 #
 sudo ldconfig
 }
 }
}

If the main package is installed either from source or from the
binary distribution package:
#
{
 # If the package contains subprojects that support the test
 # operation:
 #

Revision 0.18, May 202522 The build2 Build Bot

2.9 Worker Logic

 {
 # b.test-installed.create (: b.create)
 #
 b -V create <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # For each test subproject:
 #
 {
 # b.test-installed.configure (: b.configure)
 #
 b -v configure [<pkg-config-vars>]
 }

 # b.test-installed.test
 #
 b -v test
 }

 # If task manifest refers to any (runtime) tests, examples, or
 # benchmarks packages:
 #
 {
 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_target :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create --uuid <target-installed-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # bpkg.test-separate-installed.configure.add (
 # : bpkg.configure.add)
 #
 bpkg -v add <repository-url>

 # bpkg.test-separate-installed.configure.fetch (
 # : bpkg.configure.fetch)
 #
 bpkg -v fetch --trust <repository-fp>

 # bpkg.test-separate-installed.configure.build (
 # bpkg.global.configure.build,
 # (bpkg.test-separate-installed.configure.build_for_target :
 # bpkg.test-separate-installed.configure.build))
 #
 bpkg -v build --configure-only \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 ([{ <test-config-vars> }+] \
 <test-package-name>[<test-version-constraint>])... \
 ?sys:<package-name>/<package-version> \
 [?sys:<dependency-name>[<dependency-version-constraint>]...] \
 [({ --config-uuid <target-installed-uuid> \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name> \
 [<dependency-version-constraint>])...]

 # For each (runtime) tests, examples, or benchmarks package
 # referred to by the task manifest:
 #
 {
 # bpkg.test-separate-installed.update (: bpkg.update)
 #

23Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

 bpkg -v update <package-name>

 # bpkg.test-separate-installed.test (: bpkg.test)
 #
 bpkg -v test <package-name>
 }
 }
}

If the main package is installed from the binary distribution package:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-uninstall.apt-get.remove
 #
 sudo apt-get remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-uninstall.dnf.remove
 #
 sudo dnf remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # Noop.
 }
}

If the main package is installed from source:
#
{
 # bpkg.uninstall
 #
 bpkg -v uninstall <package-name>
}

If the install operation is supported by the package and
bbot.bindist.upload step is enabled:
#
{
 # Move the generated binary distribution files to the
 # upload/bindist/<distribution>/ directory.
}

If bbot.upload step is enabled and upload/ directory is not empty:
#
{
 # bbot.upload.tar.create
 #
 tar -cf upload.tar upload/

 # bbot.upload.tar.list
 #
 tar -tf upload.tar upload/
}

Revision 0.18, May 202524 The build2 Build Bot

2.9 Worker Logic

end
#
This step id can only be used as a breakpoint.

Worker script for host packages:

If configuration is self-hosted:
#
{
 # bpkg.create (bpkg.host.create : b.create, bpkg.create)
 #
 bpkg -V create --type host -d <host-conf> --uuid <host-uuid> \
 <env-modules> <env-config-args> <tgt-config-args> \
 <pkg-config-args>
}
#
Otherwise:
#
{
 # [bpkg.create]
 #
 b -V create(<host-conf>, cc) config.config.load=~host-no-warnings

 bpkg -v create --existing --type host -d <host-conf> \
 --uuid <host-uuid>
}

bpkg.configure.add
#
bpkg -v add -d <host-conf> <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch -d <host-conf> --trust <repository-fp>

If configuration is self-hosted and config.install.root is specified:
#
{
 # bpkg.create (bpkg.target.create : b.create, bpkg.create)
 #
 bpkg -V create -d <install-conf> --uuid <install-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # [bpkg.link]
 #
 bpkg -v link -d <install-conf> <host-conf>

 # bpkg.configure.add
 #
 bpkg -v add -d <install-conf> <repository-url>

 # bpkg.configure.fetch
 #
 bpkg -v fetch -d <install-conf> --trust <repository-fp>
}

If task manifest refers to any build-time tests, examples, or
benchmarks packages:
#
{

25Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

 # bpkg.create (bpkg.target.create : b.create, bpkg.create)
 #
 bpkg -V create -d <target-conf> --uuid <target-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # [bpkg.create]
 #
 b -V create(<module-conf>, cc) config.config.load=~build2-no-warnings

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-uuid>

 # [bpkg.link]
 #
 bpkg -v link -d <target-conf> <host-conf>
 bpkg -v link -d <target-conf> <module-conf>
 bpkg -v link -d <host-conf> <module-conf>

 # If configuration is self-hosted and config.install.root is
 # specified:
 #
 {
 # [bpkg.link]
 #
 bpkg -v link -d <install-conf> <module-conf>
 }

 # bpkg.configure.add
 #
 bpkg -v add -d <target-conf> <repository-url>

 # bpkg.configure.fetch
 #
 bpkg -v fetch -d <target-conf> --trust <repository-fp>
}

bpkg.configure.build (bpkg.global.configure.build)
#
Notes:
#
- Some parts may be omitted.
#
- Parts related to different configurations have different prefix
step ids:
#
bpkg.host.configure.build for <host-uuid>
bpkg.target.configure.build for <install-uuid>
bpkg.target.configure.build for <target-uuid>
#
- All parts have the same fallback step ids: b.configure and
bpkg.configure.build.
#
bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-opts>] \
\
{ --config-uuid <host-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
{ --config-uuid <install-uuid> \

Revision 0.18, May 202526 The build2 Build Bot

2.9 Worker Logic

 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
({ --config-uuid <host-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<test-config-vars>] }+ \
 <runtime-test-package-name>[<test-version-constraint>])... \
\
({ --config-uuid <target-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<test-config-vars>] }+ \
 <buildtime-test-package-name>[<test-version-constraint>])... \
\
({ --config-uuid <host-uuid> [--config-uuid <install-uuid>] \
 [<dep-config-vars>] }+ \
 (?|sys:)<dependency-name>[<dependency-version-constraint>])... \
\
[?sys:<dependency-name>[<dependency-version-constraint>]...] \
\
({ (--config-uuid <(target|host|module|install)-uuid>)... \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name>[<dependency-version-constraint>])...

bpkg.update
#
bpkg -v update -d <host-conf> <package-name>

If the test operation is supported by the package:
#
{
 # bpkg.test
 #
 bpkg -v test -d <host-conf> <package-name>
}

If configuration is self-hosted, then for each runtime tests,
examples, or benchmarks package referred to by the task manifest:
#
{
 # bpkg.test-separate.update (: bpkg.update)
 #
 bpkg -v update -d <host-conf> <package-name>

 # bpkg.test-separate.test (: bpkg.test)
 #
 bpkg -v test -d <host-conf> <package-name>
}

For each build-time tests, examples, or benchmarks package referred
to by the task manifest:
#
{
 # bpkg.test-separate.update (: bpkg.update)
 #
 bpkg -v update -d <target-conf> <package-name>

 # bpkg.test-separate.test (: bpkg.test)
 #
 bpkg -v test -d <target-conf> <package-name>
}

27Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

If configuration is self-hosted, the install operation is supported
by the package, config.install.root is specified, and no
bpkg.bindist.{debian,fedora,archive} step is enabled:
#
{
 # bpkg.install
 #
 bpkg -v install -d <install-conf> <package-name>

 # If bbot.install.ldconfig step is enabled:
 #
 {
 # bbot.install.ldconfig
 #
 sudo ldconfig
 }
}

If configuration is self-hosted, the install operation is supported
by the package, and bpkg.bindist.{debian,fedora,archive} step is
enabled:
#
{
 # bpkg.bindist.{debian,fedora,archive}
 #
 bpkg -v bindist --distribution <distribution> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 <package-name>

 # If both the bpkg.bindist.archive and bpkg.bindist.archive.post
 # steps are enabled:
 #
 {
 # bpkg.bindist.archive.post
 #
 bx -v <pkg-config-hook-script> <pkg-config-hook-script-args> \
 <distribution-package-file>...
 }
}

If the install operation is supported by the package and
bbot.sys-install step is enabled:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-install.apt-get.update
 #
 sudo apt-get update

 # bbot.sys-install.apt-get.install
 #
 sudo apt-get install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-install.dnf.install
 #
 sudo dnf install <distribution-package-file>...

Revision 0.18, May 202528 The build2 Build Bot

2.9 Worker Logic

 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # For each package file:
 #
 {
 # bbot.sys-install.tar.extract
 #
 [sudo] tar -xf <distribution-package-file> \
 <env-config-args> <tgt-config-args> <pkg-config-args>
 }

 # If bbot.sys-install.ldconfig step is enabled:
 #
 {
 # bbot.sys-install.ldconfig
 #
 sudo ldconfig
 }
 }
}

If the main package is installed either from source or from the
binary distribution package:
#
{
 # If the package contains subprojects that support the test
 # operation:
 #
 {
 # b.test-installed.create (: b.create)
 #
 b -V create <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # For each test subproject:
 #
 {
 # b.test-installed.configure (: b.configure)
 #
 b -v configure [<pkg-config-vars>]
 }

 # b.test-installed.test
 #
 b -v test
 }

 # If task manifest refers to any tests, examples, or benchmarks
 # packages:
 #
 {
 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_host :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create --type host -d <host-conf> \
 --uuid <host-installed-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

29Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

 # If task manifest refers to any runtime tests, examples, or
 # benchmarks packages:
 #
 {
 # bpkg.test-separate-installed.configure.add (
 # : bpkg.configure.add)
 #
 bpkg -v add -d <host-conf> <repository-url>

 # bpkg.test-separate-installed.configure.fetch (
 # : bpkg.configure.fetch)
 #
 bpkg -v fetch -d <host-conf> --trust <repository-fp>
 }

 # If task manifest refers to any build-time tests, examples, or
 # benchmarks packages:
 #
 {
 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_host :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create -d <target-conf> --uuid <target-installed-uuid> \
 <env-modules> <env-config-args> <tgt-config-args> \
 <pkg-config-args>

 # [bpkg.test-separate-installed.create]
 #
 b -V create(<module-conf>, cc) \
 config.config.load=~build2-no-warnings

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-installed-uuid>

 # [bpkg.test-separate-installed.link]
 #
 bpkg -v link -d <target-conf> <host-conf>
 bpkg -v link -d <target-conf> <module-conf>
 bpkg -v link -d <host-conf> <module-conf>

 # bpkg.test-separate-installed.configure.add (
 # : bpkg.configure.add)
 #
 bpkg -v add -d <target-conf> <repository-url>

 # bpkg.test-separate-installed.configure.fetch (
 # : bpkg.configure.fetch)
 #
 bpkg -v fetch -d <target-conf> --trust <repository-fp>
 }

 # bpkg.test-separate-installed.configure.build (
 # bpkg.global.configure.build,
 # (bpkg.test-separate-installed.configure.build_for_host :
 # bpkg.test-separate-installed.configure.build))
 #
 # Note that any of the runtime or build-time tests related parts
 # (but not both) may be omitted.
 #
 bpkg -v build --configure-only \
 <env-config-args> <tgt-config-args> <pkg-config-args> \

Revision 0.18, May 202530 The build2 Build Bot

2.9 Worker Logic

 \
 ({ --config-name <host-conf> [<test-config-vars>] }+ \
 <runtime-test-package-name>[<test-version-constraint>])... \
 \
 ({ --config-name <target-conf> [<test-config-vars>] }+ \
 <buildtime-test-package-name>[<test-version-constraint>])... \
 \
 ?sys:<package-name>/<package-version> \
 \
 [?sys:<dependency-name>[<dependency-version-constraint>]...] \
 \
 ({ (--config-uuid <(target|host|module)-installed-uuid>)... \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name> \
 [<dependency-version-constraint>])...

 # For each tests, examples, or benchmarks package referred
 # to by the task manifest:
 #
 {
 # bpkg.test-separate-installed.update (: bpkg.update)
 #
 bpkg -v update <package-name>

 # bpkg.test-separate-installed.test (: bpkg.test)
 #
 bpkg -v test <package-name>
 }
 }
}

If the main package is installed from the binary distribution package:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-uninstall.apt-get.remove
 #
 sudo apt-get remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-uninstall.dnf.remove
 #
 sudo dnf remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # Noop.
 }
}

If the main package is installed from source:
#
{
 # bpkg.uninstall
 #

31Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

 bpkg -v uninstall -d <install-conf> <package-name>
}

If the install operation is supported by the package and
bbot.bindist.upload step is enabled:
#
{
 # Move the generated binary distribution files to the
 # upload/bindist/<distribution>/ directory.
}

If bbot.upload step is enabled and upload/ directory is not empty:
#
{
 # bbot.upload.tar.create
 #
 tar -cf upload.tar upload/

 # bbot.upload.tar.list
 #
 tar -tf upload.tar upload/
}

end
#
This step id can only be used as a breakpoint.

Worker script for module packages:

If configuration is self-hosted:
#
{
 # bpkg.create (bpkg.module.create)
 #
 b -V create(<module-conf>, <env-modules>) config.config.load=~build2 \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-uuid>
}
#
Otherwise:
#
{
 # [bpkg.create]
 #
 b -V create(<module-conf>, cc) config.config.load=~build2-no-warnings

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-uuid>
}

bpkg.configure.add
#
bpkg -v add -d <module-conf> <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch -d <module-conf> --trust <repository-fp>

If configuration is self-hosted and config.install.root is specified:

Revision 0.18, May 202532 The build2 Build Bot

2.9 Worker Logic

#
{
 # bpkg.create (bpkg.module.create)
 #
 b -V create(<install-conf>, <env-modules>) \
 config.config.load=~build2 \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 bpkg -v create --existing -d <install-conf> --uuid <install-uuid>

 # bpkg.configure.add
 #
 bpkg -v add -d <install-conf> <repository-url>

 # bpkg.configure.fetch
 #
 bpkg -v fetch -d <install-conf> --trust <repository-fp>
}

If task manifest refers to any (build-time) tests, examples, or
benchmarks packages:
#
{
 # bpkg.create (bpkg.target.create : b.create, bpkg.create)
 #
 bpkg -V create -d <target-conf> --uuid <target-uuid> \
 <env-modules> <env-config-args> <tgt-config-args> \
 <pkg-config-args>

 # [bpkg.create]
 #
 b -V create(<host-conf>, cc) config.config.load=~host-no-warnings

 bpkg -v create --existing --type host -d <host-conf> \
 --uuid <host-uuid>

 # [bpkg.link]
 #
 bpkg -v link -d <target-conf> <host-conf>
 bpkg -v link -d <target-conf> <module-conf>
 bpkg -v link -d <host-conf> <module-conf>

 # bpkg.configure.add
 #
 bpkg -v add -d <target-conf> <repository-url>

 # bpkg.configure.fetch
 #
 bpkg -v fetch -d <target-conf> --trust <repository-fp>
}

bpkg.configure.build (bpkg.global.configure.build)
#
Notes:
#
- Some parts may be omitted.
#
- Parts related to different configurations have different prefix
step ids:
#
bpkg.module.configure.build for <module-uuid>
bpkg.target.configure.build for <install-uuid>

33Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

bpkg.target.configure.build for <target-uuid>
#
- All parts have the same fallback step ids: b.configure and
bpkg.configure.build.
#
bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-opts>] \
\
{ --config-uuid <module-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
{ --config-uuid <install-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
({ --config-uuid <target-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<test-config-vars>] }+ \
 <buildtime-test-package-name>[<test-version-constraint>])... \
\
({ --config-uuid <host-uuid> [--config-uuid <install-uuid>] \
 [<dep-config-vars>] }+ \
 (?|sys:)<dependency-name>[<dependency-version-constraint>])... \
\
[?sys:<dependency-name>[<dependency-version-constraint>]...] \
({ (--config-uuid <(target|host|module|install)-uuid>)... \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name>[<dependency-version-constraint>])...

bpkg.update
#
bpkg -v update -d <module-conf> <package-name>

If the test operation is supported by the package:
#
{
 # bpkg.test
 #
 bpkg -v test -d <module-conf> <package-name>
}

For each (build-time) tests, examples, or benchmarks package referred
to by the task manifest:
#
{
 # bpkg.test-separate.update (: bpkg.update)
 #
 bpkg -v update -d <target-conf> <package-name>

 # bpkg.test-separate.test (: bpkg.test)
 #
 bpkg -v test -d <target-conf> <package-name>
}

If configuration is self-hosted, the install operation is supported
by the package, config.install.root is specified, and no
bpkg.bindist.{debian,fedora,archive} step is enabled:
#

Revision 0.18, May 202534 The build2 Build Bot

2.9 Worker Logic

{
 # bpkg.install
 #
 bpkg -v install -d <install-conf> <package-name>

 # If bbot.install.ldconfig step is enabled:
 #
 {
 # bbot.install.ldconfig
 #
 sudo ldconfig
 }
}

If configuration is self-hosted, the install operation is supported
by the package, and bpkg.bindist.{debian,fedora,archive} step is
enabled:
#
{
 # bpkg.bindist.{debian,fedora,archive}
 #
 bpkg -v bindist --distribution <distribution> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 <package-name>

 # If both the bpkg.bindist.archive and bpkg.bindist.archive.post
 # steps are enabled:
 #
 {
 # bpkg.bindist.archive.post
 #
 bx -v <pkg-config-hook-script> <pkg-config-hook-script-args> \
 <distribution-package-file>...
 }
}

If the install operation is supported by the package and
bbot.sys-install step is enabled:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-install.apt-get.update
 #
 sudo apt-get update

 # bbot.sys-install.apt-get.install
 #
 sudo apt-get install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-install.dnf.install
 #
 sudo dnf install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #

35Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

 {
 # For each package file:
 #
 {
 # bbot.sys-install.tar.extract
 #
 [sudo] tar -xf <distribution-package-file> \
 <env-config-args> <tgt-config-args> <pkg-config-args>
 }

 # If bbot.sys-install.ldconfig step is enabled:
 #
 {
 # bbot.sys-install.ldconfig
 #
 sudo ldconfig
 }
 }
}

If the main package is installed either from source or from the
binary distribution package:
#
{
 # If task manifest refers to any (build-time) tests, examples, or
 # benchmarks packages:
 #
 {
 # [bpkg.test-separate-installed.create]
 #
 b -V create(<module-conf>, cc) \
 config.config.load=~build2-no-warnings

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-installed-uuid>

 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_module :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create -d <target-conf> --uuid <target-installed-uuid> \
 <env-modules> <env-config-args> <tgt-config-args> \
 <pkg-config-args>

 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_module :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create --type host -d <host-conf> \
 --uuid <host-installed-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # [bpkg.test-separate-installed.link]
 #
 bpkg -v link -d <target-conf> <host-conf>
 bpkg -v link -d <target-conf> <module-conf>
 bpkg -v link -d <host-conf> <module-conf>

 # bpkg.test-separate-installed.configure.add (
 # : bpkg.configure.add)
 #
 bpkg -v add -d <target-conf> <repository-url>

Revision 0.18, May 202536 The build2 Build Bot

2.9 Worker Logic

 # bpkg.test-separate-installed.configure.fetch (
 # : bpkg.configure.fetch)
 #
 bpkg -v fetch -d <target-conf> --trust <repository-fp>

 # bpkg.test-separate-installed.configure.build (
 # bpkg.global.configure.build,
 # (bpkg.test-separate-installed.configure.build_for_module :
 # bpkg.test-separate-installed.configure.build))
 #
 bpkg -v build --configure-only \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 \
 ({ --config-name <target-conf> [<test-config-vars>] }+ \
 <buildtime-test-package-name>[<test-version-constraint>])... \
 \
 ?sys:<package-name>/<package-version> \
 \
 [?sys:<dependency-name>[<dependency-version-constraint>]...] \
 \
 ({ (--config-uuid <(target|host|module)-installed-uuid>)... \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name> \
 [<dependency-version-constraint>])...

 # For each (build-time) tests, examples, or benchmarks package
 # referred to by the task manifest:
 #
 {
 # bpkg.test-separate-installed.update (: bpkg.update)
 #
 bpkg -v update -d <target-conf> <package-name>

 # bpkg.test-separate-installed.test (: bpkg.test)
 #
 bpkg -v test -d <target-conf> <package-name>
 }
 }
}

If the main package is installed from the binary distribution package:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-uninstall.apt-get.remove
 #
 sudo apt-get remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-uninstall.dnf.remove
 #
 sudo dnf remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #

37Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

 {
 # Noop.
 }
}

If the main package is installed from source:
#
{
 # bpkg.uninstall
 #
 bpkg -v uninstall -d <install-conf> <package-name>
}

If the install operation is supported by the package and
bbot.bindist.upload step is enabled:
#
{
 # Move the generated binary distribution files to the
 # upload/bindist/<distribution>/ directory.
}

If bbot.upload step is enabled and upload/ directory is not empty:
#
{
 # bbot.upload.tar.create
 #
 tar -cf upload.tar upload/

 # bbot.upload.tar.list
 #
 tar -tf upload.tar upload/
}

end
#
This step id can only be used as a breakpoint.

For details on configuring and testing installation refer to Controller Logic.

If a primary or test package comes from a version control-based repository, then its dist

meta-operation is also tested as a part of the bpkg[.*].configure.build steps by

re-distributing the source directory in the load distribution mode after configuration.

If the build is interactive, then the worker pauses its execution at the specified breakpoint and

prompts the user whether to continue or abort the execution. If the breakpoint is a step id, then

the worker pauses prior to executing every command of the specified step. Otherwise, the

breakpoint denotes the result status and the worker pauses if the command results with the

specified or more critical status (see Result Manifest).

As an example, the following POSIX shell script can be used to setup the environment for

building C and C++ packages with GCC 9 on most Linux distributions.

#!/bin/sh

Environment setup script for C/C++ compilation with GCC 9.
#
$1 - target
$2 - bbot executable

Revision 0.18, May 202538 The build2 Build Bot

2.9 Worker Logic

$3+ - bbot options

set -e # Exit on errors.

mode=
case "$1" in
 x86_64-*)
 #mode=-m64
 ;;
 i?86-*)
 mode=-m32
 ;;
 *)
 echo "unknown target: ’$1’" 1>&2
 exit 1
 ;;
esac
shift

exec "$@" cc config.c="gcc-9 $mode" config.cxx="g++-9 $mode"

2.9.1 Bindist Result Manifest

At the bbot.bindist.upload step the worker also creates the

bindist-result.json and bindist-result.manifest files in the

upload/bindist/<distribution>/ directory, next to the generated binary distribu­

tion package files. The bindist-result.json file contains the structured JSON output

of the bpkg-pkg-bindist(1) command. The bindist-result.manifest file

contains the subset of the information from bindist-result.json. Specifically, it starts

with the binary distribution package header manifest followed by a list of package file mani­

fests. The manifest values are:

distribution:
architecture:
os-release-name-id:
os-release-version-id:
package-name:
package-version:
[package-system-version]:

package-file-type:
package-file-path:
[package-file-system-name]:

The manifest values derive from the corresponding JSON object values and preserve their

semantics. The only differences are that the os-release-version-id value may not be

absent and the package-file-path values are relative to the

upload/bindist/<distribution>/ directory and are in the POSIX representation.

See bpkg-pkg-bindist(1) for the JSON values semantics.

39Revision 0.18, May 2025 The build2 Build Bot

2.9.1 Bindist Result Manifest

2.10 Controller Logic

A bbot controller that issues own build tasks maps available build machines (as reported by

agents) to build target configurations according to the buildtab configuration file. Blank

lines and lines that start with # are ignored. All other lines in this file have the following

format:

<machine-pattern> <target-config> <target>[/<environment>] <classes> [<tgt-config-arg>]* [<warning-regex>]*

<tgt-config-arg> = [[+|-]<prefix>:](<variable>|<option>) | \
 (+|-)<prefix>:
<prefix> = <tool>[.<cfg-type>][.<phase>][.<operation>[.<command>]]

Where <machine-pattern> is filesystem wildcard pattern that is matched against avail­

able machine names, <target-config> is the target configuration name, <target> is

the build target, optional <environment> is the build environment name, <classes> is a

space-separated list of configuration classes that is matched against the package configuration

*-builds values, optional <tgt-config-arg> list is additional configuration options

and variables, and optional <warning-regex> list is additional regular expressions that

should be used to detect warnings in the logs.

The build target configurations can belong to multiple classes with their names reflecting

some common configuration aspects, such as the operating system, compiler, build options,

etc. Predefined class names are default, all, hidden, none, host, and build2. The

default target configurations are built by default. A configuration must also belong to the

all, hidden, or some special-purpose configuration class. The latter is intended for testing

some optional functionality which packages are not expected to provide normally (for

example, relocatable installation). A configuration that is self-hosted must also belong to the

host class and, if it is also self-hosted for build system modules, to the build2 class. Valid

custom class names must contain only alpha-numeric characters, _, +, -, and ., except as the

first character for the last three. Class names that start with _ are reserved for the future

hidden/special class functionality.

Regular expressions must start with ~, to be distinguished from target configuration options

and variables. Note that the <tgt-config-arg> and <warning-regex> lists have the

same quoting semantics as in the target-config and the warning-regex value in the

build task manifest. The matched machine name, the target, the environment name, configura­

tion options/variables, and regular expressions are included into the build task manifest.

Values in the <tgt-config-arg> list can be optionally prefixed with the step id or a

leading portion thereof to restrict it to a specific step, operation, phase, or tool in the worker

script (see Worker Logic). The prefix can optionally begin with the + or - character (in this

case the argument can be omitted) to enable or disable the respective step. The steps which

can be enabled or disabled are:

bpkg.update
bpkg.test
bpkg.test-separate.update
bpkg.test-separate.test

Revision 0.18, May 202540 The build2 Build Bot

2.10 Controller Logic

Disabled if bpkg.bindist.* is enabled.
#
bpkg.install

Disabled by default.
#
bbot.install.ldconfig

Disabled by default.
#
bpkg.bindist.{debian,fedora,archive}

Disabled if bpkg.bindist.* is disabled.
#
bbot.sys-install

Disabled by default.
#
bbot.sys-install.ldconfig

b.test-installed.create
b.test-installed.test
bpkg.test-separate-installed.create
bpkg.test-separate-installed.update
bpkg.test-separate-installed.test

Disabled by default.
#
bbot.bindist.upload

bbot.upload

Note that the bpkg.bindist.* steps are mutually exclusive and only the last step status

change via the (+|-)bpkg.bindist.* prefix is considered.

Unprefixed values only apply to the *.create[_for_*] steps. Note that options with

values can only be specified using the single argument notation. For example:

bpkg:--fetch-timeout=600 \
bpkg.configure.fetch:--fetch-timeout=60 \
+bpkg.bindist.debian: \
b:-j1

Note that each machine name is matched against every pattern and all the patterns that match

produce a target configuration. If a machine does not match any pattern, then it is ignored

(meaning that this controller is not interested in testing its packages with this machine). If

multiple machines match the same pattern, then only a single target configuration using any of

the machines is produced (meaning that this controller considers these machines equivalent).

As an example, let’s say we have a machine named windows_10-vc_14.3. If we wanted

to test both 32 and 64-bit as well as debug and optimized builds, then we could have gener­

ated the following target configurations:

windows*-msvc_14* windows-msvc_14-Z7 i686-microsoft-win32-msvc14.0 "all default msvc i686 debug" config.cc.coptions=/Z7 config.cc.loptions=/DEBUG ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-O2 i686-microsoft-win32-msvc14.0 "all default msvc i686 optimized" config.cc.coptions=/O2 ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-Z7 x86_64-microsoft-win32-msvc14.0 "all default msvc x86_64 debug" config.cc.coptions=/Z7 config.cc.loptions=/DEBUG ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-O2 x86_64-microsoft-win32-msvc14.0 "all default msvc x86_64 optimized" config.cc.coptions=/O2 ~"warning C4\d{3}: "

41Revision 0.18, May 2025 The build2 Build Bot

2.10 Controller Logic

In the above example we could handle both i686 and x86_64 architectures with the same

machine but this may not always be possible and we may have to use different machines for

different configuration/target combinations. For example:

x86_64_linux_debian_11*-gcc_12.2 linux_debian_11-gcc_12.2 i686-linux-gnu ...

x86_64_linux_debian_11*-gcc_12.2 linux_debian_11-gcc_12.2 x86_64-linux-gnu ...

aarch64_linux_debian_11*-gcc_12.2 linux_debian_11-gcc_12.2 aarch64-linux-gnu ...

As another example, let’s say we have linux_fedora_25-gcc_6 and

linux_ubuntu_16.04-gcc_6. If all we cared about is testing GCC 6 64-bit builds on

Linux, then our target configurations could look like this:

linux*-gcc_6 linux-gcc_6-g x86_64-linux-gnu "all default gcc debug" config.cc.coptions=-g

linux*-gcc_6 linux-gcc_6-O3 x86_64-linux-gnu "all default gcc optimized" config.cc.coptions=-O3

A build target configuration class can derive from another class in which case target configu­

rations that belong to the derived class are treated as also belonging to the base class (or

classes, recursively). The derived and base class names are separated with : (no leading or

trailing spaces allowed) and the base must be present in the first mentioning of the derived

class. For example:

linux*-gcc_6 linux-gcc_6-g x86_64-linux-gnu "all gcc-6+ debug" config.cc.coptions=-g

linux*-gcc_6 linux-gcc_6-O3 x86_64-linux-gnu "all gcc-6+ optimized" config.cc.coptions=-O3

linux*-gcc_7 linux-gcc_7-g x86_64-linux-gnu "all gcc-7+:gcc-6+ debug" config.cc.coptions=-g

linux*-gcc_7 linux-gcc_7-O3 x86_64-linux-gnu "all gcc-7+ optimized" config.cc.coptions=-O3

A machine pattern consisting of a single - is a placeholder entry. Everything about a place­

holder is ignored except for the class inheritance information. Note, however, that while all

other information is ignored, the configuration name and target must be present but can also

be -. For example:

linux*-gcc_6 linux-gcc_6 x86_64-linux-gnu "all gcc-6+ "
- - - " gcc-7+:gcc-6+"
linux*-gcc_8 linux-gcc_8 x86_64-linux-gnu "all gcc-8+:gcc-7+"

If the <tgt-config-arg> list contains the config.install.root variable that

applies to the bpkg.target.create or, as a fallback, b.create or bpkg.create
steps, then in addition to building and possibly running tests, the bbot worker will also test

installing and uninstalling each package (unless replaced with the bbot.sys-install
step). Furthermore, if the package contains subprojects that support the test operation and/or

refers to other packages via the tests, examples, or benchmarks manifest values which

are not excluded by the bbot controller, then the worker will additionally build such subpro­

jects/packages against the installation (created either from source or from the binary distribu­

tion package) and run their tests (test installed and test separate installed phases).

Revision 0.18, May 202542 The build2 Build Bot

2.10 Controller Logic

Two types of installations can be tested: system and private. A system installation uses a

well-known location, such as /usr or /usr/local, that will be searched by the compiler

toolchain by default. A private installation uses a private directory, such as /opt, that will

have to be explicitly mentioned to the compiler. While the system installation is usually

preferable, it may not be always usable because of the potential conflicts with the already

installed software, for example, by the system package manager.

As an example, the following two target configurations could be used to test system and

private installations:

linux*-gcc* linux-gcc-sysinstall x86_64-linux-gnu "all default gcc" config.install.root=/usr config.install.sudo=sudo

linux*-gcc* linux-gcc-prvinstall x86_64-linux-gnu "all default gcc" config.install.root=/tmp/install config.cc.poptions=-I/tmp/install/include config.cc.loptions=-L/tmp/install/lib config.bin.rpath=/tmp/install/lib

Note also that while building and running tests against the installation created either from

source or from the archive distribution package the worker makes the bin subdirectory of

config.install.root the first entry in the PATH environment variable, except for build

system modules which supposedly don’t install any executables. As was mentioned earlier,

normally the config.install.root variable is expected to be prefixed with the

bpkg.target.create or, as a fallback, b.create or bpkg.create step ids.

However, for testing of the relocatable installations it can be desirable to extract the archive

distribution package content at the bbot.sys-install.tar.extract step into a

different installation directory. If that’s the case, then this directory needs to also be specified

as bbot.sys-install:config.install.root. If specified, this directory will be

preferred as a base for forming the bin/ directory path.

The bbot controller normally issues the build task by picking an unbuilt package configura­

tion and one of the produced (via the machine names match) target configurations, which is

not excluded from building due to this package configuration *-builds,

*-build-include, and *-build-exclude manifest values.

43Revision 0.18, May 2025 The build2 Build Bot

2.10 Controller Logic

	Preface
	1 Introduction
	2 Architecture
	2.1 Configurations
	2.1.1 Build Machine Configuration
	2.1.2 Build Target Configuration
	2.1.3 Build Package Configuration
	2.1.4 Auxiliary Machines and Configurations

	2.2 Machine Header Manifest
	2.2.1 id
	2.2.2 name
	2.2.3 summary
	2.2.4 role
	2.2.5 ram-minimum, ram-maximum

	2.3 Machine Manifest
	2.3.1 type
	2.3.2 mac
	2.3.3 options
	2.3.4 changes

	2.4 Task Manifest
	2.4.1 name
	2.4.2 version
	2.4.3 repository-url
	2.4.4 repository-type
	2.4.5 trust
	2.4.6 requires, tests, examples, benchmarks
	2.4.7 dependency-checksum
	2.4.8 machine
	2.4.9 auxiliary-machine
	2.4.10 target
	2.4.11 environment
	2.4.12 auxiliary-environment
	2.4.13 target-config
	2.4.14 package-config
	2.4.15 host
	2.4.16 warning-regex
	2.4.17 interactive
	2.4.18 worker-checksum

	2.5 Result Manifest
	2.5.1 name
	2.5.2 version
	2.5.3 status
	2.5.4 *-status
	2.5.5 *-log
	2.5.6 dependency-checksum
	2.5.7 worker-checksum

	2.6 Task Request Manifest
	2.6.1 agent
	2.6.2 toolchain-name
	2.6.3 toolchain-version
	2.6.4 interactive-mode
	2.6.5 interactive-login
	2.6.6 fingerprint
	2.6.7 auxiliary-ram

	2.7 Task Response Manifest
	2.7.1 session
	2.7.2 challenge
	2.7.3 result-url
	2.7.4 *-upload-url
	2.7.5 agent-checksum

	2.8 Result Request Manifest
	2.8.1 session
	2.8.2 challenge
	2.8.3 agent-checksum

	2.9 Worker Logic
	2.9.1 Bindist Result Manifest

	2.10 Controller Logic

