The build2 Build Bot

Copyright © 2014-2025 the build2 authors (see the AUTHORS file).
Permission is granted to copy, distribute and/or modify this document under the terms of the
MIT License.

Revision 0.18, May 2025
This revision of the document describes the build2 build bot 0.18. x series.

Table of Contents

Table of Contents

.
1 Introduction| .
2 Architecture] .

2.1 Configurations|.
[2.1.1 Build Machine Configuration| .
[2.1.2 Build Target Configuration| ..
[2.1.3 Build Package Configuration| . . .
[2.1.4 Auxiliary Machines and Configurations| .
[2.2 Machine Header Manifest|
2.11id .
2.2 name
[2.2.3 summary]|
24 role
[2.2.5 ram—-minimum, ram-maximum| .
[2.3 Machine Manifest| .
3.1 type
3.2mac
[2.3.3 options]|
[2.3.4 changes]|
[2.4 Task Manifest| .
4.1 name
[2.4.2 version] .
[2.4.3 repository-url| .
[2.4.4 repository-type]
4.5 trust|
[2.4.6 requires, tests, examples, benchmarks|
[2.4.7 dependency—checksumn|
[2.4.8 machine| .
2.49 auxiliary-machinel 9

ii

i

ig

i

S}

O O OO 00OV I I I UNUN NP B WD~ ==

2.4.10target| 10
[2.4.11 environment] . 0]
2.4.12 auxiliary—environment| 10
2.4.13 target-confiqgl 11
[2.4.14 package—config| . B |
2.4.16 warning-regex| 11
[2.4.17 interactive] e 172
[2.4.18 worker-checksum 12
[2.5 Result Manifes 12
: 13
2.52version 13
.53 status| 13
.54 *-status| 14

Revision 0.18, May 2025 The build2 Build Bot i

Table of Contents

[2.5.6 dependency-check

sum|

[2.5.7 worker—checksum|.
[2.6 Task Request Manifest]

2.6.1 agent|

[2.6.2 toolchain—-name| .

[2.6.3 toolchain-version| .

[2.6.4 interactive-mode|

[2.6.5 interactive—login| .

[2.6.6 fingerprint| .

[2.6.7 auxiliary—raml
[2.7 Task Response Manifest] .

[2.7.1 session|

[2.7.2 challenge|.

[2.7.3 result-url|

[2.7.4 *—upload-url].

[2.7.5 agent-checksun| .
[2.8 Result Request Manifest] .

[2.8.1 session|

[2.8.2 challenge|.

[2.8.3 agent-checksun| .
2.9 Worker Logic]

[2.9.1 Bindist Result Manifest]
[2.10 Controller Logic]

The build2 Build Bot

14
14
14
15
15
15
15
15
16
16
16
16
16
L7
L7
L7
L7
L7
L7
18
18
39
40

Revision 0.18, May 2025

Preface

Preface

This document describes bbot, the build2 build bot. For the build bot command line inter-
face refer to the bbot—agent (1) and bbot-worker (1) man pages.

1 Introduction

2 Architecture

The bbot architecture includes several layers for security and manageability. At the top we
have a bbot running in the controller mode. The controller monitors various build sources
for build tasks. For example, a controller may poll a brep instances for any new packages to
build as well as monitor a git repository for any new commits to test. There can be several
layers of controllers with brep being just a special kind. A machine running a bbot instance
in the controller mode is called a controller host.

Below the controllers we have a bbot running in the agent mode normally on Build OS. The
agent polls its controllers for build tasks to perform. A machine running a bbot instance in
the agent mode is called a build host.

The actual building is performed in the virtual machines and/or containers that are executed
on the build host. Inside virtual machines/containers, bbot is running in the worker mode and
receives build tasks from its agent. Virtual machines and containers running a bbot instance
in the worker mode are collectively called build machines.

In addition to a build machine, a build task may also require one or more auxiliary machines
which provide additional components that are required for building or testing a package and
that are impossible or impractical to provide as part of the build machine itself.

Let’s now examine the workflow in the other direction, that is, from a worker to a controller.
Once a build machine (plus auxiliary machines, if any) are booted (by the agent), the worker
inside the build machine connects to the TFTP server running on the build host and down-
loads the build task manifest. It then proceeds to perform the build task and uploads the build
artifacts archive, if any, followed by the build result manifest (which includes build logs) to
the TFTP server.

Unlike build machines, auxiliary machines are not expected to run bbot. Instead, on boot,
they are expected to upload to the TFTP server a list of environment variables to propagate to
the build machine (see the auxiliary-environment task manifest value as well as

for details).

Once an agent receives a build task for a specific build machine, it goes through the following
steps. First, it creates a directory on its TFTP server with the machine name as its name and
places the build task manifest inside. Next, it makes a throw-away snapshot of the build
machine and boots it. After booting the build machine, the agent monitors the machine direc-
tory on its TFTP server for the build result manifest (uploaded by the worker once the build

Revision 0.18, May 2025 The build2 Build Bot 1

2.1 Configurations

has completed). Once the result manifest is obtained, the agent shuts down the build machine
and discards its snapshot.

To obtain a build task the agent polls via HTTP/HTTPS one or more controllers. Before each
poll request the agent enumerates the available build machines and sends this information as
part of the request. The controller responds with a build task manifest that identifies a specific
build machine to use.

In the task request the agent specifies if only non-interactive, interactive, or both build kinds
are supported. If interactive builds are supported, it additionally provides the login informa-
tion for interactive build sessions. If the controller responds with an interactive build task,
then its manifest specifies the breakpoint the worker must stop the task execution at and
prompt the user whether to continue or abort the execution. The user can log into the build
machine, potentially perform some troubleshooting, and, when done, either answer the prompt
or just shutdown the machine.

If the controller has higher-level controllers (for example, brep), then it aggregates the avail-
able build machines from its agents and polls these controllers (just as an agent would),
forwarding build tasks to suitable agents. In this case we say that the controller act as an
agent. The controller may also be configured to monitor build sources, such as SCM reposito-
ries, directly in which case it generates build tasks itself.

In this architecture the build results and optional build artifacts are propagated up the chain:
from a worker, to its agent, to its controller, and so on. A controller that is the final destination
of a build result uses email to notify interested parties of the outcome. For example, brep
would send a notification to the package owner if the build failed. Similarly, a bbot
controller that monitors a git repository would send an email to a committer if their commit
caused a build failure. The email would include a link (normally HTTP/HTTPS) to the build
logs hosted by the controller. The build artifacts, such as generated binary distribution pack-
ages, are normally made available for the interested parties to download. See Build Artifacts
Upload for details on the brep controller’s implementation of the build artifacts upload
handling.

2.1 Configurations

The bbot architecture distinguishes between a build machine configuration, build target
configuration, and a build package configuration. The machine configuration captures the
operating system, installed compiler toolchain, and so on. The same build machine may be
used to "generate" multiple build target configurations. For example, the same machine can
normally be used to produce debug/optimized builds.

2.1.1 Build Machine Configuration

The machine configuration is approximately encoded in its machine name. The machine name
is a list of components separated with —. Components cannot be empty and must contain only
alpha-numeric characters, underscores, dots, and pluses with the whole id being a
portably-valid path component.

2 The build2 Build Bot Revision 0.18, May 2025

2.1.2 Build Target Configuration

The encoding is approximate in a sense that it captures only what’s important to distinguish in
a particular bbot deployment.

The first three components normally identify the architecture, operating system, and optional
variant. They have the following recommended form:

<arch>-[<class>_]<os>[_<version>] [-<variant>]

For example:

x86_64-windows
x86_64-windows_10
x86_64-windows_10.1607
x86_64-windows_10-devmode
x86_64-bsd_freebsd_ 10
x86_64-1inux_ubuntu_16.04
x86_64-1inux_rhel_ 9.2-bindist
aarch64-macos_10.12

The last component normally identifies the installed compiler toolchain and has the following
recommended form:

<id>[_<version>] [_<vendor>] [_<runtime>]

For example:

gcc
gcc_6

gcc_6.3

gcc_6.3_mingw_w64
clang_3.9
clang_3.9_libc++

msvc_14

msvc_14.3
clang_15.0_msvc_msvc_17.6
clang_16.0_1l1lvm_msvc_17.6

Some examples of complete machine names:

x86_64-windows_10-msvc_14.3
x86_64-macos_10.12-clang_10.0
aarch64-1linux_ubuntu_16.04-gcc_6.3
aarch64-1linux_rhel_9.2-bindist-gcc_11

2.1.2 Build Target Configuration

Similarly, the build target configuration is encoded in a configuration name using the same
overall format. As described in [Controller Logic} target configurations are generated from
machine configurations. As a result, it usually makes sense to have the first component iden-
tify the operating systems and the second component — the compiler toolchain with the rest
identifying a particular target configuration variant, for example, optimized, sanitized, etc:

Revision 0.18, May 2025 The build2 Build Bot 3

2.1.3 Build Package Configuration

[<class>_]<os>[_<version>]—-<toolchain>[-<variant>]

For example:

windows_10-msvc_17.6
windows_10-msvec_17.6-02
windows_10-msvc_17.6-static_02
windows_10-msvc_17.6-relocatable
windows_10-clang_16.0_1lvm msvc_17.6_11d
linux_debian_12-clang_16_libc++-static_03

Note that there is no <arch> component in a build target configuration: this information is
best conveyed as part of <target> as described in|Controller Logic}

2.1.3 Build Package Configuration

A package can be built in multiple package configurations per target configuration. A build
package configuration normally specifies the options and/or the package configuration vari-
ables that need to be used for the build. It may also include the information regarding the
dependency packages which need to additionally be configured. The build package configura-
tions originate from the package manifest *-build-config, *-builds,
*~puild-include, and *-build-exclude values. See Package Manifest for more
information on these values.

2.1.4 Auxiliary Machines and Configurations

Besides the build machine and the build configuration that is derived from it, a package build
may also involve one or more auxiliary machines and the corresponding auxiliary configura-
tions.

An auxiliary machine provides additional components that are required for building or testing
a package and that are impossible or impractical to provide as part of the build machine itself.
For example, a package may need access to a suitably configured database, such as Post-
greSQL, in order to run its tests.

The auxiliary machine name follows the same overall format as the build machine name
except that the last component captures the information about the additional component in
question rather than the compiler toolchain. For example:

x86_64-1linux_debian_l2-postgresqgl_16
aarché64-linux_debian_12-mysqgl_8

The auxiliary configuration name is automatically derived from the machine name by remov-
ing the <arch> component. For example:

linux_debian_12-postgresqgl_16
linux_debian_12-mysqgl_8

4 The build2 Build Bot Revision 0.18, May 2025

2.2 Machine Header Manifest

Note that there is no generation of multiple auxiliary configurations from the same auxiliary
machine since that would require some communication of the desired configuration variant to
the machine.

2.2 Machine Header Manifest

@@ TODO: need ref to general manifest overview in bpkg, or, better yet, move it to libbutl
and ref to that from both places.

The build machine header manifest contains basic information about a build machine on the
build host. A list of machine header manifests is sent by bbot agents to controllers. The
manifest synopsis is presented next followed by the detailed description of each value in
subsequent sections.

id: <machine-id>
name: <machine-name>
summary: <string>

[role]: build|auxiliary
[ram—minimum] : <kib>
[ram—maximum] : <kib>

For example:

id: x86_64-windows_10-msvc_14-1.3
name: x86_64-windows_10-msvc_14
summary: Windows 10 build 1607 with VC 14 update 3

id: aarch64-linux_debian_12-postgresgl_16-1.0

name: aarch64-linux_debian_1l2-postgresqgl_16

summary: Debian 12 with PostgreSQL 16 test user/database
role: auxiliary

ram-minimum: 2097152

ram-maximum: 4194304

2.2.1id
id: <machine-id>

The unique machine version/revision/build identifier. For virtual machines this can be the disk
image checksum. For a container this can be UUID that is re-generated every time a container
filesystem is altered.

Note that we assume that a different machine identifier is assigned on any change that may
affect the build result.

2.2.2 name

name: <machine-name>

The machine name.

Revision 0.18, May 2025 The build2 Build Bot 5

2.3 Machine Manifest

2.2.3 summary

summary: <string>

The one-line description of the machine.

224 role

[role]: build|auxiliary

The machine role. If unspecified, then build is assumed.

2.2.5 ram-minimum, ram-maximum

[ram—minimum] : <kib>
[ram—maximum] : <kib>

The minimum and the maximum amount of RAM in KiB that the machine requires. The
maximum amount is interpreted as the amount beyond which there will be no benefit. If
unspecified, then it is assumed the machine will run with any minimum amount a deployment
will provide and will always benefit from more RAM, respectively. Neither value should be
0.

2.3 Machine Manifest

The build machine manifest contains the complete description of a build machine on the build
host (see the Build OS documentation for their origin and location). The machine manifest
starts with the machine header manifest with all the header values appearing before any
non-header values. The non-header part of manifest synopsis is presented next followed by
the detailed description of each value in subsequent sections.

type: kvm|nspawn

[mac]: <addr>

[options]: <machine-options>
[changes]: <text>

2.3.1 type
type: kvm|nspawn

The machine type. Valid values are kvm (QEMU/KVM virtual machine) and nspawn
(systemd—-nspawn container).

2.3.2 mac

[mac]: <addr>

The fixed MAC address for the machine. Must be in the hexadecimal, comma-separated
format. For example:

6 The build2 Build Bot Revision 0.18, May 2025

2.4 Task Manifest

mac: de:ad:be:ef:de:ad

If it is not specified, then a random address is generated on the first machine bootstrap which
is then reused for each build/re-bootstrap. Note that if you specify a fixed address, then the
machine can only be used by a single bbot agent.

2.3.3 options

[options]: <machine-options>

The list of machine options. The exact semantics is machine type-dependent (see below). A
single level of quotes (either single or double) is removed in each option before being passed
on. Options can be separated with spaces or newlines.

For kvm machines, if this value is present, then it replaces the default network and disk
configuration when starting the QEMU/KVM hypervisor. The options are pre-processed by
replacing the question mark in i fname=? and mac="? strings with the network interface and
MAC address, respectively.

2.3.4 changes

[changes]: <text>
The description of machine changes in this version.

Multiple changes values can be present which are all concatenated in the order specified,
that is, the first value is considered to be the most recent. For example:

initial wversion

changes: 1:
2: increased disk size to 30GB

1.
changes: 1.

Or:

changes:
\
1.1
— initial version

— increased disk size to 30GB
— upgraded bootstrap baseutils

2.4 Task Manifest

The task manifest describes a build task. It consists of two groups of values. The first group
defines the package to build. The second group defines the build configuration to use for
building the package. The manifest synopsis is presented next followed by the detailed
description of each value in subsequent sections.

Revision 0.18, May 2025 The build2 Build Bot 7

2.4.1 name

name: <package-name>

version: <package-version>
#location: <package-url>
repository-url: <repository-url>
[repository-type]: pkg|git|dir
[trust]: <repository-fp>
[requires]: <package-requirements>
[tests]: <dependency-package>
[examples]: <dependency-package>
[benchmarks]: <dependency-package>
[dependency-checksum] : <checksum>

machine: <machine-name>
[auxiliary-machine]: <machine-name>
[auxiliary-machine-<name>]: <machine-name>
target: <target-triplet>

[environment]: <environment-name>
[auxiliary-environment]: <environment-vars>
[target-config]: <tgt-config-args>
[package-config]: <pkg-config-args>
[host]: true|false

[warning-regex]: <warning-regex>
[interactive]: <breakpoint>
[worker—-checksum] : <checksum>

2.4.1 name

name: <package—name>

The package name to build.

24.2 version

version: <package-version>

The package version to build.

2.4.3 repository-url

repository-url: <repository-url>

The URL of the repository that contains the package and its dependencies.
2.4.4 repository—-type

[repository-type]: pkg|git|dir

The repository type (see repository-url for details). Alternatively, the repository type
can be specified as part of the URL scheme. See bpkg-repository-types (1) for
details.

8 The build2 Build Bot Revision 0.18, May 2025

2.4.5 trust

2.4.5 trust

[trust]: <repository-fp>

The SHA256 repository certificate fingerprint to trust (see the bpkg ——trust option for
details). This value may be specified multiple times to establish the authenticity of multiple
certificates. If the special yes value is specified, then all repositories will be trusted without
authentication (see the bpkg ——trust-yes option).

Note that while the controller may return a task with t rust values, whether they will be used
is up to the agent’s configuration. For example, some agents may only trust their inter-
nally-specified fingerprints to prevent the "man in the middle" attacks.

2.4.6 requires, tests, examples, benchmarks

The primary package manifest values that need to be known by the bbot worker before it
retrieves the primary package manifest. See Package Manifest for more information on these
values.

The controller copies these values from the primary package manifest, except those tests,
examples, and benchmarks values which should be excluded from building due to their
builds, build-include, and build-exclude manifest values.

2.4.7 dependency—-checksum

[dependency-checksum] : <checksum>

The package dependency checksum received as a part of the previous build task result (see
[Result Manifest)).

2.4.8 machine

machine: <machine-name>

The name of the build machine to use.

249 auxiliary-machine

[auxiliary-machine]: <machine-name>
[auxiliary-machine-<name>]: <machine-name>

The names of the auxiliary machines to use. These values correspond to the build-auxil-
iary and build-auxiliary-<name> values in the package manifest. While there each
value specifies an auxiliary configuration pattern, here it specifies the concrete auxiliary
machine name that was picked by the controller from the list of available auxiliary machines
(sent as part of the task request) that match this pattern.

Revision 0.18, May 2025 The build2 Build Bot 9

2.4.10 target

2.4.10 target

target: <target-triplet>
The target to build for.

Compared to the autotools terminology, the machine value corresponds to ——build (the
machine we are building on) and target — to ——host (the machine we are building for).
While we use essentially the same target triplet format as autotools for target, it is not
flexible enough for machine.

2.4.11 environment

[environment]: <environment-name>

The name of the build environment to use. See [Worker Logid for details.

2.4.12 auxiliary—-environment

[auxiliary-environment]: <environment-vars>

The environment variables describing the auxiliary machines. If any auxil-
iary-machine* values are specified, then after starting such machines, the agent prepares
a combined list of environment variables that were uploaded by such machines and passes it
in this value to the worker.

The format of this value is a list of environment variable assignments one per line, in the
form:

<name>=<value>

Whitespaces before <name>, around =, and after <value> as well as blank lines and lines
that start with # are ignored. The <name> part must only contain capital alphabetic, numeric,
and __ characters. The <value> part as a whole can be single (’ *) or double (" ") quoted. For
example:

DATABASE_HOST=192.168.0.1
DATABASE_PORT=1245
DATABASE_USER='John "Johnny" Doe’
DATABASE_NAME=" test database "

If the corresponding machine is specified as auxiliary-machine-<name>, then its
environment variables are prefixed with capitalized <name>_. For example:

auxiliary-machine-pgsqgl: x86_64-1linux_debian_l2-postgresqgl_16
auxiliary-environment:

\

PGSQL_DATABASE_HOST=192.168.0.1

PGSQL_DATABASE_PORT=1245

\

10 The build2 Build Bot Revision 0.18, May 2025

2.4.13 target-config

2.4.13 target-config

[target-config]: <tgt-config-args>

The additional target configuration options and variables. A single level of quotes (either
single or double) is removed in each value before being passed to bpkg. For example, the
following value:

target-config: config.cc.coptions="-03 -stdlib=’'libc++""

Will be passed to bpkg as the following (single) argument:

config.cc.coptions=-03 -stdlib=’1libc++’

Values can be separated with spaces or newlines. See [Controller Logic|for details.

2.4.14 package—config

[package-config]: <pkg-config-args>

The primary package manifest *~build-config value for the build configuration the
build task is issued for. See Package Manifest for more information on this value. A single
level of quotes (either single or double) is removed in each value before being passed to
bpkg. For example, the following value:

package-config: "?libcurl ~7.76.0"

Will be passed to bpkg as the following (single) argument:

?libcurl ~7.76.0

Values can be separated with spaces or newlines. See [Controller Logic|for details.

2.4.15 host

[host]: true|false

If true, then the build target configuration is self-hosted. If not specified, false is
assumed. See [Controller Logic|for details.

2.4.16 warning-regex

[warning-regex]: <warning-regex>

Additional regular expressions that should be used to detect warnings in the build logs. Note
that only the first 512 bytes of each log line is considered.

A single level of quotes (either single or double) is removed in each expression before being
used for search. For example, the following value:

Revision 0.18, May 2025 The build2 Build Bot 11

2.5 Result Manifest

warning-regex: "warning C4\d{3}: "

Will be treated as the following (single) regular expression (with a trailing space):

warning C4\d{3}:

Expressions can be separated with spaces or newlines. They will be added to the following
default list of regular expressions that detect the bui1d2 toolchain warnings:

“warning:
~.+: warning:

Note that this built-in list also covers GCC and Clang warnings (for the English locale).

2.4.17 interactive

[interactive]: <breakpoint>

The task execution step to stop at. Can only be present if the agent has specified interac—
tive-mode with either the t rue or both value in the task request.

The breakpoint can either be a primary step id of the worker script or the special error or
warning value. There is also the special none value which never interrupts the task execu-

tion. See for details.

2.4.18 worker—-checksum

[worker—-checksum] : <checksum>

The worker checksum received as a part of the previous build task result (see
fest).

2.5 Result Manifest

The result manifest describes a build result. The manifest synopsis is presented next followed
by the detailed description of each value in subsequent sections.

name: <package—name>
version: <package-version>

status: <status>
[configure-status]: <status>
[update—-status]: <status>
[test—-status]: <status>
[install-status]: <status>
[bindist—-status]: <status>
[sys—install-status]: <status>
[test—-installed-status]: <status>
[sys—uninstall-status]: <status>
[uninstall-status]: <status>
[upload-status]: <status>
[configure-log]: <text>

[update—-log]: <text>

12 The build2 Build Bot Revision 0.18, May 2025

2.5.1 name

[test-1log]: <text>
[install-log]: <text>
[bindist-log]: <text>
[sys—install-log]: <text>
[test—-installed-log]: <text>
[sys—uninstall-log]: <text>
[uninstall-log]: <text>
[upload-log]: <text>
[worker—-checksum] : <checksum>

[dependency-checksum] : <checksum>

2.5.1 name

name: <package—name>

The package name from the task manifest.

2.5.2 version

version: <package-version>

The package version from the task manifest.

2.5.3 status

status: <status>

The overall (cumulative) build result status. Valid values are:

skip # Package update and subsequent operations were skipped.
success # All operations completed successfully.
warning # One or more operations completed with warnings.
error # One or more operations completed with errors.
One or more operations were aborted.
One or more operations terminated abnormally.
#

Task execution has been interrupted.

abort
abnormal
interrupt

The abort status indicates that the operation has been aborted by bbot, for example,
because it was consuming too many resources and/or was taking too long. Note that a task can
be aborted both by the bbot worker as well as the agent. In the later case the whole machine
is shut down and no operation-specific status or logs will be included (@ @ Maybe we should
just include ’log:” with commands that start VM, for completeness?).

The abnormal status indicates that the operation has terminated abnormally, for example,
due to the package manager or build system crash.

The interrupt status indicates that the task execution has been interrupted, for example, to
reassign resources to a higher priority task.

Note that the overall status value should appear before any per-operation *-status
values.

Revision 0.18, May 2025 The build2 Build Bot 13

2.6 Task Request Manifest

The skip status indicates that the received from the controller build task checksums have not
changed and the task execution has therefore been skipped under the assumption that it would
have produced the same result. See agent-checksum, worker—-checksum, and
dependency—-checksum for details.

2.54 *-status

[*-status]: <status>

The per-operation result status. Note that the *—status values should appear in the same
order as the corresponding operations were performed and for each *~status there should
be the corresponding *—1og value. Currently supported operation names:

configure
update

test

install
bindist
sys—install
test-installed
sys-uninstall
uninstall
upload

2.5.5 *-log
[*-1log]: <text>

The per-operation result log. Note that the *~1og values should appear last and in the same
order as the corresponding *—status values. For the list of supported operation names refer
to the *—status value description.

2.5.6 dependency—-checksum

[dependency—-checksum] : <checksum>

The package dependency checksum obtained as a byproduct of the package configuration
operation. See bpkg—-pkg-build (1) command’s ——rebuild-checksum option for
details.

2.5.7 worker—checksum

[worker—-checksum] : <checksum>

The version of the worker logic used to perform the package build task.

2.6 Task Request Manifest

An agent (or controller acting as an agent) sends a task request to its controller via
HTTP/HTTPS POST method (@ @ URL/API endpoint). The task request starts with the task
request manifest followed by a list of machine header manifests. The task request manifest

14 The build2 Build Bot Revision 0.18, May 2025

2.6.1 agent

synopsis is presented next followed by the detailed description of each value in subsequent
sections.

The controller is expected to pick each offered machine header manifest only once. If an agent
is capable of running multiple instances of the same machine, then it must send the matching
number of machine header manifests for such a machine.

agent: <name>

toolchain-name: <name>
toolchain-version: <standard-version>
[interactive-mode]: false|true|both
[interactive-login]: <login>
[fingerprint]: <agent-fingerprint>
[auxiliary-ram]: <kib>

2.6.1 agent
agent: <name>

The name of the agent host (hostname). The name should be unique in a particular bbot
deployment.

2.6.2 toolchain—-name

toolchain—-name: <name>

The build2 toolchain name being used by the agent.
2.6.3 toolchain—version
toolchain-version: <standard-version>

The build2 toolchain version being used by the agent.
2.6.4 interactive—mode

[interactive-mode]: false|true|both

The agent’s capability to perform build tasks only non-interactively (false), only interac-
tively (t rue), or both (both).

If it is not specified, then the false value is assumed.

2.6.5 interactive-login

[interactive-login]: <login>

The login information for the interactive build session. Must be present only if interac—
tive-mode is specified with the t rue or both value.

Revision 0.18, May 2025 The build2 Build Bot 15

2.7 Task Response Manifest

2.6.6 fingerprint

[fingerprint]: <agent-fingerprint>

The SHA256 fingerprint of the agent’s public key. An agent may be configured not to use the
public key-based authentication in which case it does not include this value. However, the
controller may be configured to require the authentication in which case it should respond
with the 401 (unauthorized) HTTP status code.

2.6.7 auxiliary—-ram

[auxiliary-ram]: <kib>

The amount of RAM in KiB that is available for running auxiliary machines. If unspecified,
then assume there is no hard limit (that is, the agent can allocate up to the host’s available
RAM minus the amount required to run the build machine).

2.7 Task Response Manifest

A controller sends the task response manifest in response to the task request initiated by an
agent. The response is delivered as a result of the POST method. The task response starts with
the task response manifest optionally followed by the task manifest. The task response mani-
fest synopsis is presented next followed by the detailed description of each value in subse-
quent sections.

session: <id>

[challenge]: <text>
[result-url]: <url>
[*-upload-url]: <url>
[agent—checksum] : <checksum>

2.7.1 session

session: <id>

The identifier assigned to this session by the controller. An empty value indicates that the
controller has no tasks at this time in which case all the following values as well as the task
manifest are absent.

2.7.2 challenge

[challenge]: <text>

The random, 64 characters long string (nonce) used to challenge the agent’s private key. If
present, then the agent must sign this string and include the signature in the result request (see
below).

The signature should be calculated by encrypting the string with the agent’s private key and
then base 64-encoding the result.

16 The build2 Build Bot Revision 0.18, May 2025

2.8 Result Request Manifest

2.7.3 result—url

[result-url]: <url>

The URL to POST (upload) the result request to.

2.7.4 *—upload-url

[*-upload-url]: <url>

The URLs to upload the build artifacts to, if any, via the HTTP POST method using the
multipart/form-data content type (see Build Artifacts Upload for details on the upload
protocol). The substring matched by * in *~upload-url denotes the upload type.

2.7.5 agent—-checksum
[agent—checksum] : <checksum>

The agent checksum received as a part of the previous build task result request (see [Resulf]
[Request Manifest]).

2.8 Result Request Manifest

On completion of a task an agent (or controller acting as an agent) sends the result (upload)
request to the controller via the POST method using the URL returned in the task response
(see above). The result request starts with the result request manifest followed by the result
manifest. Note that there is no result response and only a successful but empty POST result is
returned. The result request manifest synopsis is presented next followed by the detailed
description of each value in subsequent sections.

session: <id>
[challenge]: <text>
[agent—checksum] : <checksum>

2.8.1 session

session: <session-id>

The session id as returned by the controller in the task response.

2.8.2 challenge

[challenge]: <text>

The answer to the private key challenge as posed by the controller in the task response. It
must be present only if the challenge value was present in the task response.

Revision 0.18, May 2025 The build2 Build Bot 17

2.9 Worker Logic

2.8.3 agent—-checksum

[agent—checksum] : <checksum>

The version of the agent logic used to perform the package build task.

2.9 Worker Logic

The bbot worker builds each package in a build environment that is established for a particu-
lar build target. The environment has three components: the execution environment (environ-
ment variables, etc), build system modules, as well as configuration options and variables.

Setting up of the execution environment is performed by an executable (script, batch file, etc).
Specifically, upon receiving a build task, if it specifies the environment name then the worker
looks for the environment setup executable with this name in a specific directory and for the
executable called default otherwise. Not being able to locate the environment executable is
an error.

In addition to the environment executable, if the task requires any auxiliary machines, then the
auxiliary-environment value from the task manifest is incorporated into the execu-
tion environment.

Specifically, once the environment setup executable is determined, the worker re-executes
itself in the auxiliary environment and as that executable passing to it as command line argu-
ments the target name, the path to the bbot worker to be executed once the environment is
setup, and any additional options that need to be propagated to the re-executed worker. The
environment setup executable is executed in the build directory as its current working direc-
tory. The build directory contains the build task task .manifest file.

The environment setup executable sets up the necessary execution environment for example
by adjusting PATH or running a suitable vcvars batch file. It then re-executes itself as the
bbot worker passing to it as command line arguments (in addition to worker options) the list
of build system modules (<env-modules>) and the list of configuration options and vari-
ables (<env-config-args>). The environment setup executable must execute the bbot
worker in the build directory as the current working directory.

The re-executed bbot worker then proceeds to test the package from the repository by
executing the following commands, collectively called a worker script. Each command has a
unique step id that can be used as a breakpoint and normally as a prefix in the
<tgt-config-args>, <env-config-args>, and <env-modules> values as
discussed in [Controller Logic] as well as in the <pkg-config-args> and
<pkg-config-hook—-*> values (see below). The <>-values are from the task manifest
and the environment though some are assigned by the worker during the script execution
(configuration directories, UUIDs, etc). In particular, the <pkg-config-args> (prefixed
global options and configuration variables), <pkg-config-hook-script> and
<pkg-config-hook-script—-args> (prefixed hook script path and arguments),
<pkg-config-opts> (unprefixed options), <pkg-config-vars> (unprefixed config-

18 The build2 Build Bot Revision 0.18, May 2025

2.9 Worker Logic

uration variables), <pkg—config—govrs> (always unprefixed global variable overrides),
<dependency—-name>, <dependency-version—-constraint>, and
<dep-config-vars> values result from parsing the [package—config| task manifest
value. The <*-uuid> values are assigned as follows:

target-uuid: 00000000-0000-0000-0000-000000000001
host-uuid: 00000000-0000-0000-0000-000000000002
module—uuid: 00000000-0000-0000-0000-000000000003
install-uuid: 00000000-0000-0000-0000-000000000004
target—-installed-uuid: 00000000-0000-0000-0000-000000000005
host-installed-uuid: 00000000-0000-0000-0000-000000000006

module—installed-uuid: 00000000-0000-0000-0000-000000000007

Some prefix step ids have fallback step ids which are used in the absence of the primary step
id values. If the prefix step id differs from the breakpoint step id and/or has the fallback step
ids, then they are listed in parenthesis: the prefix id before the colon and the fallback ids after
it.

Some commands have no target configuration or environment options or variables. Such
commands have only breakpoint step ids associated, which are listed in square brackets.

Outcome of some steps can be amended by hooks -- scripts written in the Shellscript language
that are executed by bbot worker right before (* .pre step) or after (*.post step) these
steps. Such scripts are distributed as a part of the main package. The hook commands origi-
nate from the *-~build-config package manifest value as the script path (relative to the
package’s root directory) followed by its arguments, all prefixed with the respective hook step
id. See Package Manifest for more information on this value. Note that since the hook steps
are disabled by default, one of the hook’s prefixes needs to begin with + to enable this hook
(in this case the argument can be omitted). Each hook is executed in a newly created tempo-
rary directory as it working directory. Currently supported hooks:

bpkg.bindist.archive.post
See the worker scripts below for details on the execution point of each hook.

While executing the script, the worker may set some environment variables either for the
entire build or for specific commands. The BUTILD2_VAR_OVR environment variable is set to
<pkg-config-govrs>, one override per line. The BBOT_MAIN_PACKAGE_CONFIG
and BBOT_INSTALL_CONFIG variables are set to the paths of build configuration directo-
ries where the main package is being built for test and install, respectively. The
BBOT_TARGET_CONFIG, BBOT_HOST_CONFIG, and BBOT_MODULE_CONF IG variables
are set to the paths of the target, host, and module build configuration directories, respec-
tively, if created. Also the worker modifies the PATH environment variable by prepending the
installation directory of the package’s executables. The lifetimes of these environment vari-
ables or their modifications are as follows:

BUILD2_VAR_OVR entire build
BBOT_MAIN_PACKAGE_CONFIG bpkg.configure.build: bpkg-pkg-build(1l)

BBOT_INSTALL_CONFIG bpkg.configure.build: bpkg-pkg-build(1l)
BBOT_TARGET_CONFIG bpkg.configure.build: bpkg-pkg-build(1l)

Revision 0.18, May 2025 The build2 Build Bot 19

2.9 Worker Logic

BBOT_HOST_CONFIG bpkg.configure.build: bpkg-pkg-build(1l)
BBOT_MODULE_CONFIG bpkg.configure.build: bpkg-pkg-build (1)
PATH b.test-installed.configure

b.test-installed.test
bpkg.test-separate-installed.configure.build
bpkg.test-separate-installed.update
bpkg.test-separate-installed.test

Note that the worker script varies for different primary package types. The bbot worker clas-
sifies the primary package based on the configuration type in which it is built: module (build
system module packages), host (packages such as source code generators, marked with the
requires: host manifest value; see Package Manifest for details), and target (all
other packages).

Note also that the *.configure.build step configures potentially multiple packages
(primary package, tests, etc) in potentially multiple configurations by always using the
bpkg.global.configure.build prefix step id for global (as opposed to
package-specific) bpkg-pkg-build(1l) options. The bpkg.global.config-
ure.build prefix id has no fallback ids.

Note finally that if no configuration variables are specified in the main package configuration,
then the worker adds the config.<name>.develop=false configuration variable for
the main package at the bpkg.configure.build step to trigger its package skeleton
creation and loading. It also adds this variable for external test packages at this step and for
the same purpose. This makes sure that these packages can be used as dependencies of depen-
dents with configuration clauses. To keep the below listings concise, these variables are not
shown.

Worker script for target packages:

bpkg.create (bpkg.target.create : b.create, bpkg.create)

#

bpkg -V create --uuid <target-uuid> <env-modules> \
<env-config-args> <tgt-config-args> <pkg-config-args>

bpkg.configure.add
#
bpkg -v add <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch —--trust <repository-fp>

bpkg.configure.build (
bpkg.global.configure.build,
(bpkg.target.configure.build : b.configure, bpkg.configure.build))
#
bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-opts>] \
[{ <pkg-config-vars> }+] <package-name>/<package-version> \
[([{ <test-config-vars> }+] \
<test-package—-name>[<test-version-constraint>])...] \
[([{ <dep-config-vars> }+] \

20 The build2 Build Bot Revision 0.18, May 2025

#
#

(?|sys:)<dependency—name> \

[<dependency-version-constraint>])...] \
[?sys:<dependency-name>[<dependency-version-constraint>]...]
[({ ——config-uuid <target—-uuid> [<dep-config-vars>] }+ \

(?[sys:]|sys:)<dependency—name> \

[<dependency-version-constraint>])...]

bpkg.update

bpkg -v update <package-name>

#
#
{

— e o o

— S o W W

— e o o

If the test operation is supported by the package:

bpkg.test
#
bpkg -v test <package-name>

For each (runtime) tests, examples, or benchmarks package referred
to by the task manifest:

bpkg.test-separate.update (: bpkg.update)

#

bpkg -v update <package-name>

bpkg.test-separate.test (: bpkg.test)
#
bpkg -v test <package-name>

If the install operation is supported by the package,
config.install.root is specified, and no
bpkg.bindist. {debian, fedora,archive} step is enabled:

bpkg.install
#
bpkg -v install <package—-name>

If bbot.install.ldconfig step is enabled:
#
{

bbot.install.ldconfig

#

sudo ldconfig

If the install operation is supported by the package and
bpkg.bindist. {debian, fedora,archive} step is enabled:

bpkg.bindist.{debian, fedora,archive}

#

bpkg -v bindist —--distribution <distribution> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
<package-name>

If both the bpkg.bindist.archive and bpkg.bindist.archive.post
steps are enabled:

Revision 0.18, May 2025 The build2 Build Bot

\

2.9 Worker Logic

21

2.9 Worker Logic

bpkg.bindist.archive.post

#

bx -v <pkg-config-hook-script> <pkg-config-hook-script-args> \
<distribution-package-file>...

If the install operation is supported by the package and
bbot.sys—-install step is enabled:

#

{

If <distribution> is ’'debian’:

S

bbot.sys—-install.apt—-get.update
#
sudo apt-get update

bbot.sys—-install.apt—-get.install

#
sudo apt-get install <distribution-package-file>...

Otherwise, if <distribution> is ’fedora’:

— o W

bbot.sys—-install.dnf.install
#
sudo dnf install <distribution-package-file>...

Otherwise, if <distribution> is ’archive’:

— o W

For each package file:
#

{
bbot.sys—-install.tar.extract
#
[sudo] tar —-xf <distribution-package-file> \
<env-config-args> <tgt-config-args> <pkg-config-args>

If bbot.sys-install.ldconfig step is enabled:
#
{

bbot.sys—-install.ldconfig

#

sudo ldconfig

If the main package is installed either from source or from the
binary distribution package:
#

{
If the package contains subprojects that support the test
operation:
#

22 The build2 Build Bot Revision 0.18, May 2025

2.9 Worker Logic

S

b.test-installed.create (: b.create)

S

b -V create <env-modules> \
<env-config-args> <tgt-config-args> <pkg-config-args>

For each test subproject:

b.test-installed.configure (: b.configure)
#
b -v configure [<pkg-config-vars>]

b.test-installed.test

S

b -v test

If task manifest refers to any (runtime) tests, examples, or
benchmarks packages:

— e o o

bpkg.test-separate-installed.create (

bpkg.test-separate-installed.create_for_target

bpkg.test-separate—-installed.create)

#

bpkg -V create --uuid <target-installed-uuid> <env-modules> \
<env-config-args> <tgt-config-args> <pkg-config-args>

bpkg.test-separate-installed.configure.add (
: bpkg.configure.add)

#

bpkg -v add <repository-url>

bpkg.test-separate-installed.configure.fetch (
: bpkg.configure. fetch)

#

bpkg -v fetch —--trust <repository-fp>

bpkg.test-separate-installed.configure.build (

bpkg.global.configure.build,

(bpkg.test-separate-installed.configure.build_for_target
bpkg.test-separate-installed.configure.build))

#

bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \
([{ <test-config-vars> }+] \
<test-package—-name>|[<test-version-constraint>])... \
?sys:<package-name>/<package-version> \
[?sys:<dependency-name>[<dependency-version-constraint>]...] \
[({ ——config-uuid <target—-installed-uuid> \
[<dep-config-vars>] }+ \
(?[sys:]|sys:)<dependency—name> \
[<dependency-version-constraint>])...]

For each (runtime) tests, examples, or benchmarks package
referred to by the task manifest:
#
{
bpkg.test-separate-installed.update (: bpkg.update)
#

Revision 0.18, May 2025 The build2 Build Bot 23

2.9 Worker Logic

bpkg -v update <package-name>

bpkg.test-separate-installed.test (: bpkg.test)
#
bpkg -v test <package-name>

If the main package is installed from the binary distribution package:
#
{

If <distribution> is ’‘debian’:

#
{
bbot.sys-uninstall.apt—-get.remove
#
sudo apt-get remove <distribution-package-name>...
}
#
Otherwise, if <distribution> is ’ fedora’:
#
{
bbot.sys—uninstall.dnf.remove
#
sudo dnf remove <distribution-package-name>...
}
#
Otherwise, if <distribution> is ’archive’:
#
{
Noop.
}
}
If the main package is installed from source:

bpkg.uninstall
#
bpkg -v uninstall <package—-name>

If the install operation is supported by the package and
bbot.bindist.upload step is enabled:
#
{

Move the generated binary distribution files to the
upload/bindist/<distribution>/ directory.

If bbot.upload step is enabled and upload/ directory is not empty:
#

{
bbot.upload.tar.create

#
tar -cf upload.tar upload/

bbot.upload.tar.list

#
tar -tf upload.tar upload/

24 The build2 Build Bot Revision 0.18, May 2025

2.9 Worker Logic

end
#
This step id can only be used as a breakpoint.

Worker script for host packages:

If configuration is self-hosted:
#

{
bpkg.create (bpkg.host.create : b.create, bpkg.create)
#
bpkg -V create —--type host -d <host-conf> —--uuid <host-uuid> \
<env-modules> <env-config-args> <tgt-config-args> \
<pkg-config-args>

Otherwise:

— o W

[bpkg.create]
#
b -V create(<host-conf>, cc) config.config.load=~host-no-warnings

bpkg -v create —-—-existing —--type host -d <host-conf> \
—-—uuid <host-uuid>

bpkg.configure.add
#
bpkg -v add -d <host-conf> <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch -d <host-conf> —--trust <repository-fp>

If configuration is self-hosted and config.install.root is specified:
#

{
bpkg.create (bpkg.target.create : b.create, bpkg.create)
#
bpkg -V create -d <install-conf> --uuid <install-uuid> <env-modules> \
<env-config-args> <tgt-config-args> <pkg-config-args>

[bpkg.link]
#
bpkg -v link -d <install-conf> <host-conf>

bpkg.configure.add
#
bpkg -v add -d <install-conf> <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch -d <install-conf> —--trust <repository-fp>

If task manifest refers to any build-time tests, examples, or
benchmarks packages:

#

{

Revision 0.18, May 2025 The build2 Build Bot 25

2.9 Worker Logic

bpkg.create (bpkg.target.create : b.create, bpkg.create)

#

bpkg -V create -d <target-conf> —--uuid <target—-uuid> <env-modules> \
<env-config-args> <tgt-config-args> <pkg-config-args>

[bpkg.create]
#
b -V create(<module-conf>, cc) config.config.load=~build2-no-warnings

bpkg -v create —-—-existing —--type build2 -d <module-conf> \
—-—uuid <module-uuid>

[bpkg.link]

#

bpkg -v link -d <target-conf> <host-conf>
bpkg -v link -d <target-conf> <module-conf>
bpkg -v link -d <host-conf> <module-conf>

If configuration is self-hosted and config.install.root is
specified:
#
{
[bpkg.link]
#
bpkg -v link -d <install-conf> <module-conf>

bpkg.configure.add
#
bpkg -v add -d <target-conf> <repository-url>

bpkg.configure.fetch

#
bpkg -v fetch -d <target-conf> --trust <repository-fp>

bpkg.configure.build (bpkg.global.configure.build)

#

Notes:

#

— Some parts may be omitted.

#

— Parts related to different configurations have different prefix
step ids:

#

bpkg.host.configure.build for <host-uuid>

bpkg.target.configure.build for <install-uuid>

bpkg.target.configure.build for <target-uuid>

#

— All parts have the same fallback step ids: b.configure and
bpkg.configure.build.

#

bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-opts>] \
\
{ ——config-uuid <host-uuid> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\

{ ——config-uuid <install-uuid> \

26 The build2 Build Bot Revision 0.18, May 2025

<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-vars>] }+ \

<package-name>/<package-version> \

\
({ ——config-uuid <host-uuid> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<test-config-vars>] }+ \
<runtime-test-package—-name>[<test-version-constraint>])... \
\
({ ——config-uuid <target-uuid> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<test-config-vars>] }+ \
<buildtime-test-package—name>[<test-version-constraint>])... \
\
({ ——config-uuid <host-uuid> [--config-uuid <install-uuid>] \
[<dep-config-vars>] }+ \
(?|sys:)<dependency—name>[<dependency-version-constraint>]) ... \
\
[?sys:<dependency—-name>[<dependency-version-constraint>]...] \
\
({ (=—config-uuid <(target|host|module|install)—uuid>)... \
[<dep-config-vars>] }+ \
(?[sys:]|sys:)<dependency—name>[<dependency-version-constraint>]) ...
bpkg.update

#

bpkg -v update -d <host-conf> <package-name>

#
#
{

— o o

— e o o

If the test operation is supported by the package:

bpkg.test
#
bpkg -v test -d <host-conf> <package—-name>

If configuration is self-hosted, then for each runtime tests,
examples, or benchmarks package referred to by the task manifest:
bpkg.test-separate.update (: bpkg.update)

#

bpkg -v update -d <host-conf> <package-name>

bpkg.test-separate.test (: bpkg.test)
#
bpkg -v test -d <host-conf> <package—-name>

For each build-time tests, examples, or benchmarks package referred
to by the task manifest:

bpkg.test-separate.update (: bpkg.update)

#

bpkg -v update -d <target-conf> <package-name>

bpkg.test-separate.test (: bpkg.test)
#
bpkg -v test -d <target-conf> <package-name>

Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

27

2.9 Worker Logic

If configuration is self-hosted, the install operation is supported
by the package, config.install.root is specified, and no
bpkg.bindist. {debian, fedora,archive} step is enabled:

— S o W

bpkg.install
#
bpkg -v install -d <install-conf> <package—-name>

If bbot.install.ldconfig step is enabled:
#
{

bbot.install.ldconfig

#

sudo ldconfig

If configuration is self-hosted, the install operation is supported
by the package, and bpkg.bindist.{debian, fedora,archive} step is
enabled:

— S o W W

bpkg.bindist.{debian, fedora,archive}

#

bpkg -v bindist —--distribution <distribution> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
<package-name>

If both the bpkg.bindist.archive and bpkg.bindist.archive.post
steps are enabled:
#

{
bpkg.bindist.archive.post
#
bx -v <pkg-config-hook-script> <pkg-config-hook-script-args> \
<distribution-package-file>...

If the install operation is supported by the package and
bbot.sys—-install step is enabled:

— o oW

If <distribution> is ’‘debian’:
#

bbot.sys—-install.apt-get.update
#
sudo apt-get update

bbot.sys—-install.apt—-get.install

#
sudo apt-get install <distribution-package-file>...

Otherwise, if <distribution> is ’fedora’:

— o W

bbot.sys—-install.dnf.install
#
sudo dnf install <distribution-package-file>...

28 The build2 Build Bot Revision 0.18, May 2025

— o W

S

S

2.9 Worker Logic

Otherwise, if <distribution> is ’archive’:

For each package file:

bbot.sys-install.tar.extract
#
[sudo] tar —-xf <distribution-package-file> \
<env-config-args> <tgt-config-args> <pkg-config-args>

If bbot.sys-install.ldconfig step is enabled:

bbot.sys—-install.ldconfig
#
sudo ldconfig

If the main package is installed either from source or from the
binary distribution package:

#
{

If the package contains subprojects that support the test
operation:

#
{
b.test-installed.create (: b.create)
#
b -V create <env-modules> \
<env-config-args> <tgt-config-args> <pkg-config-args>
For each test subproject:
#
{
b.test-installed.configure (: b.configure)
#
b -v configure [<pkg-config-vars>]
}
b.test-installed.test
#
b -v test
}
If task manifest refers to any tests, examples, or benchmarks
packages:
#
{
bpkg.test-separate—-installed.create (
bpkg.test-separate—-installed.create_for_host
bpkg.test-separate—-installed.create)
#

bpkg -V create --type host -d <host-conf> \

——-uuid <host-installed-uuid> <env-modules> \
<env-config-args> <tgt-config-args> <pkg-config-args>

Revision 0.18, May 2025 The build2 Build Bot 29

2.9 Worker Logic

If task manifest refers to any runtime tests, examples, or
benchmarks packages:
#
{

bpkg.test-separate-installed.configure.add (
: bpkg.configure.add)

#

bpkg -v add -d <host-conf> <repository-url>

bpkg.test-separate-installed.configure.fetch (

: bpkg.configure. fetch)

#

bpkg -v fetch -d <host-conf> --trust <repository-fp>

If task manifest refers to any build-time tests, examples, or
benchmarks packages:
#
{
bpkg.test-separate-installed.create (
bpkg.test-separate-installed.create_for_host
bpkg.test-separate—-installed.create)
#
bpkg -V create -d <target-conf> --uuid <target-installed-uuid> \
<env-modules> <env-config-args> <tgt-config-args> \
<pkg-config-args>

[bpkg.test-separate-installed.create]

#

b -V create (<module-conf>, cc) \
config.config.load=~build2-no-warnings

bpkg -v create —--existing —--type build2 -d <module-conf> \
—-—uuid <module-installed-uuid>

[bpkg.test-separate-installed.link]

#

bpkg -v link -d <target-conf> <host-conf>
bpkg -v link -d <target-conf> <module-conf>
bpkg -v link -d <host-conf> <module-conf>

bpkg.test-separate-installed.configure.add (
: bpkg.configure.add)

#

bpkg -v add -d <target-conf> <repository-url>

bpkg.test-separate-installed.configure.fetch (

: bpkg.configure. fetch)

#

bpkg -v fetch -d <target-conf> —--trust <repository-fp>

bpkg.test-separate-installed.configure.build (
bpkg.global.configure.build,
(bpkg.test-separate—-installed.configure.build_for_host
bpkg.test-separate-installed.configure.build))

Note that any of the runtime or build-time tests related parts

#
#
#
#
#
#
(but not both) may be omitted.
#

bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \

30 The build2 Build Bot Revision 0.18, May 2025

2.9 Worker Logic

\
({ ——config—-name <host-conf> [<test-config-vars>] }+ \
<runtime-test-package—-name>[<test-version-constraint>])... \
\
({ ——config-name <target—-conf> [<test-config-vars>] }+ \
<buildtime-test-package—name>[<test-version-constraint>])... \
\
?sys:<package-name>/<package-version> \
\
[?sys:<dependency—-name>[<dependency-version-constraint>]...] \
\
({ (=—config-uuid <(target|host|module)—installed—uuid>)... \
[<dep-config-vars>] }+ \
(?[sys:]|sys:)<dependency—name> \
[<dependency-version-constraint>]) ...

For each tests, examples, or benchmarks package referred
to by the task manifest:
#
{
bpkg.test-separate-installed.update (: bpkg.update)
#
bpkg -v update <package-name>

bpkg.test-separate-installed.test (: bpkg.test)
#
bpkg -v test <package-name>

If the main package is installed from the binary distribution package:
#
{

If <distribution> is ’‘debian’:

#
{
bbot.sys-uninstall.apt-get.remove
#
sudo apt-get remove <distribution-package-name>...
}
#
Otherwise, if <distribution> is ’ fedora’:
#
{
bbot.sys—uninstall.dnf.remove
#
sudo dnf remove <distribution-package-name>...
}
#
Otherwise, if <distribution> is ’archive’:
#
{

Noop.

If the main package is installed from source:
#

{
bpkg.uninstall

#

Revision 0.18, May 2025 The build2 Build Bot 31

2.9 Worker Logic

bpkg -v uninstall -d <install-conf> <package—-name>

If the install operation is supported by the package and
bbot .bindist.upload step is enabled:

— o W

Move the generated binary distribution files to the
upload/bindist/<distribution>/ directory.

If bbot.upload step is enabled and upload/ directory is not empty:

bbot.upload.tar.create
#
tar -cf upload.tar upload/

bbot.upload.tar.list

#
tar -tf upload.tar upload/

end

S

This step id can only be used as a breakpoint.

Worker script for module packages:

If configuration is self-hosted:
#

{
bpkg.create (bpkg.module.create)
#
b -V create (<module-conf>, <env-modules>) config.config.load=~build2 \
<env-config-args> <tgt-config-args> <pkg-config-args>

bpkg -v create —--existing —--type build2 -d <module-conf> \
—-—uuid <module-uuid>

Otherwise:

— o W

[bpkg.create]
#
b -V create(<module-conf>, cc) config.config.load=~build2-no-warnings

bpkg -v create —--existing —--type build2 -d <module-conf> \

——uuid <module-uuid>

bpkg.configure.add
#
bpkg -v add -d <module-conf> <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch -d <module-conf> --trust <repository-fp>

If configuration is self-hosted and config.install.root is specified:

32 The build2 Build Bot Revision 0.18, May 2025

— e o o

HE oS S 3 S S S 3 e S Sk

bpkg.create (bpkg.module.create)

#

b -V create(<install-conf>, <env-modules>) \
config.config.load=~build2 \
<env-config-args> <tgt-config-args> <pkg-config-args>

bpkg -v create --existing -d <install-conf> --uuid <install-uuid>

bpkg.configure.add
#
bpkg -v add -d <install-conf> <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch -d <install-conf> —--trust <repository-fp>

If task manifest refers to any (build-time) tests, examples, or
benchmarks packages:

bpkg.create (bpkg.target.create : b.create, bpkg.create)

#

bpkg -V create -d <target-conf> —--uuid <target-uuid> \
<env-modules> <env-config-args> <tgt-config-args> \
<pkg-config-args>

[bpkg.create]
#

b -V create(<host-conf>, cc) config.config.load=~host-no-warnings

bpkg -v create —-—-existing —--type host -d <host-conf> \
—-—uuid <host-uuid>

[bpkg.link]

#

bpkg -v link -d <target-conf> <host-conf>
bpkg -v link -d <target-conf> <module-conf>
bpkg -v link -d <host-conf> <module-conf>

bpkg.configure.add

#

bpkg -v add -d <target-conf> <repository-url>

bpkg.configure.fetch

#

bpkg -v fetch -d <target-conf> —--trust <repository-fp>
bpkg.configure.build (bpkg.global.configure.build)

Notes:

— Some parts may be omitted.

— Parts related to different configurations have different prefix

step ids:

bpkg.module.configure.build for <module-uuid>
bpkg.target.configure.build for <install-uuid>

Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

33

2.9 Worker Logic

bpkg.target.configure.build for <target-uuid>

#
#
— All parts have the same fallback step ids: b.configure and
bpkg.configure.build.
#
bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-opts>] \
\
{ ——config-uuid <module-uuid> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
{ ——config-uuid <install-uuid> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-vars>] }+ \
<package-name>/<package-version> \

\
({ ——config-uuid <target-uuid> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<test-config-vars>] }+ \
<buildtime-test-package—name>[<test-version-constraint>])... \
\
({ ——config-uuid <host-uuid> [--config-uuid <install-uuid>] \
[<dep-config-vars>] }+ \
(?|sys:)<dependency—name>[<dependency-version-constraint>]) ... \
\
[?sys:<dependency—-name>[<dependency-version-constraint>]...] \
({ (-—config-uuid <(target|host|module|install)—uuid>)... \
[<dep-config-vars>] }+ \
(?[sys:]|sys:)<dependency—name>[<dependency-version-constraint>]) ...

bpkg.update
#
bpkg -v update -d <module-conf> <package-name>

If the test operation is supported by the package:
#
{

bpkg.test

#

bpkg -v test -d <module-conf> <package-name>

For each (build-time) tests, examples, or benchmarks package referred
to by the task manifest:
#
{
bpkg.test-separate.update (: bpkg.update)
#

bpkg -v update -d <target-conf> <package-name>

bpkg.test-separate.test (: bpkg.test)
#
bpkg -v test -d <target-conf> <package-name>

If configuration is self-hosted, the install operation is supported
by the package, config.install.root is specified, and no
bpkg.bindist. {debian, fedora,archive} step is enabled:

.

34 The build2 Build Bot Revision 0.18, May 2025

— S o W W

— e o o

bpkg.install
#
bpkg -v install -d <install-conf> <package—-name>

If bbot.install.ldconfig step is enabled:
#
{

bbot.install.ldconfig

#

sudo ldconfig

If configuration is self-hosted, the install operation is supported

by the package, and bpkg.bindist.{debian, fedora,archive} step is
enabled:

bpkg.bindist.{debian, fedora,archive}

#

bpkg -v bindist —--distribution <distribution> \
<env-config-args> <tgt-config-args> <pkg-config-args> \
<package-name>

If both the bpkg.bindist.archive and bpkg.bindist.archive.post
steps are enabled:
#
{
bpkg.bindist.archive.post
#
bx -v <pkg-config-hook-script> <pkg-config-hook-script-args> \
<distribution-package-file>...

If the install operation is supported by the package and
bbot.sys—-install step is enabled:
If <distribution> is ’‘debian’:
#
{
bbot.sys—-install.apt—-get.update
#
sudo apt-get update
bbot.sys—-install.apt—-get.install
#
sudo apt-get install <distribution-package-file>...
}
#
Otherwise, if <distribution> is ’ fedora’:
#
{
bbot.sys—-install.dnf.install
#
sudo dnf install <distribution-package-file>...
}
#
Otherwise, if <distribution> is ’archive’:
#

Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

35

2.9 Worker Logic

For each package file:
#
{
bbot.sys-install.tar.extract
#
[sudo] tar —-xf <distribution-package-file> \
<env-config-args> <tgt-config-args> <pkg-config-args>

If bbot.sys-install.ldconfig step is enabled:
#
{

bbot.sys—-install.ldconfig

#

sudo ldconfig

If the main package is installed either from source or from the
binary distribution package:
#
{
If task manifest refers to any (build-time) tests, examples, or
benchmarks packages:
#
{
[bpkg.test-separate-installed.create]
#
b -V create (<module-conf>, cc) \
config.config.load=~build2-no-warnings

bpkg -v create —--existing —--type build2 -d <module-conf> \
—-—uuid <module-installed-uuid>

bpkg.test-separate-installed.create (

bpkg.test-separate-installed.create_for_module

bpkg.test-separate-installed.create)

#

bpkg -V create -d <target-conf> --uuid <target-installed-uuid> \
<env-modules> <env-config-args> <tgt-config-args> \
<pkg-config-args>

bpkg.test-separate-installed.create (

bpkg.test-separate-installed.create_for_module

bpkg.test-separate—-installed.create)

#

bpkg -V create --type host -d <host-conf> \
——uuid <host-installed-uuid> <env-modules> \
<env-config-args> <tgt-config-args> <pkg-config-args>

[bpkg.test-separate-installed.link]

#

bpkg -v link -d <target-conf> <host-conf>
bpkg -v link -d <target-conf> <module-conf>
bpkg -v link -d <host-conf> <module-conf>

bpkg.test-separate-installed.configure.add (
: bpkg.configure.add)

#

bpkg -v add -d <target-conf> <repository-url>

36 The build2 Build Bot Revision 0.18, May 2025

bpkg.test-separate-installed.configure.fetch (

: bpkg.configure. fetch)

#

bpkg -v fetch -d <target-conf> —--trust <repository-fp>

bpkg.test-separate-installed.configure.build (

bpkg.global.configure.build,

(bpkg.test-separate-installed.configure.build_for_module
bpkg.test-separate-installed.configure.build))

#

bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \

\

({ ——config—-name <target—-conf> [<test-config-vars>] }+ \
<buildtime-test-package—name>[<test-version-constraint>])... \
\
?sys:<package-name>/<package-version> \
\
[?sys:<dependency—-name>[<dependency-version-constraint>]...] \
\

({ (=—config-uuid <(target|host|module)—installed—uuid>)... \

[<dep-config-vars>] }+ \
(?[sys:]|sys:)<dependency—name> \

[<dependency-version-constraint>]) ...

For each (build-time) tests, examples, or benchmarks package
referred to by the task manifest:
#
{
bpkg.test-separate-installed.update (: bpkg.update)
#
bpkg -v update -d <target-conf> <package-name>

bpkg.test-separate-installed.test (: bpkg.test)
#
bpkg -v test -d <target-conf> <package-name>

If the main package is installed from the binary distribution package:
#
{

If <distribution> is ’‘debian’:
#
{
bbot.sys-uninstall.apt-get.remove
#
sudo apt-get remove <distribution-package-name>...
}
#
Otherwise, if <distribution> is ’ fedora’:
#
{
bbot.sys—uninstall.dnf.remove
#
sudo dnf remove <distribution-package-name>...
}
#
Otherwise, if <distribution> is ’archive’:
#

Revision 0.18, May 2025 The build2 Build Bot

2.9 Worker Logic

37

2.9 Worker Logic

Noop.

If the main package is installed from source:

bpkg.uninstall
#
bpkg -v uninstall -d <install-conf> <package—-name>

If the install operation is supported by the package and
bbot .bindist.upload step is enabled:

— o

Move the generated binary distribution files to the
upload/bindist/<distribution>/ directory.

If bbot.upload step is enabled and upload/ directory is not empty:

bbot.upload.tar.create
#
tar -cf upload.tar upload/

bbot.upload.tar.list

#
tar -tf upload.tar upload/

end

4 =

This step id can only be used as a breakpoint.

For details on configuring and testing installation refer to [Controller Logic|

If a primary or test package comes from a version control-based repository, then its dist
meta-operation is also tested as a part of the bpkg[.*].configure.build steps by
re-distributing the source directory in the load distribution mode after configuration.

If the build is interactive, then the worker pauses its execution at the specified breakpoint and
prompts the user whether to continue or abort the execution. If the breakpoint is a step id, then
the worker pauses prior to executing every command of the specified step. Otherwise, the
breakpoint denotes the result status and the worker pauses if the command results with the
specified or more critical status (see [Result Manifest).

As an example, the following POSIX shell script can be used to setup the environment for
building C and C++ packages with GCC 9 on most Linux distributions.

#!/bin/sh

Environment setup script for C/C++ compilation with GCC 9.

#
$1 - target
$2 - bbot executable

38 The build2 Build Bot Revision 0.18, May 2025

2.9.1 Bindist Result Manifest

$3+ — bbot options

set —-e # Exit on errors.

mode=
case "$1" in
x86_64-%*)
#mode=-m64
1?286-%*)

mode=-m32
i
*)
echo "unknown target: ’$1'" 1>&2
exit 1
i
esac
shift

exec "$@" cc config.c="gcc-9 $mode" config.cxx="g++-9 S$mode"

2.9.1 Bindist Result Manifest

At the bbot .bindist .upload step the worker also creates the
bindist-result.json and bindist-result.manifest files in the
upload/bindist/<distribution>/ directory, next to the generated binary distribu-
tion package files. The bindist-result. json file contains the structured JSON output
of the bpkg-pkg-bindist (1) command. The bindist-result.manifest file
contains the subset of the information from bindist-result. json. Specifically, it starts
with the binary distribution package header manifest followed by a list of package file mani-
fests. The manifest values are:

distribution:
architecture:
os—-release—name-id:
os-release-version-id:
package—-name:
package-version:
[package-system-version]:

package-file-type:
package-file-path:
[package-file-system—name] :

The manifest values derive from the corresponding JSON object values and preserve their
semantics. The only differences are that the os-release-version-id value may not be
absent and the package—file-path values are relative to the
upload/bindist/<distribution>/ directory and are in the POSIX representation.
See bpkg-pkg-bindist (1) for the JSON values semantics.

Revision 0.18, May 2025 The build2 Build Bot 39

2.10 Controller Logic

2.10 Controller Logic

A bbot controller that issues own build tasks maps available build machines (as reported by
agents) to build target configurations according to the buildtab configuration file. Blank
lines and lines that start with # are ignored. All other lines in this file have the following
format:

<machine-pattern> <target-config> <target>[/<environment>] <classes> [<tgt-config-arg>]* [<warning-regex>]*

<tgt-config-arg> = [[+|-]<prefix>:] (<variable>|<option>) | \
(+]-) <prefix>:
<prefix> = <tool>[.<cfg-type>][.<phase>][.<operation>[.<command>]]

Where <machine-pattern> is filesystem wildcard pattern that is matched against avail-
able machine names, <target—-config> is the target configuration name, <target> is
the build target, optional <environment> is the build environment name, <classes> is a
space-separated list of configuration classes that is matched against the package configuration
*—puilds values, optional <tgt-config-arg> list is additional configuration options
and variables, and optional <warning-regex> list is additional regular expressions that
should be used to detect warnings in the logs.

The build target configurations can belong to multiple classes with their names reflecting
some common configuration aspects, such as the operating system, compiler, build options,
etc. Predefined class names are default, all, hidden, none, host, and build2. The
default target configurations are built by default. A configuration must also belong to the
all, hidden, or some special-purpose configuration class. The latter is intended for testing
some optional functionality which packages are not expected to provide normally (for
example, relocatable installation). A configuration that is self-hosted must also belong to the
host class and, if it is also self-hosted for build system modules, to the build2 class. Valid
custom class names must contain only alpha-numeric characters, _, +, —, and ., except as the
first character for the last three. Class names that start with _ are reserved for the future
hidden/special class functionality.

Regular expressions must start with ~, to be distinguished from target configuration options
and variables. Note that the <tgt-config—-arg> and <warning-regex> lists have the
same quoting semantics as in the target-config and the warning-regex value in the
build task manifest. The matched machine name, the target, the environment name, configura-
tion options/variables, and regular expressions are included into the build task manifest.

Values in the <tgt-config—arg> list can be optionally prefixed with the step id or a
leading portion thereof to restrict it to a specific step, operation, phase, or tool in the worker
script (see Worker Logic). The prefix can optionally begin with the + or — character (in this
case the argument can be omitted) to enable or disable the respective step. The steps which
can be enabled or disabled are:

bpkg.update

bpkg.test
bpkg.test-separate.update
bpkg.test-separate.test

40 The build2 Build Bot Revision 0.18, May 2025

2.10 Controller Logic

Disabled if bpkg.bindist.* is enabled.
#
bpkg.install

Disabled by default.
#
bbot.install.ldconfig

Disabled by default.
#
bpkg.bindist. {debian, fedora,archive}

Disabled if bpkg.bindist.* is disabled.
#
bbot.sys—-install

Disabled by default.
#
bbot.sys—-install.ldconfig

b.test-installed.create
b.test-installed.test
bpkg.test-separate—-installed.create
bpkg.test-separate-installed.update
bpkg.test-separate-installed.test

Disabled by default.
#
bbot .bindist.upload

bbot .upload

Note that the bpkg.bindist.* steps are mutually exclusive and only the last step status
change via the (+|-)bpkg.bindist.* prefix is considered.

Unprefixed values only apply to the *.create[_for_*] steps. Note that options with
values can only be specified using the single argument notation. For example:

bpkg:-—fetch-timeout=600 \
bpkg.configure.fetch:--fetch-timeout=60 \
+bpkg.bindist.debian: \
b:-j1

Note that each machine name is matched against every pattern and all the patterns that match
produce a target configuration. If a machine does not match any pattern, then it is ignored
(meaning that this controller is not interested in testing its packages with this machine). If
multiple machines match the same pattern, then only a single target configuration using any of
the machines is produced (meaning that this controller considers these machines equivalent).

As an example, let’s say we have a machine named windows_10-vc_14. 3. If we wanted
to test both 32 and 64-bit as well as debug and optimized builds, then we could have gener-
ated the following target configurations:

windows*-msvc_14* windows-msvc_14-27 i686-microsoft-win32-msvcld.0 "all default msvc 1686 debug" config.cc.coptions=/Z7 config.cc.loptions=/DEBUG ~"warning C4\d{3}: "
windows*-msvc_14* windows-msvc_14-02 i686-microsoft-win32-msvcl4.0 "all default msvc 1686 optimized" config.cc.coptions=/02 ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-27 x86_64-microsoft-win32-msvcld.0 "all default msvc x86_64 debug" config.cc.coptions=/27 config.cc.loptions=/DEBUG ~"warning C4\d{3}: "

windows*-msve_14* windows-msvc_14-02 x86_64-microsoft-win32-msvcl4.0 "all default msvc x86_64 optimized" config.cc.coptions=/02 ~"warning C4\d{3}: "

Revision 0.18, May 2025 The build2 Build Bot 41

2.10 Controller Logic

In the above example we could handle both 1686 and x86_64 architectures with the same
machine but this may not always be possible and we may have to use different machines for
different configuration/target combinations. For example:

x86_64_linux_debian_1ll*-gcc_12.2 1linux_debian_11l-gcc_12.2 i686-linux—gnu
x86_64_linux_debian_1ll*-gcc_12.2 linux_debian_1l1l-gcc_12.2 x86_64-1linux—gnu

aarch64_linux_debian_11l*-gcc_12.2 linux_debian_1l1l-gcc_12.2 aarch64-linux—-gnu

As another example, let’s say we have linux_fedora_25-gcc_6 and
linux_ubuntu_16.04-gcc_6. If all we cared about is testing GCC 6 64-bit builds on
Linux, then our target configurations could look like this:

linux*-gcc_6 linux-gcc_6-g x86_64-1linux—gnu "all default gcc debug" config.cc.coptions=-g

linux*-gcc_6 linux-gcc_6-03 x86_64-linux—gnu "all default gcc optimized" config.cc.coptions=-03

A build target configuration class can derive from another class in which case target configu-
rations that belong to the derived class are treated as also belonging to the base class (or
classes, recursively). The derived and base class names are separated with : (no leading or
trailing spaces allowed) and the base must be present in the first mentioning of the derived
class. For example:

linux*-gcc_6 linux-gcc_6-g x86_64-1linux—-gnu "all gcc-6+ debug" config.cc.coptions=-g
linux*-gcc_6 linux-gcc_6-03 x86_64-1linux—-gnu "all gcc-6+ optimized" config.cc.coptions=-03
linux*-gcc_7 linux-gcc_7-g x86_64-linux—-gnu "all gcc-7+:gcc-6+ debug" config.cc.coptions=-g

linux*-gcc_7 linux-gcc_7-03 x86_64-1linux—gnu "all gcc-7+ optimized" config.cc.coptions=-03

A machine pattern consisting of a single — is a placeholder entry. Everything about a place-
holder is ignored except for the class inheritance information. Note, however, that while all
other information is ignored, the configuration name and target must be present but can also
be —. For example:

linux*-gcc_6 linux-gcc_6 x86_64-1linux—-gnu "all gcc-6+ "
- - - " gcc—-T7+:gcc—-6+"
linux*-gcc_8 linux-gcc_8 x86_64-1linux—-gnu "all gcc-8+:gcc—-7+"

If the <tgt-config—arg> list contains the config.install.root variable that
applies to the bpkg.target.create or, as a fallback, b.create or bpkg.create
steps, then in addition to building and possibly running tests, the bbot worker will also test
installing and uninstalling each package (unless replaced with the bbot.sys—-install
step). Furthermore, if the package contains subprojects that support the test operation and/or
refers to other packages via the tests, examples, or benchmarks manifest values which
are not excluded by the bbot controller, then the worker will additionally build such subpro-
jects/packages against the installation (created either from source or from the binary distribu-
tion package) and run their tests (test installed and test separate installed phases).

42 The build2 Build Bot Revision 0.18, May 2025

2.10 Controller Logic

Two types of installations can be tested: system and private. A system installation uses a
well-known location, such as /usr or /usr/local, that will be searched by the compiler
toolchain by default. A private installation uses a private directory, such as /opt, that will
have to be explicitly mentioned to the compiler. While the system installation is usually
preferable, it may not be always usable because of the potential conflicts with the already
installed software, for example, by the system package manager.

As an example, the following two target configurations could be used to test system and
private installations:

Llinux*-gec* linux-gec-sysinstall x86_64-linux-gnu "all default gec" config.install.root=/usr config.install.sudo=sudo

linux*-gce* linux-gec-prvinstall x86_64-linux-gnu "all default goc" config.install.root=/tmp/install config.cc.poptions=-I/tmp/install/include config.cc.loptions=-L/tmp/install/lib config.bin.rpath=/tmp/install/lib

Note also that while building and running tests against the installation created either from
source or from the archive distribution package the worker makes the bin subdirectory of
config.install.root the first entry in the PATH environment variable, except for build
system modules which supposedly don’t install any executables. As was mentioned earlier,
normally the config.install.root variable is expected to be prefixed with the
bpkg.target.create or, as a fallback, b.create or bpkg.create step ids.
However, for testing of the relocatable installations it can be desirable to extract the archive
distribution package content at the bbot.sys-install.tar.extract step into a
different installation directory. If that’s the case, then this directory needs to also be specified
as bbot.sys—-install:config.install.root. If specified, this directory will be
preferred as a base for forming the bin/ directory path.

The bbot controller normally issues the build task by picking an unbuilt package configura-
tion and one of the produced (via the machine names match) target configurations, which is
not excluded from building due to this package configuration *-builds,
*-build-include, and *-build-exclude manifest values.

Revision 0.18, May 2025 The build2 Build Bot 43

	Preface
	1 Introduction
	2 Architecture
	2.1 Configurations
	2.1.1 Build Machine Configuration
	2.1.2 Build Target Configuration
	2.1.3 Build Package Configuration
	2.1.4 Auxiliary Machines and Configurations

	2.2 Machine Header Manifest
	2.2.1 id
	2.2.2 name
	2.2.3 summary
	2.2.4 role
	2.2.5 ram-minimum, ram-maximum

	2.3 Machine Manifest
	2.3.1 type
	2.3.2 mac
	2.3.3 options
	2.3.4 changes

	2.4 Task Manifest
	2.4.1 name
	2.4.2 version
	2.4.3 repository-url
	2.4.4 repository-type
	2.4.5 trust
	2.4.6 requires, tests, examples, benchmarks
	2.4.7 dependency-checksum
	2.4.8 machine
	2.4.9 auxiliary-machine
	2.4.10 target
	2.4.11 environment
	2.4.12 auxiliary-environment
	2.4.13 target-config
	2.4.14 package-config
	2.4.15 host
	2.4.16 warning-regex
	2.4.17 interactive
	2.4.18 worker-checksum

	2.5 Result Manifest
	2.5.1 name
	2.5.2 version
	2.5.3 status
	2.5.4 *-status
	2.5.5 *-log
	2.5.6 dependency-checksum
	2.5.7 worker-checksum

	2.6 Task Request Manifest
	2.6.1 agent
	2.6.2 toolchain-name
	2.6.3 toolchain-version
	2.6.4 interactive-mode
	2.6.5 interactive-login
	2.6.6 fingerprint
	2.6.7 auxiliary-ram

	2.7 Task Response Manifest
	2.7.1 session
	2.7.2 challenge
	2.7.3 result-url
	2.7.4 *-upload-url
	2.7.5 agent-checksum

	2.8 Result Request Manifest
	2.8.1 session
	2.8.2 challenge
	2.8.3 agent-checksum

	2.9 Worker Logic
	2.9.1 Bindist Result Manifest

	2.10 Controller Logic

