
The build2 Build Bot

Copyright © 2014-2024 the build2 authors (see the AUTHORS file).

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.18, November 2024

This revision of the document describes the build2 build bot 0.18.x series.

Table of Contents

................... 1Preface

.................. 11 Introduction

................. 12 Architecture

............... 22.1 Configurations

........... 32.1.1 Build Machine Configuration

........... 42.1.2 Build Target Configuration

........... 42.1.3 Build Package Configuration

........ 42.1.4 Auxiliary Machines and Configurations

............. 52.2 Machine Header Manifest

................. 62.2.1 id

................ 62.2.2 name

............... 62.2.3 summary

................ 62.2.4 role

.......... 62.2.5 ram-minimum, ram-maximum

............... 62.3 Machine Manifest

................ 72.3.1 type

................ 72.3.2 mac

............... 72.3.3 options

............... 72.3.4 changes

................ 82.4 Task Manifest

................ 92.4.1 name

............... 92.4.2 version

............. 92.4.3 repository-url

............ 92.4.4 repository-type

................ 92.4.5 trust

..... 92.4.6 requires, tests, examples, benchmarks

........... 102.4.7 dependency-checksum

............... 102.4.8 machine

............ 102.4.9 auxiliary-machine

............... 102.4.10 target

............. 102.4.11 environment

.......... 112.4.12 auxiliary-environment

............. 112.4.13 target-config

............ 122.4.14 package-config

................ 122.4.15 host

............. 122.4.16 warning-regex

............. 132.4.17 interactive

............ 132.4.18 worker-checksum

............... 132.5 Result Manifest

................ 142.5.1 name

iRevision 0.18, November 2024 The build2 Build Bot

Table of Contents

................ 142.5.2 version

................ 142.5.3 status

................ 152.5.4 *-status

................. 152.5.5 *-log

............ 152.5.6 dependency-checksum

............. 152.5.7 worker-checksum

............... 152.6 Task Request Manifest

................. 162.6.1 agent

.............. 162.6.2 toolchain-name

............. 162.6.3 toolchain-version

............. 162.6.4 interactive-mode

............. 162.6.5 interactive-login

............... 172.6.6 fingerprint

.............. 172.6.7 auxiliary-ram

.............. 172.7 Task Response Manifest

................ 172.7.1 session

............... 172.7.2 challenge

............... 182.7.3 result-url

.............. 182.7.4 *-upload-url

.............. 182.7.5 agent-checksum

.............. 182.8 Result Request Manifest

................ 182.8.1 session

............... 192.8.2 challenge

.............. 192.8.3 agent-checksum

................. 192.9 Worker Logic

............. 402.9.1 Bindist Result Manifest

................ 412.10 Controller Logic

Revision 0.18, November 2024ii The build2 Build Bot

Table of Contents

Preface

This document describes bbot, the build2 build bot. For the build bot command line interface

refer to the bbot-agent(1) and bbot-worker(1) man pages.

1 Introduction

2 Architecture

The bbot architecture includes several layers for security and manageability. At the top we have

a bbot running in the controller mode. The controller monitors various build sources for build

tasks. For example, a controller may poll a brep instances for any new packages to built as well

as monitor a git repository for any new commits to test. There can be several layers of

controllers with brep being just a special kind. A machine running a bbot instance in the

controller mode is called a controller host.

Below the controllers we have a bbot running in the agent mode normally on Build OS. The

agent polls its controllers for build tasks to perform. A machine running a bbot instance in the

agent mode is called a build host.

The actual building is performed in the virtual machines and/or containers that are executed on

the build host. Inside virtual machines/containers, bbot is running in the worker mode and

receives build tasks from its agent. Virtual machines and containers running a bbot instance in

the worker mode are collectively called build machines.

In addition to a build machine, a build task may also require one or more auxiliary machines

which provide additional components that are required for building or testing a package and that

are impossible or impractical to provide as part of the build machine itself.

Let’s now examine the workflow in the other direction, that is, from a worker to a controller.

Once a build machine (plus auxiliary machines, if any) are booted (by the agent), the worker

inside the build machine connects to the TFTP server running on the build host and downloads

the build task manifest. It then proceeds to perform the build task and uploads the build artifacts

archive, if any, followed by the build result manifest (which includes build logs) to the TFTP

server.

Unlike build machines, auxiliary machines are not expected to run bbot. Instead, on boot, they

are expected to upload to the TFTP server a list of environment variables to propagate to the build

machine (see the auxiliary-environment task manifest value as well as Worker Logic for

details).

1Revision 0.18, November 2024 The build2 Build Bot

Preface

Once an agent receives a build task for a specific build machine, it goes through the following

steps. First, it creates a directory on its TFTP server with the machine name as its name and

places the build task manifest inside. Next, it makes a throw-away snapshot of the build machine

and boots it. After booting the build machine, the agent monitors the machine directory on its

TFTP server for the build result manifest (uploaded by the worker once the build has completed).

Once the result manifest is obtained, the agent shuts down the build machine and discards its

snapshot.

To obtains a build task the agent polls via HTTP/HTTPS one or more controllers. Before each

poll request the agent enumerates the available build machines and sends this information as part

of the request. The controller responds with a build task manifest that identifies a specific build

machine to use.

In the task request the agent specifies if only non-interactive, interactive, or both build kinds are

supported. If interactive builds are supported, it additionally provides the login information for

interactive build sessions. If the controller responds with an interactive build task, then its mani­

fest specifies the breakpoint the worker must stop the task execution at and prompt the user

whether to continue or abort the execution. The user can log into the build machine, potentially

perform some troubleshooting, and, when done, either answer the prompt or just shutdown the

machine.

If the controller has higher-level controllers (for example, brep), then it aggregates the available

build machines from its agents and polls these controllers (just as an agent would), forwarding

build tasks to suitable agents. In this case we say that the controller act as an agent. The

controller may also be configured to monitor build sources, such as SCM repositories, directly in

which case it generates build tasks itself.

In this architecture the build results and optional build artifacts are propagated up the chain: from

a worker, to its agent, to its controller, and so on. A controller that is the final destination of a

build result uses email to notify interested parties of the outcome. For example, brep would send

a notification to the package owner if the build failed. Similarly, a bbot controller that monitors

a git repository would send an email to a committer if their commit caused a build failure. The

email would include a link (normally HTTP/HTTPS) to the build logs hosted by the controller.

The build artifacts, such as generated binary distribution packages, are normally made available

for the interested parties to download. See Build Artifacts Upload for details on the brep
controller’s implementation of the build artifacts upload handling.

2.1 Configurations

The bbot architecture distinguishes between a build machine configuration, build target config­

uration, and a build package configuration. The machine configuration captures the operating

system, installed compiler toolchain, and so on. The same build machine may be used to "gener­

ate" multiple build target configurations. For example, the same machine can normally be used to

Revision 0.18, November 20242 The build2 Build Bot

2.1 Configurations

produce debug/optimized builds.

2.1.1 Build Machine Configuration

The machine configuration is approximately encoded in its machine name. The machine name is

a list of components separated with -. Components cannot be empty and must contain only

alpha-numeric characters, underscores, dots, and pluses with the whole id being a portably-valid

path component.

The encoding is approximate in a sense that it captures only what’s important to distinguish in a

particular bbot deployment.

The first three components normally identify the architecture, operating system, and optional

variant. They have the following recommended form:

<arch>-[<class>_]<os>[_<version>][-<variant>]

For example:

x86_64-windows
x86_64-windows_10
x86_64-windows_10.1607
x86_64-windows_10-devmode
x86_64-bsd_freebsd_10
x86_64-linux_ubuntu_16.04
x86_64-linux_rhel_9.2-bindist
aarch64-macos_10.12

The last component normally identifies the installed compiler toolchain and has the following

recommended form:

<id>[_<version>][_<vendor>][_<runtime>]

For example:

gcc
gcc_6
gcc_6.3
gcc_6.3_mingw_w64
clang_3.9
clang_3.9_libc++
msvc_14
msvc_14.3
clang_15.0_msvc_msvc_17.6
clang_16.0_llvm_msvc_17.6

Some examples of complete machine names:

3Revision 0.18, November 2024 The build2 Build Bot

2.1.1 Build Machine Configuration

x86_64-windows_10-msvc_14.3
x86_64-macos_10.12-clang_10.0
aarch64-linux_ubuntu_16.04-gcc_6.3
aarch64-linux_rhel_9.2-bindist-gcc_11

2.1.2 Build Target Configuration

Similarly, the build target configuration is encoded in a configuration name using the same

overall format. As described in Controller Logic, target configurations are generated from

machine configurations. As a result, it usually makes sense to have the first component identify

the operating systems and the second component – the compiler toolchain with the rest identify­

ing a particular target configuration variant, for example, optimized, sanitized, etc:

[<class>_]<os>[_<version>]-<toolchain>[-<variant>]

For example:

windows_10-msvc_17.6
windows_10-msvc_17.6-O2
windows_10-msvc_17.6-static_O2
windows_10-msvc_17.6-relocatable
windows_10-clang_16.0_llvm_msvc_17.6_lld
linux_debian_12-clang_16_libc++-static_O3

Note that there is no <arch> component in a build target configuration: this information is best

conveyed as part of <target> as described in Controller Logic.

2.1.3 Build Package Configuration

A package can be built in multiple package configurations per target configuration. A build

package configuration normally specifies the options and/or the package configuration variables

that need to be used for the build. It may also include the information regarding the dependency

packages which need to additionally be configured. The build package configurations originate

from the package manifest *-build-config, *-builds, *-build-include, and

*-build-exclude values. See Package Manifest for more information on these values.

2.1.4 Auxiliary Machines and Configurations

Besides the build machine and the build configuration that is derived from it, a package build

may also involve one or more auxiliary machines and the corresponding auxiliary configurations.

An auxiliary machine provides additional components that are required for building or testing a

package and that are impossible or impractical to provide as part of the build machine itself. For

example, a package may need access to a suitably configured database, such as PostgreSQL, in

order to run its tests.

Revision 0.18, November 20244 The build2 Build Bot

2.1.2 Build Target Configuration

The auxiliary machine name follows the same overall format as the build machine name except

that the last component captures the information about the additional component in question

rather than the compiler toolchain. For example:

x86_64-linux_debian_12-postgresql_16
aarch64-linux_debian_12-mysql_8

The auxiliary configuration name is automatically derived from the machine name by removing

the <arch> component. For example:

linux_debian_12-postgresql_16
linux_debian_12-mysql_8

Note that there is no generation of multiple auxiliary configurations from the same auxiliary

machine since that would require some communication of the desired configuration variant to the

machine.

2.2 Machine Header Manifest

@@ TODO: need ref to general manifest overview in bpkg, or, better yet, move it to libbutl and

ref to that from both places.

The build machine header manifest contains basic information about a build machine on the build

host. A list of machine header manifests is sent by bbot agents to controllers. The manifest

synopsis is presented next followed by the detailed description of each value in subsequent

sections.

id: <machine-id>
name: <machine-name>
summary: <string>
[role]: build|auxiliary
[ram-minimum]: <kib>
[ram-maximum]: <kib>

For example:

id: x86_64-windows_10-msvc_14-1.3
name: x86_64-windows_10-msvc_14
summary: Windows 10 build 1607 with VC 14 update 3

id: aarch64-linux_debian_12-postgresql_16-1.0
name: aarch64-linux_debian_12-postgresql_16
summary: Debian 12 with PostgreSQL 16 test user/database
role: auxiliary
ram-minimum: 2097152
ram-maximum: 4194304

5Revision 0.18, November 2024 The build2 Build Bot

2.2 Machine Header Manifest

2.2.1 id

id: <machine-id>

The unique machine version/revision/build identifier. For virtual machines this can be the disk

image checksum. For a container this can be UUID that is re-generated every time a container

filesystem is altered.

Note that we assume that a different machine identifier is assigned on any change that may affect

the build result.

2.2.2 name

name: <machine-name>

The machine name.

2.2.3 summary

summary: <string>

The one-line description of the machine.

2.2.4 role

[role]: build|auxiliary

The machine role. If unspecified, then build is assumed.

2.2.5 ram-minimum, ram-maximum

[ram-minimum]: <kib>
[ram-maximum]: <kib>

The minimum and the maximum amount of RAM in KiB that the machine requires. The

maximum amount is interpreted as the amount beyond which there will be no benefit. If unspeci­

fied, then it is assumed the machine will run with any minimum amount a deployment will

provide and will always benefit from more RAM, respectively. Neither value should be 0.

2.3 Machine Manifest

The build machine manifest contains the complete description of a build machine on the build

host (see the Build OS documentation for their origin and location). The machine manifest starts

with the machine header manifest with all the header values appearing before any non-header

values. The non-header part of manifest synopsis is presented next followed by the detailed

description of each value in subsequent sections.

Revision 0.18, November 20246 The build2 Build Bot

2.3 Machine Manifest

type: kvm|nspawn
[mac]: <addr>
[options]: <machine-options>
[changes]: <text>

2.3.1 type

type: kvm|nspawn

The machine type. Valid values are kvm (QEMU/KVM virtual machine) and nspawn

(systemd-nspawn container).

2.3.2 mac

[mac]: <addr>

The fixed MAC address for the machine. Must be in the hexadecimal, comma-separated format.

For example:

mac: de:ad:be:ef:de:ad

If it is not specified, then a random address is generated on the first machine bootstrap which is

then reused for each build/re-bootstrap. Note that if you specify a fixed address, then the machine

can only be used by a single bbot agent.

2.3.3 options

[options]: <machine-options>

The list of machine options. The exact semantics is machine type-dependent (see below). A

single level of quotes (either single or double) is removed in each option before being passed on.

Options can be separated with spaces or newlines.

For kvm machines, if this value is present, then it replaces the default network and disk configu­

ration when starting the QEMU/KVM hypervisor. The options are pre-processed by replacing the

question mark in ifname=? and mac=? strings with the network interface and MAC address,

respectively.

2.3.4 changes

[changes]: <text>

The description of machine changes in this version.

Multiple changes values can be present which are all concatenated in the order specified, that

is, the first value is considered to be the most recent. For example:

7Revision 0.18, November 2024 The build2 Build Bot

2.3.1 type

changes: 1.1: initial version
changes: 1.2: increased disk size to 30GB

Or:

changes:
\
1.1
 - initial version

1.2
 - increased disk size to 30GB
 - upgraded bootstrap baseutils
\

2.4 Task Manifest

The task manifest describes a build task. It consists of two groups of values. The first group

defines the package to build. The second group defines the build configuration to use for building

the package. The manifest synopsis is presented next followed by the detailed description of each

value in subsequent sections.

name: <package-name>
version: <package-version>
#location: <package-url>
repository-url: <repository-url>
[repository-type]: pkg|git|dir
[trust]: <repository-fp>
[requires]: <package-requirements>
[tests]: <dependency-package>
[examples]: <dependency-package>
[benchmarks]: <dependency-package>
[dependency-checksum]: <checksum>

machine: <machine-name>
[auxiliary-machine]: <machine-name>
[auxiliary-machine-<name>]: <machine-name>
target: <target-triplet>
[environment]: <environment-name>
[auxiliary-environment]: <environment-vars>
[target-config]: <tgt-config-args>
[package-config]: <pkg-config-args>
[host]: true|false
[warning-regex]: <warning-regex>
[interactive]: <breakpoint>
[worker-checksum]: <checksum>

Revision 0.18, November 20248 The build2 Build Bot

2.4 Task Manifest

2.4.1 name

name: <package-name>

The package name to build.

2.4.2 version

version: <package-version>

The package version to build.

2.4.3 repository-url

repository-url: <repository-url>

The URL of the repository that contains the package and its dependencies.

2.4.4 repository-type

[repository-type]: pkg|git|dir

The repository type (see repository-url for details). Alternatively, the repository type can

be specified as part of the URL scheme. See bpkg-repository-types(1) for details.

2.4.5 trust

[trust]: <repository-fp>

The SHA256 repository certificate fingerprint to trust (see the bpkg --trust option for

details). This value may be specified multiple times to establish the authenticity of multiple

certificates. If the special yes value is specified, then all repositories will be trusted without

authentication (see the bpkg --trust-yes option).

Note that while the controller may return a task with trust values, whether they will be used is

up to the agent’s configuration. For example, some agents may only trust their internally-speci­

fied fingerprints to prevent the "man in the middle" attacks.

2.4.6 requires, tests, examples, benchmarks

The primary package manifest values that need to be known by the bbot worker before it

retrieves the primary package manifest. See Package Manifest for more information on these

values.

9Revision 0.18, November 2024 The build2 Build Bot

2.4.1 name

The controller copies these values from the primary package manifest, except those tests,

examples, and benchmarks values which should be excluded from building due to their

builds, build-include, and build-exclude manifest values.

2.4.7 dependency-checksum

[dependency-checksum]: <checksum>

The package dependency checksum received as a part of the previous build task result (see Result

Manifest).

2.4.8 machine

machine: <machine-name>

The name of the build machine to use.

2.4.9 auxiliary-machine

[auxiliary-machine]: <machine-name>
[auxiliary-machine-<name>]: <machine-name>

The names of the auxiliary machines to use. These values correspond to the build-auxil­
iary and build-auxiliary-<name> values in the package manifest. While there each

value specifies an auxiliary configuration pattern, here it specifies the concrete auxiliary machine

name that was picked by the controller from the list of available auxiliary machines (sent as part

of the task request) that match this pattern.

2.4.10 target

target: <target-triplet>

The target to build for.

Compared to the autotools terminology, the machine value corresponds to --build (the

machine we are building on) and target – to --host (the machine we are building for). While

we use essentially the same target triplet format as autotools for target, it is not flexible

enough for machine.

2.4.11 environment

[environment]: <environment-name>

The name of the build environment to use. See Worker Logic for details.

Revision 0.18, November 202410 The build2 Build Bot

2.4.7 dependency-checksum

2.4.12 auxiliary-environment

[auxiliary-environment]: <environment-vars>

The environment variables describing the auxiliary machines. If any auxiliary-machine*
values are specified, then after starting such machines, the agent prepares a combined list of envi­

ronment variables that were uploaded by such machines and passes it in this value to the worker.

The format of this value is a list of environment variable assignments one per line, in the form:

<name>=<value>

Whitespaces before <name>, around =, and after <value> as well as blank lines and lines that

start with # are ignored. The <name> part must only contain capital alphabetic, numeric, and _

characters. The <value> part as a whole can be single (’ ’) or double (" ") quoted. For example:

DATABASE_HOST=192.168.0.1
DATABASE_PORT=1245
DATABASE_USER=’John "Johnny" Doe’
DATABASE_NAME=" test database "

If the corresponding machine is specified as auxiliary-machine-<name>, then its envi­

ronment variables are prefixed with capitalized <name>_. For example:

auxiliary-machine-pgsql: x86_64-linux_debian_12-postgresql_16
auxiliary-environment:
\
PGSQL_DATABASE_HOST=192.168.0.1
PGSQL_DATABASE_PORT=1245
...
\

2.4.13 target-config

[target-config]: <tgt-config-args>

The additional target configuration options and variables. A single level of quotes (either single

or double) is removed in each value before being passed to bpkg. For example, the following

value:

target-config: config.cc.coptions="-O3 -stdlib=’libc++’"

Will be passed to bpkg as the following (single) argument:

config.cc.coptions=-O3 -stdlib=’libc++’

Values can be separated with spaces or newlines. See Controller Logic for details.

11Revision 0.18, November 2024 The build2 Build Bot

2.4.12 auxiliary-environment

2.4.14 package-config

[package-config]: <pkg-config-args>

The primary package manifest *-build-config value for the build configuration the build

task is issued for. See Package Manifest for more information on this value. A single level of

quotes (either single or double) is removed in each value before being passed to bpkg. For

example, the following value:

package-config: "?libcurl ~7.76.0"

Will be passed to bpkg as the following (single) argument:

?libcurl ~7.76.0

Values can be separated with spaces or newlines. See Controller Logic for details.

2.4.15 host

[host]: true|false

If true, then the build target configuration is self-hosted. If not specified, false is assumed.

See Controller Logic for details.

2.4.16 warning-regex

[warning-regex]: <warning-regex>

Additional regular expressions that should be used to detect warnings in the build logs. Note that

only the first 512 bytes of each log line is considered.

A single level of quotes (either single or double) is removed in each expression before being used

for search. For example, the following value:

warning-regex: "warning C4\d{3}: "

Will be treated as the following (single) regular expression (with a trailing space):

warning C4\d{3}:

Expressions can be separated with spaces or newlines. They will be added to the following

default list of regular expressions that detect the build2 toolchain warnings:

^warning:
^.+: warning:

Revision 0.18, November 202412 The build2 Build Bot

2.4.14 package-config

Note that this built-in list also covers GCC and Clang warnings (for the English locale).

2.4.17 interactive

[interactive]: <breakpoint>

The task execution step to stop at. Can only be present if the agent has specified interac­
tive-mode with either the true or both value in the task request.

The breakpoint can either be a primary step id of the worker script or the special error or

warning value. There is also the special none value which never interrupts the task execution.

See Worker Logic for details.

2.4.18 worker-checksum

[worker-checksum]: <checksum>

The worker checksum received as a part of the previous build task result (see Result Manifest).

2.5 Result Manifest

The result manifest describes a build result. The manifest synopsis is presented next followed by

the detailed description of each value in subsequent sections.

name: <package-name>
version: <package-version>

status: <status>
[configure-status]: <status>
[update-status]: <status>
[test-status]: <status>
[install-status]: <status>
[bindist-status]: <status>
[sys-install-status]: <status>
[test-installed-status]: <status>
[sys-uninstall-status]: <status>
[uninstall-status]: <status>
[upload-status]: <status>

[configure-log]: <text>
[update-log]: <text>
[test-log]: <text>
[install-log]: <text>
[bindist-log]: <text>
[sys-install-log]: <text>
[test-installed-log]: <text>
[sys-uninstall-log]: <text>
[uninstall-log]: <text>

13Revision 0.18, November 2024 The build2 Build Bot

2.5 Result Manifest

[upload-log]: <text>

[worker-checksum]: <checksum>
[dependency-checksum]: <checksum>

2.5.1 name

name: <package-name>

The package name from the task manifest.

2.5.2 version

version: <package-version>

The package version from the task manifest.

2.5.3 status

status: <status>

The overall (cumulative) build result status. Valid values are:

skip # Package update and subsequent operations were skipped.
success # All operations completed successfully.
warning # One or more operations completed with warnings.
error # One or more operations completed with errors.
abort # One or more operations were aborted.
abnormal # One or more operations terminated abnormally.
interrupt # Task execution has been interrupted.

The abort status indicates that the operation has been aborted by bbot, for example, because it

was consuming too many resources and/or was taking too long. Note that a task can be aborted

both by the bbot worker as well as the agent. In the later case the whole machine is shut down

and no operation-specific status or logs will be included (@@ Maybe we should just include

’log:’ with commands that start VM, for completeness?).

The abnormal status indicates that the operation has terminated abnormally, for example, due

to the package manager or build system crash.

The interrupt status indicates that the task execution has been interrupted, for example, to

reassign resources to a higher priority task.

Note that the overall status value should appear before any per-operation *-status values.

The skip status indicates that the received from the controller build task checksums have not

changed and the task execution has therefore been skipped under the assumption that it would

have produced the same result. See agent-checksum, worker-checksum, and depen­
dency-checksum for details.

Revision 0.18, November 202414 The build2 Build Bot

2.5.1 name

2.5.4 *-status

[*-status]: <status>

The per-operation result status. Note that the *-status values should appear in the same order

as the corresponding operations were performed and for each *-status there should be the

corresponding *-log value. Currently supported operation names:

configure
update
test
install
bindist
sys-install
test-installed
sys-uninstall
uninstall
upload

2.5.5 *-log

[*-log]: <text>

The per-operation result log. Note that the *-log values should appear last and in the same order

as the corresponding *-status values. For the list of supported operation names refer to the

*-status value description.

2.5.6 dependency-checksum

[dependency-checksum]: <checksum>

The package dependency checksum obtained as a byproduct of the package configuration opera­

tion. See bpkg-pkg-build(1) command’s --rebuild-checksum option for details.

2.5.7 worker-checksum

[worker-checksum]: <checksum>

The version of the worker logic used to perform the package build task.

2.6 Task Request Manifest

An agent (or controller acting as an agent) sends a task request to its controller via HTTP/HTTPS

POST method (@@ URL/API endpoint). The task request starts with the task request manifest

followed by a list of machine header manifests. The task request manifest synopsis is presented

next followed by the detailed description of each value in subsequent sections.

15Revision 0.18, November 2024 The build2 Build Bot

2.6 Task Request Manifest

The controller is expected to pick each offered machine header manifest only once. If an agent is

capable of running multiple instances of the same machine, then it must send the matching

number of machine header manifests for such a machine.

agent: <name>
toolchain-name: <name>
toolchain-version: <standard-version>
[interactive-mode]: false|true|both
[interactive-login]: <login>
[fingerprint]: <agent-fingerprint>
[auxiliary-ram]: <kib>

2.6.1 agent

agent: <name>

The name of the agent host (hostname). The name should be unique in a particular bbot

deployment.

2.6.2 toolchain-name

toolchain-name: <name>

The build2 toolchain name being used by the agent.

2.6.3 toolchain-version

toolchain-version: <standard-version>

The build2 toolchain version being used by the agent.

2.6.4 interactive-mode

[interactive-mode]: false|true|both

The agent’s capability to perform build tasks only non-interactively (false), only interactively

(true), or both (both).

If it is not specified, then the false value is assumed.

2.6.5 interactive-login

[interactive-login]: <login>

The login information for the interactive build session. Must be present only if interac­
tive-mode is specified with the true or both value.

Revision 0.18, November 202416 The build2 Build Bot

2.6.1 agent

2.6.6 fingerprint

[fingerprint]: <agent-fingerprint>

The SHA256 fingerprint of the agent’s public key. An agent may be configured not to use the

public key-based authentication in which case it does not include this value. However, the

controller may be configured to require the authentication in which case it should respond with

the 401 (unauthorized) HTTP status code.

2.6.7 auxiliary-ram

[auxiliary-ram]: <kib>

The amount of RAM in KiB that is available for running auxiliary machines. If unspecified, then

assume there is no hard limit (that is, the agent can allocate up to the host’s available RAM minus

the amount required to run the build machine).

2.7 Task Response Manifest

A controller sends the task response manifest in response to the task request initiated by an agent.

The response is delivered as a result of the POST method. The task response starts with the task

response manifest optionally followed by the task manifest. The task response manifest synopsis

is presented next followed by the detailed description of each value in subsequent sections.

session: <id>
[challenge]: <text>
[result-url]: <url>
[*-upload-url]: <url>
[agent-checksum]: <checksum>

2.7.1 session

session: <id>

The identifier assigned to this session by the controller. An empty value indicates that the

controller has no tasks at this time in which case all the following values as well as the task mani­

fest are absent.

2.7.2 challenge

[challenge]: <text>

The random, 64 characters long string (nonce) used to challenge the agent’s private key. If

present, then the agent must sign this string and include the signature in the result request (see

below).

17Revision 0.18, November 2024 The build2 Build Bot

2.7 Task Response Manifest

The signature should be calculated by encrypting the string with the agent’s private key and then

base64-encoding the result.

2.7.3 result-url

[result-url]: <url>

The URL to POST (upload) the result request to.

2.7.4 *-upload-url

[*-upload-url]: <url>

The URLs to upload the build artifacts to, if any, via the HTTP POST method using the multi­
part/form-data content type (see Build Artifacts Upload for details on the upload protocol).

The substring matched by * in *-upload-url denotes the upload type.

2.7.5 agent-checksum

[agent-checksum]: <checksum>

The agent checksum received as a part of the previous build task result request (see Result

Request Manifest).

2.8 Result Request Manifest

On completion of a task an agent (or controller acting as an agent) sends the result (upload)

request to the controller via the POST method using the URL returned in the task response (see

above). The result request starts with the result request manifest followed by the result manifest.

Note that there is no result response and only a successful but empty POST result is returned. The

result request manifest synopsis is presented next followed by the detailed description of each

value in subsequent sections.

session: <id>
[challenge]: <text>
[agent-checksum]: <checksum>

2.8.1 session

session: <session-id>

The session id as returned by the controller in the task response.

Revision 0.18, November 202418 The build2 Build Bot

2.8 Result Request Manifest

2.8.2 challenge

[challenge]: <text>

The answer to the private key challenge as posed by the controller in the task response. It must be

present only if the challenge value was present in the task response.

2.8.3 agent-checksum

[agent-checksum]: <checksum>

The version of the agent logic used to perform the package build task.

2.9 Worker Logic

The bbot worker builds each package in a build environment that is established for a particular

build target. The environment has three components: the execution environment (environment

variables, etc), build system modules, as well as configuration options and variables.

Setting up of the execution environment is performed by an executable (script, batch file, etc).

Specifically, upon receiving a build task, if it specifies the environment name then the worker

looks for the environment setup executable with this name in a specific directory and for the

executable called default otherwise. Not being able to locate the environment executable is an

error.

In addition to the environment executable, if the task requires any auxiliary machines, then the

auxiliary-environment value from the task manifest is incorporated into the execution

environment.

Specifically, once the environment setup executable is determined, the worker re-executes itself

in the auxiliary environment and as that executable passing to it as command line arguments the

target name, the path to the bbot worker to be executed once the environment is setup, and any

additional options that need to be propagated to the re-executed worker. The environment setup

executable is executed in the build directory as its current working directory. The build directory

contains the build task task.manifest file.

The environment setup executable sets up the necessary execution environment for example by

adjusting PATH or running a suitable vcvars batch file. It then re-executes itself as the bbot
worker passing to it as command line arguments (in addition to worker options) the list of build

system modules (<env-modules>) and the list of configuration options and variables

(<env-config-args>). The environment setup executable must execute the bbot worker in

the build directory as the current working directory.

19Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

The re-executed bbot worker then proceeds to test the package from the repository by executing

the following commands, collectively called a worker script. Each command has a unique step id

that can be used as a breakpoint and normally as a prefix in the <tgt-config-args>,

<env-config-args>, and <env-modules> values as discussed in Controller Logic as well

as in the <pkg-config-args> values (see below). The <>-values are from the task manifest

and the environment though some are assigned by the worker during the script execution (config­

uration directories, UUIDs, etc). In particular, the <pkg-config-args> (prefixed global

options and variables), <pkg-config-opts> (unprefixed options), <pkg-config-vars>

(unprefixed variables), <dependency-name>, <dependency-version-constraint>,

and <dep-config-vars> values result from parsing the package-config task manifest

value. The <*-uuid> values are assigned as follows:

target-uuid: 00000000-0000-0000-0000-000000000001
host-uuid: 00000000-0000-0000-0000-000000000002
module-uuid: 00000000-0000-0000-0000-000000000003
install-uuid: 00000000-0000-0000-0000-000000000004
target-installed-uuid: 00000000-0000-0000-0000-000000000005
host-installed-uuid: 00000000-0000-0000-0000-000000000006
module-installed-uuid: 00000000-0000-0000-0000-000000000007

Some prefix step ids have fallback step ids which are used in the absence of the primary step id

values. If the prefix step id differs from the breakpoint step id and/or has the fallback step ids,

then they are listed in parenthesis: the prefix id before the colon and the fallback ids after it.

Some commands have no target configuration or environment options or variables. Such

commands have only breakpoint step ids associated, which are listed in square brackets.

Note that the worker script varies for different primary package types. The bbot worker classi­

fies the primary package based on the configuration type in which it is built: module (build

system module packages), host (packages such as source code generators, marked with the

requires: host manifest value; see Package Manifest for details), and target (all other

packages).

Note also that the *.configure.build step configures potentially multiple packages

(primary package, tests, etc) in potentially multiple configurations by always using the

bpkg.global.configure.build prefix step id for global (as opposed to package-specific)

bpkg-pkg-build(1) options. The bpkg.global.configure.build prefix id has no

fallback ids.

Note finally that if no configuration variables are specified in the main package configuration,

then the worker adds the config.<name>.develop=false configuration variable for the

main package at the bpkg.configure.build step to trigger its package skeleton creation

and loading. It also adds this variable for external test packages at this step and for the same

purpose. This makes sure that these packages can be used as dependencies of dependents with

configuration clauses. To keep the below listings concise, these variables are not shown.

Revision 0.18, November 202420 The build2 Build Bot

2.9 Worker Logic

Worker script for target packages:

bpkg.create (bpkg.target.create : b.create, bpkg.create)
#
bpkg -V create --uuid <target-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

bpkg.configure.add
#
bpkg -v add <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch --trust <repository-fp>

bpkg.configure.build (
bpkg.global.configure.build,
(bpkg.target.configure.build : b.configure, bpkg.configure.build))
#
bpkg -v build --configure-only \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-opts>] \
 [{ <pkg-config-vars> }+] <package-name>/<package-version> \
 [([{ <test-config-vars> }+] \
 <test-package-name>[<test-version-constraint>])...] \
 [([{ <dep-config-vars> }+] \
 (?|sys:)<dependency-name> \
 [<dependency-version-constraint>])...] \
 [?sys:<dependency-name>[<dependency-version-constraint>]...] \
 [({ --config-uuid <target-uuid> [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name>[<dependency-version-constraint>])...]

bpkg.update
#
bpkg -v update <package-name>

If the test operation is supported by the package:
#
{
 # bpkg.test
 #
 bpkg -v test <package-name>
}

For each (runtime) tests, examples, or benchmarks package referred
to by the task manifest:
#
{
 # bpkg.test-separate.update (: bpkg.update)
 #
 bpkg -v update <package-name>

 # bpkg.test-separate.test (: bpkg.test)
 #
 bpkg -v test <package-name>
}

21Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

If the install operation is supported by the package,
config.install.root is specified, and no
bpkg.bindist.{debian,fedora,archive} step is enabled:
#
{
 # bpkg.install
 #
 bpkg -v install <package-name>

 # If bbot.install.ldconfig step is enabled:
 #
 {
 # bbot.install.ldconfig
 #
 sudo ldconfig
 }
}

If the install operation is supported by the package and
bpkg.bindist.{debian,fedora,archive} step is enabled:
#
{
 # bpkg.bindist.{debian,fedora,archive}
 #
 bpkg -v bindist --distribution <distribution> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 <package-name>
}

If the install operation is supported by the package and
bbot.sys-install step is enabled:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-install.apt-get.update
 #
 sudo apt-get update

 # bbot.sys-install.apt-get.install
 #
 sudo apt-get install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-install.dnf.install
 #
 sudo dnf install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # For each package file:

Revision 0.18, November 202422 The build2 Build Bot

2.9 Worker Logic

 #
 {
 # bbot.sys-install.tar.extract
 #
 [sudo] tar -xf <distribution-package-file> \
 <env-config-args> <tgt-config-args> <pkg-config-args>
 }

 # If bbot.sys-install.ldconfig step is enabled:
 #
 {
 # bbot.sys-install.ldconfig
 #
 sudo ldconfig
 }
 }
}

If the main package is installed either from source or from the
binary distribution package:
#
{
 # If the package contains subprojects that support the test
 # operation:
 #
 {
 # b.test-installed.create (: b.create)
 #
 b -V create <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # For each test subproject:
 #
 {
 # b.test-installed.configure (: b.configure)
 #
 b -v configure [<pkg-config-vars>]
 }

 # b.test-installed.test
 #
 b -v test
 }

 # If task manifest refers to any (runtime) tests, examples, or
 # benchmarks packages:
 #
 {
 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_target :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create --uuid <target-installed-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # bpkg.test-separate-installed.configure.add (
 # : bpkg.configure.add)

23Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

 #
 bpkg -v add <repository-url>

 # bpkg.test-separate-installed.configure.fetch (
 # : bpkg.configure.fetch)
 #
 bpkg -v fetch --trust <repository-fp>

 # bpkg.test-separate-installed.configure.build (
 # bpkg.global.configure.build,
 # (bpkg.test-separate-installed.configure.build_for_target :
 # bpkg.test-separate-installed.configure.build))
 #
 bpkg -v build --configure-only \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 ([{ <test-config-vars> }+] \
 <test-package-name>[<test-version-constraint>])... \
 ?sys:<package-name>/<package-version> \
 [?sys:<dependency-name>[<dependency-version-constraint>]...] \
 [({ --config-uuid <target-installed-uuid> \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name> \
 [<dependency-version-constraint>])...]

 # For each (runtime) tests, examples, or benchmarks package
 # referred to by the task manifest:
 #
 {
 # bpkg.test-separate-installed.update (: bpkg.update)
 #
 bpkg -v update <package-name>

 # bpkg.test-separate-installed.test (: bpkg.test)
 #
 bpkg -v test <package-name>
 }
 }
}

If the main package is installed from the binary distribution package:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-uninstall.apt-get.remove
 #
 sudo apt-get remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-uninstall.dnf.remove
 #
 sudo dnf remove <distribution-package-name>...
 }

Revision 0.18, November 202424 The build2 Build Bot

2.9 Worker Logic

 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # Noop.
 }
}

If the main package is installed from source:
#
{
 # bpkg.uninstall
 #
 bpkg -v uninstall <package-name>
}

If the install operation is supported by the package and
bbot.bindist.upload step is enabled:
#
{
 # Move the generated binary distribution files to the
 # upload/bindist/<distribution>/ directory.
}

If bbot.upload step is enabled and upload/ directory is not empty:
#
{
 # bbot.upload.tar.create
 #
 tar -cf upload.tar upload/

 # bbot.upload.tar.list
 #
 tar -tf upload.tar upload/
}

end
#
This step id can only be used as a breakpoint.

Worker script for host packages:

If configuration is self-hosted:
#
{
 # bpkg.create (bpkg.host.create : b.create, bpkg.create)
 #
 bpkg -V create --type host -d <host-conf> --uuid <host-uuid> \
 <env-modules> <env-config-args> <tgt-config-args> \
 <pkg-config-args>
}
#
Otherwise:
#
{
 # [bpkg.create]

25Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

 #
 b -V create(<host-conf>, cc) config.config.load=~host-no-warnings

 bpkg -v create --existing --type host -d <host-conf> \
 --uuid <host-uuid>
}

bpkg.configure.add
#
bpkg -v add -d <host-conf> <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch -d <host-conf> --trust <repository-fp>

If configuration is self-hosted and config.install.root is specified:
#
{
 # bpkg.create (bpkg.target.create : b.create, bpkg.create)
 #
 bpkg -V create -d <install-conf> --uuid <install-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # [bpkg.link]
 #
 bpkg -v link -d <install-conf> <host-conf>

 # bpkg.configure.add
 #
 bpkg -v add -d <install-conf> <repository-url>

 # bpkg.configure.fetch
 #
 bpkg -v fetch -d <install-conf> --trust <repository-fp>
}

If task manifest refers to any build-time tests, examples, or
benchmarks packages:
#
{
 # bpkg.create (bpkg.target.create : b.create, bpkg.create)
 #
 bpkg -V create -d <target-conf> --uuid <target-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # [bpkg.create]
 #
 b -V create(<module-conf>, cc) config.config.load=~build2-no-warnings

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-uuid>

 # [bpkg.link]
 #
 bpkg -v link -d <target-conf> <host-conf>
 bpkg -v link -d <target-conf> <module-conf>
 bpkg -v link -d <host-conf> <module-conf>

Revision 0.18, November 202426 The build2 Build Bot

2.9 Worker Logic

 # If configuration is self-hosted and config.install.root is
 # specified:
 #
 {
 # [bpkg.link]
 #
 bpkg -v link -d <install-conf> <module-conf>
 }

 # bpkg.configure.add
 #
 bpkg -v add -d <target-conf> <repository-url>

 # bpkg.configure.fetch
 #
 bpkg -v fetch -d <target-conf> --trust <repository-fp>
}

bpkg.configure.build (bpkg.global.configure.build)
#
Notes:
#
- Some parts may be omitted.
#
- Parts related to different configurations have different prefix
step ids:
#
bpkg.host.configure.build for <host-uuid>
bpkg.target.configure.build for <install-uuid>
bpkg.target.configure.build for <target-uuid>
#
- All parts have the same fallback step ids: b.configure and
bpkg.configure.build.
#
bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-opts>] \
\
{ --config-uuid <host-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
{ --config-uuid <install-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
({ --config-uuid <host-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<test-config-vars>] }+ \
 <runtime-test-package-name>[<test-version-constraint>])... \
\
({ --config-uuid <target-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<test-config-vars>] }+ \

27Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

 <buildtime-test-package-name>[<test-version-constraint>])... \
\
({ --config-uuid <host-uuid> [--config-uuid <install-uuid>] \
 [<dep-config-vars>] }+ \
 (?|sys:)<dependency-name>[<dependency-version-constraint>])... \
\
[?sys:<dependency-name>[<dependency-version-constraint>]...] \
\
({ (--config-uuid <(target|host|module|install)-uuid>)... \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name>[<dependency-version-constraint>])...

bpkg.update
#
bpkg -v update -d <host-conf> <package-name>

If the test operation is supported by the package:
#
{
 # bpkg.test
 #
 bpkg -v test -d <host-conf> <package-name>
}

If configuration is self-hosted, then for each runtime tests,
examples, or benchmarks package referred to by the task manifest:
#
{
 # bpkg.test-separate.update (: bpkg.update)
 #
 bpkg -v update -d <host-conf> <package-name>

 # bpkg.test-separate.test (: bpkg.test)
 #
 bpkg -v test -d <host-conf> <package-name>
}

For each build-time tests, examples, or benchmarks package referred
to by the task manifest:
#
{
 # bpkg.test-separate.update (: bpkg.update)
 #
 bpkg -v update -d <target-conf> <package-name>

 # bpkg.test-separate.test (: bpkg.test)
 #
 bpkg -v test -d <target-conf> <package-name>
}

If configuration is self-hosted, the install operation is supported
by the package, config.install.root is specified, and no
bpkg.bindist.{debian,fedora,archive} step is enabled:
#
{
 # bpkg.install
 #

Revision 0.18, November 202428 The build2 Build Bot

2.9 Worker Logic

 bpkg -v install -d <install-conf> <package-name>

 # If bbot.install.ldconfig step is enabled:
 #
 {
 # bbot.install.ldconfig
 #
 sudo ldconfig
 }
}

If configuration is self-hosted, the install operation is supported
by the package, and bpkg.bindist.{debian,fedora,archive} step is
enabled:
#
{
 # bpkg.bindist.{debian,fedora,archive}
 #
 bpkg -v bindist --distribution <distribution> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 <package-name>
}

If the install operation is supported by the package and
bbot.sys-install step is enabled:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-install.apt-get.update
 #
 sudo apt-get update

 # bbot.sys-install.apt-get.install
 #
 sudo apt-get install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-install.dnf.install
 #
 sudo dnf install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # For each package file:
 #
 {
 # bbot.sys-install.tar.extract
 #
 [sudo] tar -xf <distribution-package-file> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

29Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

 }

 # If bbot.sys-install.ldconfig step is enabled:
 #
 {
 # bbot.sys-install.ldconfig
 #
 sudo ldconfig
 }
 }
}

If the main package is installed either from source or from the
binary distribution package:
#
{
 # If the package contains subprojects that support the test
 # operation:
 #
 {
 # b.test-installed.create (: b.create)
 #
 b -V create <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # For each test subproject:
 #
 {
 # b.test-installed.configure (: b.configure)
 #
 b -v configure [<pkg-config-vars>]
 }

 # b.test-installed.test
 #
 b -v test
 }

 # If task manifest refers to any tests, examples, or benchmarks
 # packages:
 #
 {
 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_host :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create --type host -d <host-conf> \
 --uuid <host-installed-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # If task manifest refers to any runtime tests, examples, or
 # benchmarks packages:
 #
 {
 # bpkg.test-separate-installed.configure.add (
 # : bpkg.configure.add)
 #

Revision 0.18, November 202430 The build2 Build Bot

2.9 Worker Logic

 bpkg -v add -d <host-conf> <repository-url>

 # bpkg.test-separate-installed.configure.fetch (
 # : bpkg.configure.fetch)
 #
 bpkg -v fetch -d <host-conf> --trust <repository-fp>
 }

 # If task manifest refers to any build-time tests, examples, or
 # benchmarks packages:
 #
 {
 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_host :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create -d <target-conf> --uuid <target-installed-uuid> \
 <env-modules> <env-config-args> <tgt-config-args> \
 <pkg-config-args>

 # [bpkg.test-separate-installed.create]
 #
 b -V create(<module-conf>, cc) \
 config.config.load=~build2-no-warnings

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-installed-uuid>

 # [bpkg.test-separate-installed.link]
 #
 bpkg -v link -d <target-conf> <host-conf>
 bpkg -v link -d <target-conf> <module-conf>
 bpkg -v link -d <host-conf> <module-conf>

 # bpkg.test-separate-installed.configure.add (
 # : bpkg.configure.add)
 #
 bpkg -v add -d <target-conf> <repository-url>

 # bpkg.test-separate-installed.configure.fetch (
 # : bpkg.configure.fetch)
 #
 bpkg -v fetch -d <target-conf> --trust <repository-fp>
 }

 # bpkg.test-separate-installed.configure.build (
 # bpkg.global.configure.build,
 # (bpkg.test-separate-installed.configure.build_for_host :
 # bpkg.test-separate-installed.configure.build))
 #
 # Note that any of the runtime or build-time tests related parts
 # (but not both) may be omitted.
 #
 bpkg -v build --configure-only \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 \
 ({ --config-name <host-conf> [<test-config-vars>] }+ \

31Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

 <runtime-test-package-name>[<test-version-constraint>])... \
 \
 ({ --config-name <target-conf> [<test-config-vars>] }+ \
 <buildtime-test-package-name>[<test-version-constraint>])... \
 \
 ?sys:<package-name>/<package-version> \
 \
 [?sys:<dependency-name>[<dependency-version-constraint>]...] \
 \
 ({ (--config-uuid <(target|host|module)-installed-uuid>)... \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name>[<dependency-version-constraint>])...

 # For each tests, examples, or benchmarks package referred
 # to by the task manifest:
 #
 {
 # bpkg.test-separate-installed.update (: bpkg.update)
 #
 bpkg -v update <package-name>

 # bpkg.test-separate-installed.test (: bpkg.test)
 #
 bpkg -v test <package-name>
 }
 }
}

If the main package is installed from the binary distribution package:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-uninstall.apt-get.remove
 #
 sudo apt-get remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-uninstall.dnf.remove
 #
 sudo dnf remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # Noop.
 }
}

If the main package is installed from source:
#
{

Revision 0.18, November 202432 The build2 Build Bot

2.9 Worker Logic

 # bpkg.uninstall
 #
 bpkg -v uninstall -d <install-conf> <package-name>
}

If the install operation is supported by the package and
bbot.bindist.upload step is enabled:
#
{
 # Move the generated binary distribution files to the
 # upload/bindist/<distribution>/ directory.
}

If bbot.upload step is enabled and upload/ directory is not empty:
#
{
 # bbot.upload.tar.create
 #
 tar -cf upload.tar upload/

 # bbot.upload.tar.list
 #
 tar -tf upload.tar upload/
}

end
#
This step id can only be used as a breakpoint.

Worker script for module packages:

If configuration is self-hosted:
#
{
 # bpkg.create (bpkg.module.create)
 #
 b -V create(<module-conf>, <env-modules>) config.config.load=~build2 \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-uuid>
}
#
Otherwise:
#
{
 # [bpkg.create]
 #
 b -V create(<module-conf>, cc) config.config.load=~build2-no-warnings

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-uuid>
}

bpkg.configure.add
#

33Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

bpkg -v add -d <module-conf> <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch -d <module-conf> --trust <repository-fp>

If configuration is self-hosted and config.install.root is specified:
#
{
 # bpkg.create (bpkg.module.create)
 #
 b -V create(<install-conf>, <env-modules>) \
 config.config.load=~build2 \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 bpkg -v create --existing -d <install-conf> --uuid <install-uuid>

 # bpkg.configure.add
 #
 bpkg -v add -d <install-conf> <repository-url>

 # bpkg.configure.fetch
 #
 bpkg -v fetch -d <install-conf> --trust <repository-fp>
}

If task manifest refers to any (build-time) tests, examples, or
benchmarks packages:
#
{
 # bpkg.create (bpkg.target.create : b.create, bpkg.create)
 #
 bpkg -V create -d <target-conf> --uuid <target-uuid> \
 <env-modules> <env-config-args> <tgt-config-args> \
 <pkg-config-args>

 # [bpkg.create]
 #
 b -V create(<host-conf>, cc) config.config.load=~host-no-warnings

 bpkg -v create --existing --type host -d <host-conf> \
 --uuid <host-uuid>

 # [bpkg.link]
 #
 bpkg -v link -d <target-conf> <host-conf>
 bpkg -v link -d <target-conf> <module-conf>
 bpkg -v link -d <host-conf> <module-conf>

 # bpkg.configure.add
 #
 bpkg -v add -d <target-conf> <repository-url>

 # bpkg.configure.fetch
 #
 bpkg -v fetch -d <target-conf> --trust <repository-fp>
}

Revision 0.18, November 202434 The build2 Build Bot

2.9 Worker Logic

bpkg.configure.build (bpkg.global.configure.build)
#
Notes:
#
- Some parts may be omitted.
#
- Parts related to different configurations have different prefix
step ids:
#
bpkg.module.configure.build for <module-uuid>
bpkg.target.configure.build for <install-uuid>
bpkg.target.configure.build for <target-uuid>
#
- All parts have the same fallback step ids: b.configure and
bpkg.configure.build.
#
bpkg -v build --configure-only \
<env-config-args> <tgt-config-args> <pkg-config-args> \
[<pkg-config-opts>] \
\
{ --config-uuid <module-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
{ --config-uuid <install-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<pkg-config-vars>] }+ \
<package-name>/<package-version> \
\
({ --config-uuid <target-uuid> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 [<test-config-vars>] }+ \
 <buildtime-test-package-name>[<test-version-constraint>])... \
\
({ --config-uuid <host-uuid> [--config-uuid <install-uuid>] \
 [<dep-config-vars>] }+ \
 (?|sys:)<dependency-name>[<dependency-version-constraint>])... \
\
[?sys:<dependency-name>[<dependency-version-constraint>]...] \
({ (--config-uuid <(target|host|module|install)-uuid>)... \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name>[<dependency-version-constraint>])...

bpkg.update
#
bpkg -v update -d <module-conf> <package-name>

If the test operation is supported by the package:
#
{
 # bpkg.test
 #
 bpkg -v test -d <module-conf> <package-name>
}

35Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

For each (build-time) tests, examples, or benchmarks package referred
to by the task manifest:
#
{
 # bpkg.test-separate.update (: bpkg.update)
 #
 bpkg -v update -d <target-conf> <package-name>

 # bpkg.test-separate.test (: bpkg.test)
 #
 bpkg -v test -d <target-conf> <package-name>
}

If configuration is self-hosted, the install operation is supported
by the package, config.install.root is specified, and no
bpkg.bindist.{debian,fedora,archive} step is enabled:
#
{
 # bpkg.install
 #
 bpkg -v install -d <install-conf> <package-name>

 # If bbot.install.ldconfig step is enabled:
 #
 {
 # bbot.install.ldconfig
 #
 sudo ldconfig
 }
}

If configuration is self-hosted, the install operation is supported
by the package, and bpkg.bindist.{debian,fedora,archive} step is
enabled:
#
{
 # bpkg.bindist.{debian,fedora,archive}
 #
 bpkg -v bindist --distribution <distribution> \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 <package-name>
}

If the install operation is supported by the package and
bbot.sys-install step is enabled:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-install.apt-get.update
 #
 sudo apt-get update

 # bbot.sys-install.apt-get.install
 #
 sudo apt-get install <distribution-package-file>...

Revision 0.18, November 202436 The build2 Build Bot

2.9 Worker Logic

 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-install.dnf.install
 #
 sudo dnf install <distribution-package-file>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # For each package file:
 #
 {
 # bbot.sys-install.tar.extract
 #
 [sudo] tar -xf <distribution-package-file> \
 <env-config-args> <tgt-config-args> <pkg-config-args>
 }

 # If bbot.sys-install.ldconfig step is enabled:
 #
 {
 # bbot.sys-install.ldconfig
 #
 sudo ldconfig
 }
 }
}

If the main package is installed either from source or from the
binary distribution package:
#
{
 # If task manifest refers to any (build-time) tests, examples, or
 # benchmarks packages:
 #
 {
 # [bpkg.test-separate-installed.create]
 #
 b -V create(<module-conf>, cc) \
 config.config.load=~build2-no-warnings

 bpkg -v create --existing --type build2 -d <module-conf> \
 --uuid <module-installed-uuid>

 # bpkg.test-separate-installed.create (
 # bpkg.test-separate-installed.create_for_module :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create -d <target-conf> --uuid <target-installed-uuid> \
 <env-modules> <env-config-args> <tgt-config-args> \
 <pkg-config-args>

 # bpkg.test-separate-installed.create (

37Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

 # bpkg.test-separate-installed.create_for_module :
 # bpkg.test-separate-installed.create)
 #
 bpkg -V create --type host -d <host-conf> \
 --uuid <host-installed-uuid> <env-modules> \
 <env-config-args> <tgt-config-args> <pkg-config-args>

 # [bpkg.test-separate-installed.link]
 #
 bpkg -v link -d <target-conf> <host-conf>
 bpkg -v link -d <target-conf> <module-conf>
 bpkg -v link -d <host-conf> <module-conf>

 # bpkg.test-separate-installed.configure.add (
 # : bpkg.configure.add)
 #
 bpkg -v add -d <target-conf> <repository-url>

 # bpkg.test-separate-installed.configure.fetch (
 # : bpkg.configure.fetch)
 #
 bpkg -v fetch -d <target-conf> --trust <repository-fp>

 # bpkg.test-separate-installed.configure.build (
 # bpkg.global.configure.build,
 # (bpkg.test-separate-installed.configure.build_for_module :
 # bpkg.test-separate-installed.configure.build))
 #
 bpkg -v build --configure-only \
 <env-config-args> <tgt-config-args> <pkg-config-args> \
 \
 ({ --config-name <target-conf> [<test-config-vars>] }+ \
 <buildtime-test-package-name>[<test-version-constraint>])... \
 \
 ?sys:<package-name>/<package-version> \
 \
 [?sys:<dependency-name>[<dependency-version-constraint>]...] \
 \
 ({ (--config-uuid <(target|host|module)-installed-uuid>)... \
 [<dep-config-vars>] }+ \
 (?[sys:]|sys:)<dependency-name>[<dependency-version-constraint>])...

 # For each (build-time) tests, examples, or benchmarks package
 # referred to by the task manifest:
 #
 {
 # bpkg.test-separate-installed.update (: bpkg.update)
 #
 bpkg -v update -d <target-conf> <package-name>

 # bpkg.test-separate-installed.test (: bpkg.test)
 #
 bpkg -v test -d <target-conf> <package-name>
 }
 }
}

Revision 0.18, November 202438 The build2 Build Bot

2.9 Worker Logic

If the main package is installed from the binary distribution package:
#
{
 # If <distribution> is ’debian’:
 #
 {
 # bbot.sys-uninstall.apt-get.remove
 #
 sudo apt-get remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’fedora’:
 #
 {
 # bbot.sys-uninstall.dnf.remove
 #
 sudo dnf remove <distribution-package-name>...
 }
 #
 # Otherwise, if <distribution> is ’archive’:
 #
 {
 # Noop.
 }
}

If the main package is installed from source:
#
{
 # bpkg.uninstall
 #
 bpkg -v uninstall -d <install-conf> <package-name>
}

If the install operation is supported by the package and
bbot.bindist.upload step is enabled:
#
{
 # Move the generated binary distribution files to the
 # upload/bindist/<distribution>/ directory.
}

If bbot.upload step is enabled and upload/ directory is not empty:
#
{
 # bbot.upload.tar.create
 #
 tar -cf upload.tar upload/

 # bbot.upload.tar.list
 #
 tar -tf upload.tar upload/
}

end
#
This step id can only be used as a breakpoint.

39Revision 0.18, November 2024 The build2 Build Bot

2.9 Worker Logic

For details on configuring and testing installation refer to Controller Logic.

If a primary or test package comes from a version control-based repository, then its dist

meta-operation is also tested as a part of the bpkg[.*].configure.build steps by

re-distributing the source directory in the load distribution mode after configuration.

If the build is interactive, then the worker pauses its execution at the specified breakpoint and

prompts the user whether to continue or abort the execution. If the breakpoint is a step id, then the

worker pauses prior to executing every command of the specified step. Otherwise, the breakpoint

denotes the result status and the worker pauses if the command results with the specified or more

critical status (see Result Manifest).

As an example, the following POSIX shell script can be used to setup the environment for build­

ing C and C++ packages with GCC 9 on most Linux distributions.

#!/bin/sh

Environment setup script for C/C++ compilation with GCC 9.
#
$1 - target
$2 - bbot executable
$3+ - bbot options

set -e # Exit on errors.

mode=
case "$1" in
 x86_64-*)
 #mode=-m64
 ;;
 i?86-*)
 mode=-m32
 ;;
 *)
 echo "unknown target: ’$1’" 1>&2
 exit 1
 ;;
esac
shift

exec "$@" cc config.c="gcc-9 $mode" config.cxx="g++-9 $mode"

2.9.1 Bindist Result Manifest

At the bbot.bindist.upload step the worker also creates the bindist-result.json
and bindist-result.manifest files in the upload/bindist/<distribution>/

directory, next to the generated binary distribution package files. The

bindist-result.json file contains the structured JSON output of the

bpkg-pkg-bindist(1) command. The bindist-result.manifest file contains the

subset of the information from bindist-result.json. Specifically, it starts with the binary

Revision 0.18, November 202440 The build2 Build Bot

2.9.1 Bindist Result Manifest

distribution package header manifest followed by a list of package file manifests. The manifest

values are:

distribution:
architecture:
os-release-name-id:
os-release-version-id:
package-name:
package-version:
[package-system-version]:

package-file-type:
package-file-path:
[package-file-system-name]:

The manifest values derive from the corresponding JSON object values and preserve their seman­

tics. The only differences are that the os-release-version-id value may not be absent

and the package-file-path values are relative to the upload/bindist/<distribu­
tion>/ directory and are in the POSIX representation. See bpkg-pkg-bindist(1) for the

JSON values semantics.

2.10 Controller Logic

A bbot controller that issues own build tasks maps available build machines (as reported by

agents) to build target configurations according to the buildtab configuration file. Blank lines

and lines that start with # are ignored. All other lines in this file have the following format:

<machine-pattern> <target-config> <target>[/<environment>] <classes> [<tgt-config-arg>]* [<warning-regex>]*

<tgt-config-arg> = [[+|-]<prefix>:](<variable>|<option>) | \
 (+|-)<prefix>:
<prefix> = <tool>[.<cfg-type>][.<phase>][.<operation>[.<command>]]

Where <machine-pattern> is filesystem wildcard pattern that is matched against available

machine names, <target-config> is the target configuration name, <target> is the build

target, optional <environment> is the build environment name, <classes> is a space-sepa­

rated list of configuration classes that is matched against the package configuration *-builds
values, optional <tgt-config-arg> list is additional configuration options and variables, and

optional <warning-regex> list is additional regular expressions that should be used to detect

warnings in the logs.

The build target configurations can belong to multiple classes with their names reflecting some

common configuration aspects, such as the operating system, compiler, build options, etc. Prede­

fined class names are default, all, hidden, none, host, and build2. The default target

configurations are built by default. A configuration must also belong to the all, hidden, or

some special-purpose configuration class. The latter is intended for testing some optional func­

tionality which packages are not expected to provide normally (for example, relocatable installa­

tion). A configuration that is self-hosted must also belong to the host class and, if it is also

41Revision 0.18, November 2024 The build2 Build Bot

2.10 Controller Logic

self-hosted for build system modules, to the build2 class. Valid custom class names must

contain only alpha-numeric characters, _, +, -, and ., except as the first character for the last

three. Class names that start with _ are reserved for the future hidden/special class functionality.

Regular expressions must start with ~, to be distinguished from target configuration options and

variables. Note that the <tgt-config-arg> and <warning-regex> lists have the same

quoting semantics as in the target-config and the warning-regex value in the build task

manifest. The matched machine name, the target, the environment name, configuration

options/variables, and regular expressions are included into the build task manifest.

Values in the <tgt-config-arg> list can be optionally prefixed with the step id or a leading

portion thereof to restrict it to a specific step, operation, phase, or tool in the worker script (see

Worker Logic). The prefix can optionally begin with the + or - character (in this case the argu­

ment can be omitted) to enable or disable the respective step. The steps which can be enabled or

disabled are:

bpkg.update
bpkg.test
bpkg.test-separate.update
bpkg.test-separate.test

Disabled if bpkg.bindist.* is enabled.
#
bpkg.install

Disabled by default.
#
bbot.install.ldconfig

Disabled by default.
#
bpkg.bindist.{debian,fedora,archive}

Disabled if bpkg.bindist.* is disabled.
#
bbot.sys-install

Disabled by default.
#
bbot.sys-install.ldconfig

b.test-installed.create
b.test-installed.test
bpkg.test-separate-installed.create
bpkg.test-separate-installed.update
bpkg.test-separate-installed.test

Disabled by default.
#
bbot.bindist.upload

bbot.upload

Revision 0.18, November 202442 The build2 Build Bot

2.10 Controller Logic

Note that the bpkg.bindist.* steps are mutually exclusive and only the last step status

change via the (+|-)bpkg.bindist.* prefix is considered.

Unprefixed values only apply to the *.create[_for_*] steps. Note that options with values

can only be specified using the single argument notation. For example:

bpkg:--fetch-timeout=600 \
bpkg.configure.fetch:--fetch-timeout=60 \
+bpkg.bindist.debian: \
b:-j1

Note that each machine name is matched against every pattern and all the patterns that match

produce a target configuration. If a machine does not match any pattern, then it is ignored

(meaning that this controller is not interested in testing its packages with this machine). If multi­

ple machines match the same pattern, then only a single target configuration using any of the

machines is produced (meaning that this controller considers these machines equivalent).

As an example, let’s say we have a machine named windows_10-vc_14.3. If we wanted to

test both 32 and 64-bit as well as debug and optimized builds, then we could have generated the

following target configurations:

windows*-msvc_14* windows-msvc_14-Z7 i686-microsoft-win32-msvc14.0 "all default msvc i686 debug" config.cc.coptions=/Z7 config.cc.loptions=/DEBUG ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-O2 i686-microsoft-win32-msvc14.0 "all default msvc i686 optimized" config.cc.coptions=/O2 ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-Z7 x86_64-microsoft-win32-msvc14.0 "all default msvc x86_64 debug" config.cc.coptions=/Z7 config.cc.loptions=/DEBUG ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-O2 x86_64-microsoft-win32-msvc14.0 "all default msvc x86_64 optimized" config.cc.coptions=/O2 ~"warning C4\d{3}: "

In the above example we could handle both i686 and x86_64 architectures with the same

machine but this may not always be possible and we may have to use different machines for

different configuration/target combinations. For example:

x86_64_linux_debian_11*-gcc_12.2 linux_debian_11-gcc_12.2 i686-linux-gnu ...

x86_64_linux_debian_11*-gcc_12.2 linux_debian_11-gcc_12.2 x86_64-linux-gnu ...

aarch64_linux_debian_11*-gcc_12.2 linux_debian_11-gcc_12.2 aarch64-linux-gnu ...

As another example, let’s say we have linux_fedora_25-gcc_6 and

linux_ubuntu_16.04-gcc_6. If all we cared about is testing GCC 6 64-bit builds on

Linux, then our target configurations could look like this:

linux*-gcc_6 linux-gcc_6-g x86_64-linux-gnu "all default gcc debug" config.cc.coptions=-g

linux*-gcc_6 linux-gcc_6-O3 x86_64-linux-gnu "all default gcc optimized" config.cc.coptions=-O3

A build target configuration class can derive from another class in which case target configura­

tions that belong to the derived class are treated as also belonging to the base class (or classes,

recursively). The derived and base class names are separated with : (no leading or trailing spaces

allowed) and the base must be present in the first mentioning of the derived class. For example:

43Revision 0.18, November 2024 The build2 Build Bot

2.10 Controller Logic

linux*-gcc_6 linux-gcc_6-g x86_64-linux-gnu "all gcc-6+ debug" config.cc.coptions=-g

linux*-gcc_6 linux-gcc_6-O3 x86_64-linux-gnu "all gcc-6+ optimized" config.cc.coptions=-O3

linux*-gcc_7 linux-gcc_7-g x86_64-linux-gnu "all gcc-7+:gcc-6+ debug" config.cc.coptions=-g

linux*-gcc_7 linux-gcc_7-O3 x86_64-linux-gnu "all gcc-7+ optimized" config.cc.coptions=-O3

A machine pattern consisting of a single - is a placeholder entry. Everything about a placeholder

is ignored except for the class inheritance information. Note, however, that while all other infor­

mation is ignored, the configuration name and target must be present but can also be -. For

example:

linux*-gcc_6 linux-gcc_6 x86_64-linux-gnu "all gcc-6+ "
- - - " gcc-7+:gcc-6+"
linux*-gcc_8 linux-gcc_8 x86_64-linux-gnu "all gcc-8+:gcc-7+"

If the <tgt-config-arg> list contains the config.install.root variable that applies

to the bpkg.target.create or, as a fallback, b.create or bpkg.create steps, then in

addition to building and possibly running tests, the bbot worker will also test installing and

uninstalling each package (unless replaced with the bbot.sys-install step). Furthermore, if

the package contains subprojects that support the test operation and/or refers to other packages

via the tests, examples, or benchmarks manifest values which are not excluded by the

bbot controller, then the worker will additionally build such subprojects/packages against the

installation (created either from source or from the binary distribution package) and run their tests

(test installed and test separate installed phases).

Two types of installations can be tested: system and private. A system installation uses a

well-known location, such as /usr or /usr/local, that will be searched by the compiler

toolchain by default. A private installation uses a private directory, such as /opt, that will have

to be explicitly mentioned to the compiler. While the system installation is usually preferable, it

may not be always usable because of the potential conflicts with the already installed software,

for example, by the system package manager.

As an example, the following two target configurations could be used to test system and private

installations:

linux*-gcc* linux-gcc-sysinstall x86_64-linux-gnu "all default gcc" config.install.root=/usr config.install.sudo=sudo

linux*-gcc* linux-gcc-prvinstall x86_64-linux-gnu "all default gcc" config.install.root=/tmp/install config.cc.poptions=-I/tmp/install/include config.cc.loptions=-L/tmp/install/lib config.bin.rpath=/tmp/install/lib

Note also that while building and running tests against the installation created either from source

or from the archive distribution package the worker makes the bin subdirectory of

config.install.root the first entry in the PATH environment variable, except for build

system modules which supposedly don’t install any executables. As was mentioned earlier,

normally the config.install.root variable is expected to be prefixed with the

bpkg.target.create or, as a fallback, b.create or bpkg.create step ids. However,

for testing of the relocatable installations it can be desirable to extract the archive distribution

package content at the bbot.sys-install.tar.extract step into a different installation

Revision 0.18, November 202444 The build2 Build Bot

2.10 Controller Logic

directory. If that’s the case, then this directory needs to also be specified as

bbot.sys-install:config.install.root. If specified, this directory will be

preferred as a base for forming the bin/ directory path.

The bbot controller normally issues the build task by picking an unbuilt package configuration

and one of the produced (via the machine names match) target configurations, which is not

excluded from building due to this package configuration *-builds, *-build-include,

and *-build-exclude manifest values.

45Revision 0.18, November 2024 The build2 Build Bot

2.10 Controller Logic

	Preface
	1 Introduction
	2 Architecture
	2.1 Configurations
	2.1.1 Build Machine Configuration
	2.1.2 Build Target Configuration
	2.1.3 Build Package Configuration
	2.1.4 Auxiliary Machines and Configurations

	2.2 Machine Header Manifest
	2.2.1 id
	2.2.2 name
	2.2.3 summary
	2.2.4 role
	2.2.5 ram-minimum, ram-maximum

	2.3 Machine Manifest
	2.3.1 type
	2.3.2 mac
	2.3.3 options
	2.3.4 changes

	2.4 Task Manifest
	2.4.1 name
	2.4.2 version
	2.4.3 repository-url
	2.4.4 repository-type
	2.4.5 trust
	2.4.6 requires, tests, examples, benchmarks
	2.4.7 dependency-checksum
	2.4.8 machine
	2.4.9 auxiliary-machine
	2.4.10 target
	2.4.11 environment
	2.4.12 auxiliary-environment
	2.4.13 target-config
	2.4.14 package-config
	2.4.15 host
	2.4.16 warning-regex
	2.4.17 interactive
	2.4.18 worker-checksum

	2.5 Result Manifest
	2.5.1 name
	2.5.2 version
	2.5.3 status
	2.5.4 *-status
	2.5.5 *-log
	2.5.6 dependency-checksum
	2.5.7 worker-checksum

	2.6 Task Request Manifest
	2.6.1 agent
	2.6.2 toolchain-name
	2.6.3 toolchain-version
	2.6.4 interactive-mode
	2.6.5 interactive-login
	2.6.6 fingerprint
	2.6.7 auxiliary-ram

	2.7 Task Response Manifest
	2.7.1 session
	2.7.2 challenge
	2.7.3 result-url
	2.7.4 *-upload-url
	2.7.5 agent-checksum

	2.8 Result Request Manifest
	2.8.1 session
	2.8.2 challenge
	2.8.3 agent-checksum

	2.9 Worker Logic
	2.9.1 Bindist Result Manifest

	2.10 Controller Logic

