The build2 Build System

Copyright © 2014-2025 the build2 authors.
Permission is granted to copy, distribute and/or modify this document under the terms of the MIT
License.

Revision 0. 18, July 2025
This revision of the document describes the build2 build system 0.18.x series.

Table of Contents

Table of Contents
S 1
(1.1 Hello, Worldl e 2
[1.2 Project Structure| . e 8
[1.3 Output Directories and Scopesl e 16
[1.4 Operations| 27
[1.4.1 Configuringl 28
[1.4.3 Installingl 37
[1.4.4 Distributing| 41
[1.5 Target Importation| . . e 43
[1.6 Library Exportation and Versmnlngl e 48
[1.7 Subprojects and Amalgamations| 53
[1.8 Buildfile Language] . . e 58
[1.8.1 Expansion and Quotmgl e 60
[1.8.2 Conditions (i f-else). 65
[1.8.3 Pattern Matching (switch). 67
[1.8.4 Repetitions (for)| 70
[1.9 Implementing Unit Testingl 70
[1.10 Diagnostics and Debuggingl 73
[2 Project Configuration| 79
2.1 config Directivel 82
[2.2 Configuration Report| 88
[2.3 Configuration Propagation|. 90
[3 Targets and Target Types|] 94
[3.1 Target Types|. 94
Blltarget{}] 9
B.12alias{}anddir{} 97
[3.1.3 £sdir{}|. . . S 98
3.1.4mtime_target{} and path target{ .o .. 98
[3.1.5 group{}. 98
Blefile{}] . . . L
[3.1.7 doc{}, legal{}, andman{}l C e 99
3.1.8 exe{} 100
|3.1.9json{}| A ()
. (0
. e (024
[5.1 Bu11t1n Funct10ns| . . (02
511 5builtin. def1ned()| . (12}
[5.1.2 Sbuiltin.visibility (| 102

Revision 0.18, July 2025 The build2 Build System i

Table of Contents

[5.1.3 $builtin.

type (]

[5.1.4 $Sbuiltin.

null ()]

[5.1.5 $builtin.

empty ()]

[5.1.6 Sbuiltin.

first (), Sbuiltin. second()l

[5.1.7 $builtin.

quote ()]

[5.1.8 $Sbuiltin.

getenv ()] .

[5.2 String Functions|

[5.2.1 $string.

icasecmp ()]

[5.2.2 $string.

contains ()]

[5.2.3 $string.

starts_with ()]

[5.2.4 $string.

ends_with ()]

[5.2.5 $string.

replace ()] .

[5.2.6 $string.

trim()|.

[5.2.7 $string.

lcase (), $string.ucase ()|

[5.2.8 $string.

size ()].

[5.2.9 $string.

sort ()] .

[5.2.10 $string.

find ()|

[5.2.11 $string.

find index ()|

[5.2.12 $string.

keys ()]

[5.3 Integer Functions|

[5.3.1 Sinteger.

strlng()|

[5.3.2 Sinteger.

integer sequence ()|

[5.3.3 $integer.

size ()|

[5.3.4 $integer.

sort ()|

[5.3.5 $integer.

find ()|

[5.3.6 $integer.

find index ()|

[5.4 Bool Functions|

[5.4.1 $bool.st

rlng<n

[5.5 Path Functions|.

[5.5.1 Spath.st

ring (].

[5.5.2 $path.po

six _string () | .

[5.5.3 $path.representation ()]

[5.5.4 $path.po

six_representation ()]

[5.5.5 $path.ab

solute ()]

[5.5.6 $path.simple ()] .

[5.5.7 $path.sub_path ()]

[5.5.8 $path.super path ()]

[5.5.9 $path.di

rectory ()] .

[5.5.10 $path.root_directory ()] .

[5.5.11 Spath.leaf ()]

[5.5.12 $path.relative ()] .

[5.5.13 $path.base ()]

[5.5.14 Spath.extension ()]

The build2 Build System

103
103
103
103
103
103
104
104
104
104
105
105
105
105
106
106
106
106
107
107
107
107
107
107
108
108
108
108
108
108
108
109
109
109
109
109
110
110
110
110
110
111
111

Revision 0.18, July 2025

Table of Contents

[5.5.15 $path.c

omplete ()] .

[5.5.16 Spath.

canonicalize ()]

[5.5.17 Spath.

normalize (), $Spath.try normallze()|

[5.5.18 Spath.

actualize (), $Spath.try actualize ()|

[5.5.19 S$path.

size ()|

[5.5.20 Spath.

sort ()|

[5.5.21 $path.

find ()|

[5.5.22 $path.

find _index ()]

[5.5.23 $path.

match ()] .

[5.6 Name Functions|

[5.6.1 $name.

name ()|

[5.6.2 $name.

extension ()] .

[5.6.3 $name.

directory ()] .

[5.6.4 $name.

target_type ()]

[5.6.5 $name.

project ()]

[5.6.6 $Sname.

is_a ()]

[5.6.7 $name.

filter (), $name. fllter out()l

[5.6.8 $name.

size ()|

[5.6.9 $name.

sort ()|

[5.6.10 $name.

find ()|

[5.6.11 $name.

find index ()|

[5.7 Target Functions|

[5.7.1 $targe

t. path(H

[5.7.2 $targe

t.process_path ()]

[5.8 Regex Functions|

[5.8.1 $regex.

match ()] .

[5.8.2 $regex.

find match ()|

[5.8.3 $Sregex.

filter match (), $Sregex. fllter out match()l

[5.8.4 Sregex.

search ()]

[5.8.5 $regex.

find search ()] .

[5.8.6 Sregex.

filter search(), Sregex.filter out search()l

[5.8.7 $regex.

replace ()|

[5.8.8 $regex.

replace lines ()]

[5.8.9 $regex.

split ()] .

[5.8.10 Sregex.merge ()]

[5.8.11 $regex.apply ()]

(5.9 JSON Functions|

[5.9.1 $94son.

value type ()|

[5.9.2 $4son.

value size ()]

[5.9.3 $4son.

member name ()]

[5.9.4 $4son.

member value ()] .

[5.9.5 $94son.

object_names ()] .

[5.9.6 $ison.

array_size ()|

Revision 0.18, July 2025

The build2 Build System

111
111
111
112
112
112
113
113
113
114
114
114
114
114
114
114
115
115
115
115
115
115
116
116
116
116
117
117
117
118
118
118
119
119
120
120
121
121
121
121
121
122
122

Table of Contents

[5.9.7 $9son.array find ()|
[5.9.8 $4son.array find index ()|
[5.9.9 $9son.load ()]
[5.9.10 $json.parse ()] .
[5.9.11 $json.serialize ()|
[5.9.12 $9son.size ()]
[5.9.13 $yson.keys ()]
[5.10 Process Functions|. . .
[5.10.1 $process.run ()|
[5.10.2 $Sprocess.run regex ()|
[5.11 Filesystem Functions|
[5.11.1 $filesystem.file exists ()] .
[5.11.2 $filesystem.directory exists ()]
[5.11.3 $filesystem.path search ()] .
[5.12 Project Name Functions| ..
[5.12.1 $Sproject name.string()] .
[5.12.2 $project_name.base ()|
[5.12.3 $Sproject name.extension ()] .
[5.12.4 $Sproject name.variable ()]
[5.13 Process Path Functions]
[5.13.1 $process_path.recall ()] .
[5.13.2 $Sprocess_path.effect ()] .
[5.13.3 $process_path.name ()|
[5.13.4 $Sprocess_path.checksum ()]
[5.13.5 $process_path.env_checksum ()] .
[5.14 Target Triplet Functions| ..
[5.14.1 Starget_triplet.string()]
[5.14.2 Starget_triplet.representation ()|
.1 define
.2 include|.
.3 source
4 update
7 Attributes
[8 Name Patterns| ..
[0 configModule].
[9.1 Hermetic Build Configurations|
[10 test Module| . ..
[11 install Module] . . .
[11.1 Relocatable Installation
[11.2 Installation Filtering]
[12 version Module| .
[13 bin Module]

iv The build2 Build System

122
122
122
122
123
123
123
123
123
124
124
124
124
124
125
125
125
125
125
125
126
126
126
126
126
126
126
127
127
127
127
127
127
130
130
134
134
137
138
140
141
142
150

Revision 0.18, July 2025

Table of Contents

[13.1 Binary Target Types| . . S I (0]
[13.1.1 1ib{}, liba{}, lle{}| . . ()

[13.1.2 1ibul{}, libue{}, libua{}, llbus{}l B Y

[13.1.3 0bj{},obje{},obja{},obis{}. 131
[[3.14bmi{},bmie{},bmia{},bmis{}|. 13l

|13.1.5 hbmi {}, hbmie{}, hbmia{}, hbmis{}] 132
. s)

. S s ¥/
[14.1 C- Common Conflguratlon Varlablesl e s)
[14.2 C-Common Target Types| 1353
[14.2.1 pc{},pca{},pcs{} 134

[14.3 Compilation Internal Scopel 134
[14.4 Automatic DLL Symbol Exportingl 156
[14.5 Compiler Predefined Macro Extraction| 137
[14.6 Importation of Installed Libraries] 160
[14.6.1 Rewriting Installed Libraries System Root (sysroot)l L. ..o 1e2

[14.7 Compilation Database}. 163
[14.8 GCC Compiler Toolchain| 169
[14.9 Clang Compiler Toolchain|. 169
[14.9.1 Clang Targetine MSVC| 169

[14.10 MSVC Compiler Toolchain| 1171
. S 2
[15.1 C Conflguratlon Varlablesl S I 42)
(15.2 C Target Types]173
(152.1 c{},h{}] 173

[15.3 Objective-C Compilation]113
[15.4 Assembler with C Preprocessor Compllatlonl O 1
[15.5 C Compiler Predefined Macro Extraction| S

[16 cxx Module] . . S)
[16.1 C++ Conflguratlon Varlablesl O A
[16.2 C++ Target Types| . . 4
[16.2.1 cxx{}, hxx{}, ixx{}, txx{} mxx{}|. 177

[16.3 C++ Modules Supportf. 117
[16.3.1 Modules Introduction| 177

[16.3.2 Building Modules| . . T £ 5}

[16.3.3 Module Symbols Exportlngl R 1t

[16.3.4 Modules Installation| . S L0

[16.3.5 Modules Design Guldehnesl S 0]

[16.3.6 Modularizing Existing Code| 197

[16.4 Objective-C++ Compilation| . . 1]
|16 5 C++ Compﬂer Predefined Macro Extractlonl A 1
e 101
[18 bash Modulel A 0§ |

Revision 0.18, July 2025 The build2 Build System s

Table of Contents

[19 Appendix A —JSON Dump Formatf24

Vi The build2 Build System Revision 0.18, July 2025

Preface

Preface

This document describes the build2 build system. For the build system driver command line
interface refer to the b (1) man pages. For other tools in the build2 toolchain (package and
project managers, etc) see the [Documentation|index.

1 Introduction

The build2 build system is a native, cross-platform build system with a terse, mostly declara-
tive description language, a conceptual model of build, and a uniform interface with consistent
behavior across platforms and compilers.

Those familiar with make will see many similarities, though mostly conceptual rather than
syntactic. This is not by accident since build2 borrows the fundamental DAG-based build
model from original make and many of its conceptual extensions from GNU make. We believe,
paraphrasing a famous quote, that those who do not understand make are condemned to reinvent
it, poorly. So our goal with build2 was to reinvent make well while handling the demands and
complexity of modern cross-platform software development.

Like make, build2 is an "honest" build system without magic or black boxes. You can expect
to understand what’s going on underneath and be able to customize most of its behavior to suit
your needs. This is not to say that it’s not an opinionated build system and if you find yourself
"fighting" some of its fundamental design choices, it would probably be wiser to look for alterna-
tives.

We believe the importance and complexity of the problem warranted the design of a new
purpose-built language and will hopefully justify the time it takes for you to master it. In the end
we hope build2 will make creating and maintaining build infrastructure for your projects a
pleasant task.

Also note that build?2 is not specific to C/C++ or even to compiled languages; its build model is
general enough to handle any DAG-based operations. See the module for a good example.

While the build system is part of a larger, well-integrated build toolchain that includes the
package and project dependency managers, it does not depend on them and its standalone usage
is the only subject of this manual.

We begin with a tutorial introduction that aims to show the essential elements of the build system
on real examples but without getting into too much detail. Specifically, we want to quickly get to
the point where we can build useful executable and library projects.

Revision 0.18, July 2025 The build2 Build System 1

https://build2.org/doc.xhtml

1.1 Hello, World

1.1 Hello, World

Let’s start with the customary "Hello, World" example: a single source file from which we would
like to build an executable:

$ tree hello/
hello/
-—— hello.cxx

$ cat hello/hello.cxx
#include <iostream>

int main ()

{
std::cout << "Hello, World!" << std::endl;

}

While this very basic program hardly resembles what most software projects look like todays, it is
useful for introducing key build system concepts without getting overwhelmed. In this spirit we
will also use the build2 simple project structure, which, similarly, should only be used for basic
needs.

To turn our hello/ directory into a simple project all we need to do is add abuildfile:

$ tree hello/
hello/

|—— hello.cxx
+—— buildfile

$ cat hello/buildfile
using cxx

exe{hello}: cxx{hello.cxx}

Let’s start from the bottom: the second line is a dependency declaration. On the left hand side of
: we have a target, the hello executable, and on the right hand side — a prerequisite, the
hello.cxx source file. Those exe and cxx in exe{...} and cxx{ ...} are called target
types. In fact, for clarity, target type names are always mentioned with trailing { }, for example,
"the exe { } target type denotes an executable".

Notice that the dependency declaration does not specify how to build an executable from a C++
source file — this is the job of a rule. When the build system needs to update a target, it tries to
match a suitable rule based on the types of the target and its prerequisites. The build2 core has
a number of predefined fundamental rules with the rest coming from build system modules. For
example, the cxx module defines a number of rules for compiling C++ source code as well as
linking executables and libraries.

2 The build2 Build System Revision 0.18, July 2025

1.1 Hello, World

It should now be easy to guess what the first line of our buildfile does: it loads the cxx
module which defines the rules necessary to build our program (it also registers the cxx { } target

type).
Let’s now try to build and run our program (b is the build system driver):

$ cd hello/ # Change to project root.

$b
c++ cxx{hello} -> obje{hello}
1d exe{hello}

$ 1s -1
buildfile
hello.cxx
hello
hello.d
hello.o
hello.o.d

$./hello
Hello, World!

Or, if we are on Windows and using Visual Studio:
> cd hello

> b
ct++ cxx{hello} -> obje{hello}
1d exe{hello}

> dir /b
buildfile
hello.cxx
hello.exe
hello.exe.d
hello.exe.obj
hello.exe.obj.d

> .\hello.exe
Hello, World!

By default build2 uses the same C++ compiler it was built with and without passing any extra
options, such as debug or optimization, target architecture, etc. To change these defaults we use
configuration variables. For example, to specify a different C++ compiler we use config.cxx:

$ b config.cxx=clang++

For Visual Studio, build2 by default will use the latest available version and build for the
x86_64 target (x64 in the Microsoft’s terminology). You can, however, override these defaults
by either running from a suitable Visual Studio development command prompt or by specifying
an absolute path to c1 that you wish to use. For example (notice the use of inner quotes):

Revision 0.18, July 2025 The build2 Build System 3

1.1 Hello, World

> b "config.cxx='...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl’"

See MSVC Compiler Toolchain| for details.

Similarly, for additional compile options, such as debug information or optimization level, there
isconfig.cxx.coptions. For example:

$ b config.cxx=clang++ config.cxx.coptions=-g

These and other configuration variables will be discussed in more detail later. We will also learn
how to make our configuration persistent so that we don’t have to repeat such long command
lines on every build system invocation.

Similar to config.cxx, there is also config. c for specifying the C compiler. Note, however,
that if your project uses both C and C++, then you normally only need to specify one of them —
build2 will determine the other automatically.

Let’s discuss a few points about the build output. Firstly, to reduce the noise, the commands
being executed are by default shown abbreviated and with the same target type notation as we
used in the buildfile. For example:

c++ cxx{hello} -> obje{hello}
1d exe{hello}

If, however, you would like to see the actual command lines, you can pass —v (to see even more,
there is the =V as well as ——verbose options; see b (1) for details). For example:

$ b -v
g++ —o hello.o -c hello.cxx
g++ —o hello hello.o

Most of the files produced by the build system should be self-explanatory: we have the object file
(hello.o, hello.obj) and executable (hello, hello.exe). For each of them we also
have the corresponding .d files which store the auxiliary dependency information, things like
compile options, header dependencies, etc.

To remove the build system output we use the clean operation (if no operation is specified, the
default is update):

$ b clean
rm exe{hello}
rm obje{hello}

$ 1s -1

buildfile
hello.cxx

4 The build2 Build System Revision 0.18, July 2025

1.1 Hello, World

One of the main reasons behind the target type concept is the platform/compiler-specified vari-
ances in file names as illustrated by the above listings. In our buildfile we refer to the
executable target as exe{hello}, not as hello.exe or hel1lo$EXT. The actual file exten-
sion, if any, will be determined based on the compiler’s target platform by the rule doing the
linking. In this sense, target types are a platform-independent replacement of file extensions
(though they do have other benefits, such as allowing non-file targets as well as being hierarchi-

cal; see for details).

Let’s revisit the dependency declaration line from our buildfile:

exe{hello}: cxx{hello.cxx}

In light of target types replacing file extensions this looks tautological: why do we need to specify
both the cxx { } target type and the .cxx file extension? In fact, we don’t have to if we specify
the default file extension for the cxx{} target type. Here is our updated buildfile in its
entirety:

using cxx
cxx{*}: extension = cxx

exe{hello}: cxx{hello}

Let’s unpack the new line. What we have here is a target type/pattern-specific variable. It only
applies to targets of the cxx{} type whose names match the * wildcard pattern. The exten—
sion variable name is reserved by the build2 core for specifying target type extensions.

Let’s see how all these pieces fit together. When the build system needs to update exe{hello},
it searches for a suitable rule. A rule from the cxx module matches since it knows how to build a
target of type exe{} from a prerequisite of type cxx{}. When the matched rule is applied, it
searches for a target for the cxx{hello} prerequisite. During this search, the extension
variable is looked up and its value is used to end up with the hello. cxx file.

To resolve a rule match ambiguity or to override a default match build2 uses rule hints. For
example, if we wanted link a C executable using the C++ link rule:

[rule_hint=cxx] exe{hello}: c{hello}
Here is our new dependency declaration again:

exe{hello}: cxx{hello}

It has the canonical form: no extensions, only target types. Sometimes explicit extension specifi-
cation is still necessary, for example, if your project uses multiple extensions for the same file
type. But if unnecessary, it should be omitted for brevity.

Revision 0.18, July 2025 The build2 Build System 5

1.1 Hello, World

If you prefer the . cpp file extension and your source file is called hello.cpp, then the only
line in our buildfile that needs changing is the extension variable assignment:

cxx{*}: extension = cpp

Let’s say our hello program got complicated enough to warrant moving some functionality into
a separate source/header module (or a real C++ module). For example:

$ tree hello/
hello/

|—— hello.cxx
|—— utility.hxx
|—— utility.cxx
-—— buildfile

This is what our updated buildfile could look like:

using cxx

hxx{*}: extension hxx

cxx{*}: extension = cxx

exe{hello}: cxx{hello} hxx{utility} cxx{utility}

Nothing really new here: we’ve specified the default extension for the hxx{} target type and
listed the new header and source files as prerequisites. If you have experience with other build
systems, then explicitly listing headers might seem strange to you. As will be discussed later, in
build2 we have to explicitly list all the prerequisites of a target that should end up in a source
distribution of our project.

You don’t have to list all headers that you include, only the ones belonging to your project. Like
all modern C/C++ build systems, build2 performs automatic header dependency extraction.

In real projects with a substantial number of source files, repeating target types and names will
quickly become noisy. To tidy things up we can use name generation. Here are a few examples of
dependency declarations equivalent to the above:

exe{hello}: cxx{hello utility} hxx{utility}
exe{hello}: cxx{hello} {hxx cxx}{utility}

The last form is probably the best choice if your project contains a large number of header/source
pairs. Here is a more realistic example:

exe{hello}: { cxx}{hello} \

{hxx } {forward types} \
{hxx cxx}{format print utility}

6 The build2 Build System Revision 0.18, July 2025

1.1 Hello, World

Manually listing a prerequisite every time we add a new source file to our project is both tedious
and error prone. Instead, we can automate our dependency declarations with wildcard name
patterns. For example:

exe{hello}: {hxx cxx}{*}

Based on the previous discussion of default extensions, you can probably guess how this works:
for each target type the value of the extension variable is added to the pattern and files match-
ing the result become prerequisites. So, in our case, we will end up with files matching the
* .hxx and * . cxx wildcard patterns.

In more complex projects it is often convenient to organize source code into subdirectories. To
handle such projects we can use the recursive wildcard:

exe{hello}: {hxx cxx}{**}

Using wildcards is somewhat controversial. Patterns definitely make development more pleasant
and less error prone: you don’t need to update your buildfile every time you add, remove, or
rename a source file and you won’t forget to explicitly list headers, a mistake that is often only
detected when trying to build a source distribution of a project. On the other hand, there is the
possibility of including stray source files into your build without noticing. And, for more complex
projects, name patterns can become fairly complex (see [Name Patterns| for details). Note also that
on modern hardware the performance of wildcard searches hardly warrants a consideration.

In our experience, when combined with modern version control systems like git (1), stray
source files are rarely an issue and generally the benefits of wildcards outweigh their drawbacks.
But, in the end, whether to use them or not is a personal choice and, as shown above, build2
supports both approaches.

And that’s about all there is to our hello example. To summarize, we’ve seen that to build a
simple project we need a single buildfile which itself doesn’t contain much more than a
dependency declaration for what we want to build. But we’ve also mentioned that simple projects
are only really meant for basics. So let’s convert our hello example to the standard project
structure which is what we will be using for most of our real development.

Simple projects have so many restrictions and limitations that they are hardly usable for anything
but, well, really simple projects.

Specifically, such projects cannot be imported by other projects nor can they use build system
modules that require bootstrapping. Notably, this includes the dist and config modules (the
test and install modules are loaded implicitly). And without the config module there is
no support for persistent configurations.

Revision 0.18, July 2025 The build2 Build System 7

1.2 Project Structure

As a result, you should only use a simple project if you are happy to always build in the source
directory and with the default build configuration or willing to specify the output directory and/or
custom configuration on every invocation. In other words, expect an experience similar to a plain
Makefile.

One notable example where simple projects are handy is a glue buildfile that "pulls" together
several other projects, usually for convenience of development. See [Target Importation| for
details.

1.2 Project Structure

A build2 standard project has the following overall layout:

hello/

| -- build/

| | -— bootstrap.build
| +—— root.build

-—— buildfile

Specifically, the project’s root directory should contain the build/ subdirectory as well as the
root buildfile. The build/ subdirectory contains project-wide build system information.

The bdep—new (1) command is an easy way to create the standard layout executable (-t exe)
and library (-t 1ib) projects. To change the C++ file extensions to .hpp/.cpp, pass —1
c++, cpp. For example:

$ bdep new —--no-init -1 c++,cpp -t exe hello

It is also possible to use an alternative build file/directory naming scheme where every instance of
the word build is replaced with build2, for example:

hello/

| -- build2/

| |—— bootstrap.build2
| +—— root.build2

-—— build2file

Note that the naming must be consistent within a project with all the filesystem entries either
following build or build2 scheme. In other words, we cannot call the directory build2/ while
still using buildfile.

The alternative naming scheme is primarily useful when adding build2 support to an existing
project along with other build systems. In this case, the fairly generic standard names might
already be in use. For example, it is customary to have build/ in .gitignore. Plus more
specific naming will make it easier to identify files and directories as belonging to the build2

8 The build2 Build System Revision 0.18, July 2025

1.2 Project Structure

support. For new projects as well as for existing projects that are switching exclusively to
build2 the standard naming scheme is recommended.

To create a project with the alternative naming using bdep—new (1) pass the alt-naming
project type sub-option. For example:

$ bdep new -t exe,alt-naming ...

To support lazy loading of subprojects (discussed later), reading of the project’s build informa-
tion is split into two phases: bootstrapping and loading. During bootstrapping the project’s
build/bootstrap.build file is read. Then, when (and if) the project is loaded completely,
its build/root .build file is read followed by the buildfile (normally from the project
root but possibly from a subdirectory).

The bootstrap.build file is required. Let’s see what it would look like for a typical project
using our hello as an example:

project = hello

using version
using config
using test
using install
using dist

The first non-comment line in bootstrap.build should be the assignment of the project
name to the project variable. After that, a typical boot strap.build file loads a number of
build system modules. While most modules can be loaded during the project load phase in
root.build, certain modules have to be loaded early, while bootstrapping (for example,
because they define new operations).

Let’s examine briefly the modules loaded by our bootstrap.build: The module
helps with managing our project versioning. With this module we only maintain the version in a
single place (the project’s manifest file) and it is automatically made available in various
convenient forms throughout our project (buildfiles, header files, etc). The version
module also automates versioning of snapshots between releases.

The manifest file is what makes our build system project a package. It contains all the meta-
data that a user of a package might need to know: name, version, dependencies, etc., all in one
place. However, even if you don’t plan to package your project, it is a good idea to create a basic
manifest if only to take advantage of the version management offered by the version
module. So let’s go ahead and add it next to our root buildfile:

$ tree hello/
hello/
| -— build/

Revision 0.18, July 2025 The build2 Build System 9

1.2 Project Structure

|-— ...
|-- buildfile
-—— manifest

$ cat hello/manifest

: 1

name: hello

version: 0.1.0

summary: hello C++ executable

The config module provides support for persistent configurations. While build configuration is
a large topic that we will be discussing in more detail later, in a nutshell build2 support for
configuration is an integral part of the build system with the same mechanisms available to the
build system core, modules, and your projects. However, without config, the configuration
information is transient. That is, whatever configuration information was automatically discov-
ered or that you have supplied on the command line is discarded after each build system invoca-
tion. With the config module, however, we can configure a project to make the configuration
persistent. We will see an example of this shortly.

Next up are the test, install, and dist modules. As their names suggest, they provide
support for testing, installation and preparation of source distributions. Specifically, the test
module defines the test operation, the install module defines the install and unin-
stall operations, and the dist module defines the dist (meta-)operation. Again, we will try
them out in a moment.

Moving on, the root .build file is optional though most projects will have it. This is the place
where we define project’s configuration variables (subject of [Project Configuration)), establish
project-wide settings, as well as load build system modules that provide support for the
languages/tools that we use. Here is what it could look like for our he1l1lo example:

cxx.std = latest
using cxx

hxx{*}: extension = hxx
cxx{*}: extension = cxx

As you can see, we’ve moved the loading of the cxx modules and setting of the default file
extensions from the root buildfile in our simple project to root .build when using the
standard layout. We’ve also set the cxx . std variable to tell the cxx module to select the latest
C++ standard available in any particular C++ compiler this project might be built with.

Selecting the C++ standard for our project is a messy issue. If we don’t specify the standard
explicitly with cxx.std, then the default standard in each compiler will be used, which,
currently, can range from C++98 to C++14. So unless you carefully write your code to work with
any standard, this is probably not a good idea.

10 The build2 Build System Revision 0.18, July 2025

1.2 Project Structure

Fixing the standard (for example, to c++11, c++14, etc) should work theoretically. In practice,
however, compilers add support for new standards incrementally and many versions, while
perfectly usable, are not feature-complete. As a result, a better practical strategy is to specify the
set of minimum supported compiler versions rather than the C++ standard.

There is also the issue of using libraries that require a newer standard in old code. For example,
headers from a library that relies on C++14 features will not compile when included in a project
that is built as C++11. And, even if the headers compile (that is, C++14 features are only used in
the implementation), strictly speaking, there is no guarantee that codebases compiled with differ-
ent C++ standards are ABI compatible (in fact, some changes to the C++ language leave the
implementations no choice but to break the ABI).

As result, our recommendation is to set the standard to latest and specify the minimum
supported compilers and versions in your project’s documentation (see package manifest
requires value for one possible place). Practically, this should allow you to include and link
any library, regardless of the C++ standard that it uses.

Let’s now take a look at the root buildfile:
./: {*/ -build/}

In plain English, this buildfile declares that building this directory (and, since it’s the root of
our project, building this entire project) means building all its subdirectories excluding build/.
Let’s now try to understand how this is actually achieved.

We already know this is a dependency declaration, ./ is the target, and what’s after : are its
prerequisites, which seem to be generated with some kind of a name pattern (the wildcard charac-
ter in */ should be the giveaway). What’s unusual about this declaration, however, is the lack of
any target types plus that strange-looking . /.

Let’s start with the missing target types. In fact, the above buildfile can be rewritten as:
dir{.}: dir{* -build}

So the trailing slash (always forward, even on Windows) is a special shorthand notation for
dir{}. As we will see shortly, it fits naturally with other uses of directories in buildfiles
(for example, in scopes).

The dir{} target type is an alias (and, in fact, is derived from more general alias{}; see
for details). Building it means building all its prerequisites.

If you are familiar with make, then you can probably see the similarity with the ubiquitous all
pseudo-target. In build2 we instead use directory names as more natural aliases for the "build
everything in this directory" semantics.

Revision 0.18, July 2025 The build2 Build System 11

1.2 Project Structure

Note also that dir{} is purely an alias and doesn’t have anything to do with the filesystem. In
particular, it does not create any directories. If you do want explicit directory creation (which
should be rarely needed), use the £sdir{} target type instead.

The ./ target is a special default target. If we run the build system without specifying the target
explicitly, then this target is built by default. Every buildfile has the ./ target. If we don’t
declare it explicitly, then its declaration is implied with the first target in the buildfile as its
prerequisite. Recall our buildfile from the simple hello project:

exe{hello}: cxx{hello}

It is equivalent to:

./: exe{hello}
exe{hello}: cxx{hello}

If, however, we had several targets in the same directory that we wanted built by default, then we
would need to explicitly list them as prerequisites of the default target. For example:

./: exe{hello}
exe{hello}: cxx{hello}

./: exe{goodby}
exe{goodby}: cxx{goodby}

While straightforward, this is somewhat inelegant in its repetitiveness. To tidy things up we can
use dependency declaration chains that allow us to chain together several target-prerequisite
declarations in a single line. For example:

./: exe{hello}: cxx{hello}

./: exe{goodby}: cxx{goodby}

With dependency chains a prerequisite of the preceding target becomes a target itself for the
following prerequisites.

Let’s get back to our root buildfile:
./ {*/ -build/}

The last unexplained bit is the {*/ -build/} name pattern. All it does is exclude build/
from the subdirectories to build. See [Name Patterns|for details.

Let’s take a look at a slightly more realistic root buildfile:

./+ {*/ -build/} doc{README.md LICENSE} manifest

12 The build2 Build System Revision 0.18, July 2025

1.2 Project Structure

Here we have the customary README .md and LICENSE files as well as the package mani-
fest. Listing them as prerequisites achieves two things: they will be installed if/when our
project is installed and, as mentioned earlier, they will be included into the project source distri-
bution.

The README.md and LICENSE files use the doc{} target type. We could have used the
generic £ile{} but using the more precise doc{} makes sure that they are installed into the
appropriate documentation directory. The manifest file doesn’t need an explicit target type
since it has a fixed name (manifest {manifest} is valid but redundant).

Standard project infrastructure in place, where should we put our source code? While we could
have everything in the root directory of our project, just like we did with the simple layout, it is
recommended to instead place the source code into a subdirectory named the same as the project.
For example:

hello/

—-— build/

—— hello/
|—— hello.cxx
+—— buildfile

—-— buildfile

—-— manifest

-—— README .md

There are several reasons for this layout: It implements the canonical inclusion scheme where
each header is prefixed with its project name. It also has a predictable name where users can
expect to find our project’s source code. Finally, this layout prevents clutter in the project’s root
directory which usually contains various other files. See Canonical Project Structure for details.

Note, however, that this layout is not mandatory and build?2 is flexible enough to support
various arrangements used in today’s C and C++ projects. Furthermore, the bdep—new (1)
command provides a number of customization options and chances are you will be able to create
your preferred layout automatically. See SOURCE LAYOUT for more information and exam-
ples.

Note also that while we can name our header and source files however we like (but, again, see
Canonical Project Structure for some sensible guidelines), C++ module interface files need to
embed a sufficient amount of the module name suffix in their names to unambiguously resolve all
the modules within a project. See [Building Modules|for details.

The source subdirectory buildfile is identical to that of the simple project minus the parts
moved to root .build:

Revision 0.18, July 2025 The build2 Build System 13

1.2 Project Structure

exe{hello}: {hxx cxx}{**}

Let’s now build our project and see where the build system output ends up in this new layout:

$ cd hello/ # Change to project root.
$b

c++ hello/cxx{hello} —-> hello/obje{hello}
1d hello/exe{hello}

$ tree ./

—— build/

-— hello/
|—— hello.cxx
|-- hello
|-- hello.d
|—— hello.o
|—— hello.o.d
+—— buildfile

-— buildfile

-—— manifest

$ hello/hello
Hello, World!

If we don’t specify a target to build (as in the example above), then build2 will build the
current directory or, more precisely, the default target in the buildfile in the current direc-
tory. We can also build a directory other than the current, for example:

$ b hello/

Note that the trailing slash is required. In fact, hello/ in the above command line is a target and
is equivalentto dir{hello}, justlike in the buildfiles.

Or we can build a specific target:

S b hello/exe{hello}

Naturally, nothing prevents us from building multiple targets or even projects in the same build
system invocation. For example, if we had the 1ibhello project next to our hello/, then we
could build both at once:

$ 1s -1

hello/

libhello/

$ b hello/ libhello/

14 The build2 Build System Revision 0.18, July 2025

1.2 Project Structure

Speaking of libraries, let’s see what the standard project structure looks like for one, using
libhello created by bdep—new (1) as an example:

$ bdep new —--no-init -1 c++ -t 1lib libhello

$ tree libhello/

libhello/

—— build/

—-— bootstrap.build

-— root.build

-—— export.build

—— libhello/

—— hello.hxx

—— hello.cxx

—-— export.hxx

—— version.hxx.in
+—— buildfile

-— tests/

-— buildfile
-— manifest
-—— README .md

The overall layout (build/, 1ibhello/ source subdirectory) as well as the contents of the
root files (bootstrap.build, root.build, root buildfile) are exactly the same. There
is, however, the new file export .build in build/, the new subdirectory tests/, and the
contents of the project’s source subdirectory 1ibhello/ look quite a bit different. We will
examine all of these differences in the coming sections, as we learn more about the build system.

Again, this layout is not mandatory and bdep—new (1) can create a number of alternative
library structures. For example, if you prefer the include/szrc split, try:

$ bdep new —--no-init -1 c++ -t 1lib,split libhello
See SOURCE LAYOUT for more examples.

The standard project structure is not type (executable, library, etc) or even language specific. In
fact, the same project can contain multiple executables and/or libraries (for example, both hello
and 1ibhello). However, if you plan to package your projects, it is a good idea to keep them as
separate build system projects (they can still reside in the same version control repository,
though).

Speaking of projects, this term is unfortunately overloaded to mean two different things at differ-
ent levels of software organization. At the bottom we have build system projects which, if pack-
aged, become packages. And at the top, related packages are often grouped into what is also
commonly referred to as projects. At this point both usages are probably too well established to
look for alternatives.

Revision 0.18, July 2025 The build2 Build System 15

1.3 Output Directories and Scopes

And this completes the conversion of our simple hello project to the standard structure. Earlier,
when examining bootstrap.build, we mentioned that modules loaded in this file usually
provide additional operations. So we still need to discuss what exactly the term build system
operation means and see how to use operations that are provided by the modules we have loaded.
But before we do that, let’s see how we can build our projects out of source tree and learn about
another cornerstone build2 concept: scopes.

1.3 Output Directories and Scopes

Two common requirements placed on modern build systems are the ability to build projects out
of the source directory tree (referred to as just out of source vs in source) as well as isolation of
buildfiles from each other when it comes to target and variable names. In build2 these
mechanisms are closely-related, integral parts of the build system.

This tight integration has advantages, like being always available and working well with other
build system mechanisms, as well as disadvantages, like the inability to implement a completely
different out of source arrangement and/or isolation model. In the end, if you find yourself "fight-
ing" this aspect of build2, it will likely be easier to use a different build system than subvert it.

Let’s start with an example of an out of source build for our hello project. To recap, this is
what we have:

$ 1s -1
hello/

$ tree hello/
hello/
| -- build/

|-- hello/

| - .
|-- buildfile
-—— manifest

To start, let’s build it in the hello-out/ directory next to the project:

$ b hello/@hello-out/

mkdir fsdir{hello-out/}

mkdir hello-out/fsdir{hello/}

c++ hello/hello/cxx{hello} -> hello-out/hello/obje{hello}
1d hello-out/hello/exe{hello}

$ 1s -1
hello/
hello-out/

$ tree hello-out/

hello-out/
+—— hello/

16 The build2 Build System Revision 0.18, July 2025

1.3 Output Directories and Scopes

|-- hello
|-- hello.
|-- hello.
+—— hello.

o 0 Q

.d

This definitely requires some explaining. Let’s start from the bottom, with the hello-out/
layout. It is parallel to the source directory. This mirrored side-by-side listing (of the relevant
parts) should illustrate this clearly:

hello/ ~~> hello-out/
+—— hello/ ~~> +—— hello/
-—— hello.cxx ~~> -—— hello.o

In fact, if we copy the contents of hello—-out/ over to hello/, we will end up with exactly
the same result as in the in source build. And this is not accidental: an in source build is just a
special case of an out of source build where the out directory is the same as src.

In build2 this parallel structure of the out and src directories is a cornerstone design decision
and is non-negotiable, so to speak. In particular, out cannot be inside src. And while we can stash
the build system output (object files, executables, etc) into (potentially different) subdirectories,
this is not recommended. As will be shown later, build2 offers better mechanisms to achieve
the same benefits (like reduced clutter, ability to run executables) but without the drawbacks (like
name clashes).

Let’s now examine how we invoked the build system to achieve this out of source build. Specifi-
cally, if we were building in source, our command line would have been:

$ b hello/

but for the out of source build, we have:

$ b hello/Rhello-out/

In fact, that strange-looking construct, hello/@hello—out/ is just a more elaborate target
specification that explicitly spells out the target’s src and out directories. Let’s add an explicit
target type to make it clearer:

S b hello/Rhello-out/dir{.}

What we have on the right of @ is the target in the out directory and on the left — its src directory.
In plain English, this command line says "build me the default target from hello/ in the
hello-out/ directory".

As an example, if instead we wanted to build only the hello executable out of source, then the
invocation would have looked like this:

Revision 0.18, July 2025 The build2 Build System 17

1.3 Output Directories and Scopes

$ b hello/hello/@hello-out/hello/exe{hello}

We could have also specified out for an in source build, but that’s redundant:

$ b hello/@hello/

There is another example of this elaborate target specification that can be seen in the build diag-
nostics, for instance, when installing headers of a library (the install operation is discussed in
the next section):

S b install: libhello/Q@libhello-out/

install libhello/libhello/hxx{hello}@libhello-out/libhello/ —>
/usr/local/include/

Notice, however, that now the target (hxx{hello}) is on the left of @, that is, in the src direc-
tory. It does, however, make sense if you think about it: our hello.hxx is a source file, in a
sense that it is not built and it resides in the project’s source directory. This is in contrast, for
example, to the exe{hello} target which is the output of the build system and goes to the out
directory. So in build2 targets can be either in src or in out (there can also be out of any project
targets, for example, installed files).

The elaborate target specification can also be used in buildfiles. We haven’t encountered
any so far because targets mentioned without explicit src/out default to out and, naturally, most of
the targets we mention in buildfiles are things we want built. One situation where you may
encounter an src target mentioned explicitly is when specifying its installability (discussed in the
next section). For example, if our project includes the customary INSTALL file, it probably
doesn’t make sense to install it. However, since it is a source file, we have to use the elaborate
target specification when disabling its installation:

doc{INSTALL}RQR./: install = false

Note also that only targets and not prerequisites have this notion of src/out directories. In a sense,
prerequisites are relative to the target they are prerequisites of and are resolved to targets in a
manner that is specific to their target types. For £ile { }-based prerequisites the corresponding
target in out is first looked up and, if found, used. Otherwise, an existing file in src is searched for
and, if found, the corresponding target (now in src) is used. In particular, this semantics gives
preference to generated code over static.

More precisely, a prerequisite is relative to the scope (discussed below) in which the dependency
is declared and not to the target that it is a prerequisite of. However, in most practical cases, this
means the same thing.

And this pretty much covers out of source builds. Let’s summarize the key points we have estab-
lished so far: Every build has two parallel directory trees, src and out, with the in source build
being just a special case where they are the same. Targets in a project can be either in the src or

18 The build2 Build System Revision 0.18, July 2025

1.3 Output Directories and Scopes

out directory though most of the time targets we mention in our buildfiles will be in out,
which is the default. Prerequisites are relative to targets they are prerequisites of and
file{ }-based prerequisites are first searched for as declared targets in out and then as existing
files in src.

Note also that we can have as many out of source builds as we want and we can place them
anywhere we want (but not inside src), say, on a RAM-backed disk/filesystem. As an example,
let’s build our hello project with two different compilers:

$ b hello/@hello-gcc/ config.cxx=g++
$ b hello/QRhello-clang/ config.cxx=clang++

In the next section we will see how to permanently configure our out of source builds so that we
don’t have to keep repeating these long command lines.

While technically you can have both in source and out of source builds at the same time, this is
not recommended. While it may work for basic projects, as soon as you start using generated
source code (which is fairly common in build2), it becomes difficult to predict where the
compiler will pick generated headers. There is support for remapping mis-picked headers but this
may not always work with older C/C++ compilers. Plus, as we will see in the next section,
build2 supports forwarded configurations which provide most of the benefits of an in source
build but without the drawbacks.

Let’s now turn to buildfile isolation. It is a common, well-established practice to organize
complex software projects in directory hierarchies. One of the benefits of this organization is
1solation: we can use the same, short file names in different subdirectories. In build2 the
project’s directory tree is used as a basis for its scope hierarchy. In a sense, scopes are like C++
namespaces that automatically track the project’s filesystem structure and use directories as their
names. The following listing illustrates the parallel directory and scope hierarchies for our
hello project. The build/ subdirectory is special and does not have a corresponding scope.

hello/ hello/

| {

.—— hello/ hello/
| {

}
}

Every buildfile is loaded in its corresponding scope, variables set in a buildfile are set
in this scope and relative targets mentioned in a buildfile are relative to this scope’s direc-
tory. Let’s "load" the buildfile contents from our hello project to the above listing:

Revision 0.18, July 2025 The build2 Build System 19

1.3 Output Directories and Scopes

hello/ hello/
i—— buildfile { ./: {*/ -build/}
!—— hello/ hello/
!—— buildfile { exe{hello}: {hxx cxx}{**}

}

In fact, to be absolutely precise, we should also add the contents of bootstrap.build and
root .build to the project’s root scope (module loading is omitted for brevity):

hello/ hello/
{
—— build/
|—— bootstrap.build project = hello
-—— root.build cxx.std = latest
hxx{*}: extension = hxx
cxx{*}: extension = cxx
—-— buildfile ./ {*/ -build/}
.—— hello/ hello/
| {
+—— buildfile exe{hello}: {hxx cxx}{**}

}

The above scope structure is very similar to what you will see (besides a lot of other things) if
you build with ——dump match. With this option the build system driver dumps the build state
after matching rules to targets (see [Diagnostics and Debugging| for more information). Here is an
abbreviated output of building our hello with ——dump (assuming an in source build in
/tmp/hello):

$ b ——dump match

/

{
[target_triplet] build.host = x86_64-1linux—gnu
[string] build.host.class = linux
[string] build.host.cpu = x86_64
[string] build.host.system = linux—-gnu
/tmp/hello/

{

[dir_path] src_root = /tmp/hello/
[dir_path] out_root /tmp/hello/

[dir_path] src_base = /tmp/hello/
[dir_path] out_base /tmp/hello/

20 The build2 Build System Revision 0.18, July 2025

1.3 Output Directories and Scopes

[project_name] project = hello
[string] project.summary = hello executable
[string] project.url = https://example.org/hello

[string] version = 1.2.3

[uint64] version.major = 1
[uint64] version.minor = 2
[uint64] version.patch = 3

[string] cxx.std = latest

[string] cxx.id = gcc
[string] cxx.version = 8.1.0

[uint64] cxx.version.major = 8
[uint64] cxx.version.minor = 1
[uint64] cxx.version.patch = 0

[target_triplet] cxx.target = x86_64-w64-mingw32
[string] cxx.target.class = windows

[string] cxx.target.cpu = x86_64

[string] cxx.target.system = mingw32

hxx{*}: [string] extension = hxx
cxx{*}: [string] extension = cxx
hello/

{
[dir_path] src_base = /tmp/hello/hello/
[dir_path] out_base = /tmp/hello/hello/

dir{./}: exe{hello}
exe{hello.}: cxx{hello.cxx}

}

dir{./}: dir{hello/} manifest{manifest}

This is probably quite a bit more information than what you’ve expected to see so let’s explain a
couple of things. Firstly, it appears there is another scope outer to our project’s root. In fact,
build2 extends scoping outside of projects with the root of the filesystem (denoted by the
special /) being the global scope. This extension becomes useful when we try to build multiple
unrelated projects or import one project into another. In this model all projects are part of a single
scope hierarchy with the global scope at its root.

The global scope is read-only and contains a number of pre-defined build-wide variables such as
the build system version, host platform (shown in the above listing), etc.

Next, inside the global scope, we see our project’s root scope (/tmp/hello/). Besides the vari-
ables that we have set ourselves (like project), it also contains a number of variables set by the
build system core (for example, out_base, src_root, etc) as well by build system modules
(for example, project.* and version. * variables set by the version module and cxx . *

Revision 0.18, July 2025 The build2 Build System 21

1.3 Output Directories and Scopes

variables set by the cxx module).

The scope for our project’s source directory (hello/) should look familiar. We again have a
few special variables (out_base, src_base). Notice also that the name patterns in prerequi-
sites have been expanded to the actual files.

As you can probably guess from their names, the src_* and out_* variables track the associa-
tion between scopes and src/out directories. They are maintained automatically by the build
system core with the src/out_lbase pair set on each scope within the project and an additional
src/out_root pair set on the project’s root scope so that we can get the project’s root directo-
ries from anywhere in the project. Note that directory paths in these variables are always absolute
and normalized.

In the above example the corresponding src/out variable pairs have the same values because we
were building in source. As an example, this is what the association will look like for an out of
source build:

hello/ ~~> hello-out/ <~~ hello-out/
{
src_root = .../hello/
out_root = .../hello-out/
src_base = .../hello/
out_base = .../hello-out/
+—— hello/ ~~> hello/ <~~ +—— hello/
{
src_base = .../hello/hello/
out_base = .../hello-out/hello/

}
}

Now that we have some scopes and variables to play with, it’s a good time to introduce variable
expansion. To get the value stored in a variable we use $ followed by the variable’s name. The
variable is first looked up in the current scope (that is, the scope in which the expansion was
encountered) and, if not found, in the outer scopes all the way to the global scope.

To be precise, this is for the default variable visibility. Variables, however, can have more limited
visibilities, such as project, scope, target, or prerequisite.

To illustrate the lookup semantics, let’s add the following line to each buildfile in our
hello project:

22 The build2 Build System Revision 0.18, July 2025

1.3 Output Directories and Scopes

$ cd hello/ # Change to project root.
$ cat buildfile

ir'léo "src_base: S$src_base"

$ cat hello/buildfile

info "src_base: $src_base"

And then build it:

$ b
buildfile:3:1: info: src_base: /tmp/hello/
hello/buildfile:8:1: info: src_base: /tmp/hello/hello/

In this case src_base is defined in each of the two scopes and we get their respective values. If,
however, we change the above line to print src_root instead of src_base, we will get the
same value from the root scope:

buildfile:3:1: info: src_root: /tmp/hello/
hello/buildfile:8:1: info: src_root: /tmp/hello/

In this section we’ve only scratched the surface when it comes to variables. In particular, vari-
ables and variable values in build2 are optionally typed (those [string], [uint64] we’'ve
seen in the build state dump). And in certain contexts the lookup semantics actually starts from
the target, not from the scope (target-specific variables; there are also prerequisite-specific).
These and other variable-related topics will be covered in subsequent sections.

One typical place to find src/out_root expansions is in the include search path options. For
example, the source subdirectory buildfile generated by bdep—new (1) for an executable
project actually looks like this (popt ions stands for preprocessor options):

exe{hello}: {hxx cxx}{**}

cxx.poptions =+ "-IS$Sout_root" "-IS$src_root"

The strange-looking =+ line is a prepend variable assignment. It adds the value on the right hand
side to the beginning of the existing value. So, in the above example, the two header search paths
will be added before any of the existing preprocessor options (and thus will be considered first).

There are also the append assignment, +=, which adds the value on the right hand side to the end
of the existing value, as well as, of course, the normal or replace assignment, =, which replaces
the existing value with the right hand side. One way to remember where the existing and new
values end up in the =+ and += results is to imagine the new value taking the position of = and
the existing value — of +.

Revision 0.18, July 2025 The build2 Build System 23

1.3 Output Directories and Scopes

The above buildfile allows us to include our headers using the project’s name as a prefix,
inline with the Canonical Project Structure guidelines. For example, if we added the
utility.hxx header to our hello project, we would include it like this:

#include <iostream>
#include <hello/utility.hxx>

int main ()

{

}

Besides poptions, there are also coptions (compile options), loptions (link options),
aoptions (archive options) and 1ibs (extra libraries to link). If you are familiar with make,
these are roughly equivalent to CPPFLAGS, CFLAGS/CXXFLAGS, LDFLAGS, ARFLAGS, and
LIBS/LDLIBS, respectively. Here they are again in the tabular form:

* .poptions preprocess CPPFLAGS

* . coptions compile CFLAGS/CXXFLAGS
*.loptions link LDFLAGS
*.aoptions archive ARFLAGS

*.libs extra libraries LIBS/LDLIBS

More specifically, there are three sets of these variables: cc.* (stands for C-common) which
applies to all C-like languages as well as c.* and cxx.* which only apply during the C and
C++ compilation, respectively. We can use these variables in our buildfiles to adjust the
compiler/linker behavior. For example:

if ($cc.class == ’'gcc’)
{
cc.coptions += —-fno-strict-aliasing # C and C++
cxx.coptions += —-fno-exceptions # only C++
}
if ($c.target.class != 'windows’)

c.libs += -1dl1 # only C

Additionally, as we will see in there are also the config.cc.*, config.c.*,
and config.cxx.* sets which are used by the users of our projects to provide external config-
uration. The initial values of the cc.*, c.*, and cxx.* variables are taken from the corre-
sponding config. *.* values.

And, as we will learn in [Library Exportation| there are also the cc.export.*, c.export.*,
and cxx.export . * sets that are used to specify options that should be exported to the users of
our library.

24 The build2 Build System Revision 0.18, July 2025

1.3 Output Directories and Scopes

If we adjust the cc.*, c.*, and cxx.* variables at the scope level, as in the above fragment,
then the changes will apply when building every target in this scope (as well as in the nested
scopes, if any). Usually this is what we want but sometimes we may need to pass additional
options only when compiling certain source files or linking certain libraries or executables. For
that we use the target-specific variable assignment. For example:

exe{hello}: {hxx cxx}{**}

obj{utility}: cxx.poptions += —-DNDEBUG
exe{hello}: cxx.loptions += -static

Note that we set these variables on targets which they affect. In particular, those with a back-
ground in other build systems may, for example, erroneously expect that setting poptions on a
library target will affect compilation of its prerequisites. For example, the following does not
work:

exe{hello}: cxx.poptions += —-DNDEBUG

The recommended way to achieve this behavior in build?2 is to organize your targets into subdi-
rectories, in which case we can just set the variables on the scope. And if this is impossible or
undesirable, then we can use target type/pattern-specific variables (if there is a common pattern)
or simply list the affected targets explicitly. For example:

obj{*.test}: cxx.poptions += -DDEFINE_MAIN
obj{main utility}: cxx.poptions += —-DNDEBUG

The first line covers compilation of source files that have the . test second-level extension (see
[Implementing Unit Testing| for background) while the second simply lists the targets explicitly.

It is also possible to specify different options when producing different types of object files
(obje{} — executable, obja{} — static library, or objs{} — shared library) or when linking
different libraries (1iba{ } — static library or 1ibs {} — shared library). See [Library Exportation|
[and Versioning|for an example.

As mentioned above, each buildfile in a project is loaded into its corresponding scope. As a
result, we rarely need to open scopes explicitly. In the few cases that we do, we use the following
syntax:

<directory>/

{

}

If the scope directory is relative, then it is assumed to be relative to the current scope. As an exer-
cise for understanding, let’s reimplement our hello project as a single buildfile. That is,
we move the contents of the source subdirectory buildfile into the root buildfile:

Revision 0.18, July 2025 The build2 Build System 25

1.3 Output Directories and Scopes

$ tree hello/
hello/

| -— build/

| ..

|-- hello

| -—— hello.cxx
+—— buildfile

$ cat hello/buildfile
./: hello/

hello/
{

./: exe{hello}: {hxx cxx}{**}

}

While this single buildfile setup is not recommended for new projects, it can be useful for
non-intrusive conversion of existing projects to build2. One approach is to place the unmodi-
fied original project into a subdirectory (potentially automating this with a mechanism such as
git (1) submodules) then adding the build/ subdirectory and the root buildfile which
explicitly opens scopes to define the build over the upstream project’s subdirectory structure.

Seeing this merged buildfile may make you wonder what exactly caused the loading of the
source subdirectory buildfile in our normal setup. In other words, when we build our hello
from the project root, who loads hello/buildfile and why?

Actually, in the earlier days of build2, we had to explicitly load buildfiles that define
targets we depend on with the include directive. In fact, we still can (and have to if we are
depending on targets other than directories). For example:

./: hello/

include hello/buildfile

We can also omit buildfile for brevity and have just:

include hello/

This explicit inclusion, however, quickly becomes tiresome as the number of directories grows. It
also makes using wildcard patterns for subdirectory prerequisites a lot less appealing.

To overcome this the dir{} target type implements an interesting prerequisite to target resolu-
tion semantics: if there is no existing target with this name, a buildfile that (presumably)
defines this target is automatically loaded from the corresponding directory. In fact, this mecha-
nism goes a step further and, if the buildfile does not exist, then it assumes one with the
following contents was implied:

26 The build2 Build System Revision 0.18, July 2025

1.4 Operations

ox/

That is, it simply builds all the subdirectories. This is especially handy when organizing related
tests into directory hierarchies.

As mentioned above, this automatic inclusion is only triggered if the target we depend on is
dir{} and we still have to explicitly include the necessary buildfiles for other targets. One
common example is a project consisting of a library and an executable that links it, each residing
in a separate directory next to each other (as noted earlier, this is not recommended for projects
that you plan to package). For example:

hello/
—— build/
-— hello/
|—— main.cxx
+—— buildfile
—— libhello/
|-- hello.hxx
|—— hello.cxx
+—— buildfile
+—— buildfile

In this case the executable buildfile would look along these lines:
include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

Note also that buildfile inclusion should only be used for accessing targets within the same
project. For cross-project references we use [Target Importation|

1.4 Operations

Modern build systems have to perform operations other than just building: cleaning the build
output, running tests, installing/uninstalling the build results, preparing source distributions, and
so on. And, if the build system has integrated configuration support, configuring the project
would naturally belong to this list as well.

If you are familiar with make, you should recognize the parallel with the common clean test,
install, and dist, "operation" pseudo-targets.

In build2 we have the concept of a build system operation performed on a target. The two
pre-defined operations are update and clean with other operations provided by build system
modules.

Revision 0.18, July 2025 The build2 Build System 27

1.4.1 Configuring

Operations to be performed and targets to perform them on are specified on the command line. As
discussed earlier, update is the default operation and ./ in the current directory is the default
target if no operation and/or target is specified explicitly. And, similar to targets, we can specify
multiple operations (not necessarily on the same target) in a single build system invocation. The
list of operations to perform and targets to perform them on is called a build specification or
buildspec for short (see b (1) for details). Here are a few examples:

$ cd hello # Change to project root.
$Db # Update current directory.
$b ./ # Same as above.

$ b update # Same as above.

$ b update: ./ # Same as above.

$ b clean update # Rebuild.

$ b clean: hello/ # Clean specific target.
$ b update: hello/exe{hello} # Update specific target

$ b update: libhello/ tests/ # Update two targets.

If you are running build2 from PowerShell, then you will need to use quoting when updating
specific targets, for example:

$ b update: "hello/exe{hello}’

Let’s revisit build/bootstrap.build from our hello project:
project = hello

using version
using config
using test
using install
using dist

Other than version, all the modules we load define new operations. Let’s examine each of
them starting with config.

1.4.1 Configuring

As mentioned briefly earlier, the module provides support for persisting configurations
by having us configure our projects. At first it may feel natural to call configure an operation.
There is, however, a conceptual problem: we don’t really configure a target. And, perhaps after
some meditation, it should become clear that what we are really doing is configuring operations
on targets. For example, configuring updating a C++ project might involve detecting and saving
information about the C++ compiler while configuring installing it may require specifying the
installation directory.

28 The build2 Build System Revision 0.18, July 2025

1.4.1 Configuring

In other words, configure is an operation on operation on targets — a meta-operation. And so
in build2 we have the concept of a build system meta-operation. If not specified explicitly (as
part of the buildspec), the default is per form, which is to simply perform the operation.

Back to config, this module provides two meta-operations: configure which saves the
configuration of a project into the build/config.build file as well as disfigure which
removes it.

While the common meaning of the word disfigure is somewhat different to what we make it mean
in this context, we still prefer it over the commonly suggested alternative (deconfigure) for the
symmetry of their Latin con- ("together") and dis- ("apart") prefixes.

Let’s say for the in source build of our hello project we want to use Clang and enable debug
information. Without persistence we would have to repeat this configuration on every build
system invocation:

$ cd hello/ # Change to project root.

$ b config.cxx=clang++ config.cxx.coptions=—-g

Instead, we can configure our project with this information once and from then on invoke the
build system without any arguments:

$ b configure config.cxx=clang++ config.cxx.coptions=-g

$ tree ./
./
| -— build/

| ...
| +—— config.build

clean

n »
o oo

To remove the persistent configuration we use the disfigure meta-operation:

$ b disfigure

Let’s again configure our project and take a look at config.build:

Revision 0.18, July 2025 The build2 Build System 29

1.4.1 Configuring

$ b configure config.cxx=clang++ config.cxx.coptions=-g
$ cat build/config.build

config.cxx = clang++

config.cxx.poptions = [null]
config.cxx.coptions = —g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]

As you can see, it’s just a buildfile with a bunch of variable assignments. In particular, this means
you can tweak your build configuration by modifying this file with your favorite editor. Or, alter-
natively, you can adjust the configuration by reconfiguring the project:

$ b configure config.cxx=g++
$ cat build/config.build

config.cxx = g++

config.cxx.poptions = [null]
config.cxx.coptions = —g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]

Any variable value specified on the command line overrides those specified in the build-
files. As aresult, config.cxx was updated while the value of config.cxx.coptions
was preserved.

To revert a configuration variable to its default value, list its name in the special
config.config.disfigure variable. For example:

$ b configure config.config.disfigure=config.cxx

Command line variable overrides are also handy to adjust the configuration for a single build
system invocation. For example, let’s say we want to quickly check that our project builds with
optimization but without permanently changing the configuration:

config.cxx.coptions=-03 # Rebuild with -03.

$ b
$b # Rebuild with -g.

Besides the various * . 2options variables, we can also specify the "compiler mode" options as
part of the compiler executable in config.c and config.cxx. Such options cannot be modi-
fied by buildfiles and they will appear last on the command lines. For example:

30 The build2 Build System Revision 0.18, July 2025

1.4.1 Configuring

$ b configure config.cxx="g++ -m32"

The compiler mode options are also the correct place to specify system-like header (-I) and
library (=L, /LIBPATH) search paths. Where by system-like we mean common installation
directories like /usr/include or /usr/local/lib which may contain older versions of
the libraries we are trying to build and/or use. By specifying these paths as part of the mode
options (as opposed to config.*.poptions and config.*.loptions) we make sure
they will be considered last, similar to the compiler’s build-in search paths. For example:

$ b configure config.cxx="g++ -L/opt/install"

If we would like to prevent subsequent changes to the environment from affecting our build
configuration, we can make it hermetic (see [Hermetic Build Configurations|for details):

$ b configure config.config.hermetic=true ...

One prominent use of hermetic configurations is to preserve the build environment of the Visual
Studio development command prompt. That is, hermetically configuring our project in a suitable
Visual Studio command prompt makes us free to build it from any other prompt or shell, IDE,
etc.

We can also configure out of source builds of our projects. In this case, besides
config.build, configure also saves the location of the source directory so that we don’t
have to repeat that either. Remember, this is how we used to build our hel1o out of source:

$ b hello/@hello-gcc/ config.cxx=g++
$ b hello/Q@hello-clang/ config.cxx=clang++

And now we can do:

$ b configure: hello/@hello-gcc/ config.cxx=g++
$ b configure: hello/@hello-clang/ config.cxx=clang++

$ hello-clang/
hello-clang/
-—— build/
| -— bootstrap/
| +—— src-root.build
-—— config.build

$ b hello—-gcc/
$ b hello-clang/
$ b hello-gcc/ hello-clang/

One major benefit of an in source build is the ability to run executables as well as examine build
and test output (test results, generated source code, documentation, etc) without leaving the
source directory. Unfortunately, we cannot have multiple in source builds and as was discussed
earlier, mixing in and out of source builds is not recommended.

Revision 0.18, July 2025 The build2 Build System 31

1.4.2 Testing

To overcome this limitation build2 has a notion of forwarded configurations. As the name
suggests, we can configure a project’s source directory to forward to one of its out of source
builds. Once done, whenever we run the build system from the source directory, it will automati-
cally build in the corresponded forwarded output directory. Additionally, it will backlink (using
symlinks or another suitable mechanism) certain "interesting" targets (exe{}, doc{}) to the
source directory for easy access. As an example, let’s configure our hello/ source directory to
forward to the hello—-gcc/ build:

$ b configure: hello/@hello-gcc/, forward

$ cd hello/ # Change to project root.

$b

c++ hello/cxx{hello} -> ../hello-gcc/hello/obje{hello}
1d ../hello-gcc/hello/exe{hello}

In ../hello-gcc/hello/exe{hello} -> hello/

Notice the last line in the above listing: it indicates that exe {hello} from the out directory was
backlinked in our project’s source subdirectory:

$ tree ./
./
—— build/
| -— bootstrap/
| +—— out-root.build
--— hello/
+—— hello —> ../../hello-gcc/hello/hello*

$./hello/hello
Hello World!

By default only exe{} and doc{} targets are backlinked. This, however, can be customized
with the back1ink target-specific variable.

1.4.2 Testing

The next module we load in bootstrap.build is which defines the test operation.
As the name suggests, this module provides support for running tests.

There are two types of tests that we can run with the test module: simple and scripted.

A simple test is just an executable target with the test target-specific variable set to t rue. For
example:

exe{hello}: test = true

32 The build2 Build System Revision 0.18, July 2025

1.4.2 Testing

A simple test is executed once and in its most basic form (typical for unit testing) doesn’t take
any inputs nor produce any output, indicating success via the zero exit status. If we test our
hello project with the above addition to the buildfile, then we will see the following
output:

$ b test
test hello/exe{hello}
Hello, World!

While the test passes (since it exited with zero status), we probably don’t want to see that
Hello, World! every time we run it (this can, however, be quite useful when running exam-
ples). More importantly, we don’t really test its functionality and if tomorrow our hello starts
swearing rather than greeting, the test will still pass.

Besides checking its exit status we can also supply some basic information to a simple test (more
common for integration testing). Specifically, we can pass command line options
(test.options) and arguments (test .arguments) as well as input (test.stdin, used
to supply test’s stdin) and output (test . stdout, used to compare to test’s stdout).

Let’s see how we can use this to fix our hello test by making sure our program prints the
expected greeting. First, we need to add a file that will contain the expected output, let’s call it
test.out:

$ 1s -1 hello/
hello.cxx
test.out
buildfile

$ cat hello/test.out
Hello, World!

Next, we arrange for it to be compared to our test’s stdout. Here is the new hello/build-
file:

exe{hello}: {hxx cxx}{**}
exe{hello}: file{test.out}: test.stdout = true

The last line looks new. What we have here is a prerequisite-specific variable assignment. By
setting test.stdout for the file{test.out} prerequisite of target exe{hello} we
mark it as expected stdout output of this target (theoretically, we could have marked it as
test.input for another target). Notice also that we no longer need the test target-specific
variable; it’s unnecessary if one of the other test . * variables is specified.

Now, if we run our test, we won’t see any output:

Revision 0.18, July 2025 The build2 Build System 33

1.4.2 Testing

$ b test
test hello/exe{hello}

And if we try to change the greeting in hello.cxx but not in test.out, our test will fail
printing the diff (1) comparison of the expected and actual output:

$ b test

c++ hello/cxx{hello} —-> hello/obje{hello}
1d hello/exe{hello}

test hello/exe{hello}

—-—— test.out

+++ -

@@ -1 +1 @@

—-Hello, World!

+Hi, World!

error: test hello/exe{hello} failed

Notice another interesting thing: we have modified hello.cxx to change the greeting and our
test executable was automatically rebuilt before testing. This happened because the test opera-
tion performs update as its pre-operation on all the targets to be tested.

Let’s make our hello program more flexible by accepting the name to greet on the command
line:

#include <iostream>

int main (int argc, char* argvl[])
{
if (argc < 2)
{
std::cerr << "error: missing name" << std::endl;
return 1;

}

std::cout << "Hello, " << argv[l] << ’!’ << std::endl;
}

We can exercise its successful execution path with a simple test fairly easily:

exe{hello}: test.arguments = ’'World’
exe{hello}: file{test.out}: test.stdout = true

What if we also wanted to test its error handling? Since simple tests are single-run, this won’t be
easy. Even if we could overcome this, having expected output for each test in a separate file will
quickly become untidy. And this is where script-based tests come in. Testscript is build2’s
portable language for running tests. It vaguely resembles Bash and is optimized for concise test
implementation and fast, parallel execution.

34 The build2 Build System Revision 0.18, July 2025

1.4.2 Testing

Just to give you an idea (see Testscript Introduction for a proper introduction), here is what

testing our hello program with Testscript would look like:

$ 1s -1 hello/
hello.cxx

testscript

buildfile

$ cat hello/buildfile

exe{hello}: {hxx cxx}{**} testscript

And this is the contents of hello/testscript:
: basics

é* '"World’ >"Hello, World!’

: missing—name

$* 2>>EQOE != 0

error: missing name
EOE

A couple of key points: The test . out file is gone with all the test inputs and expected outputs
incorporated into testscript. To test an executable with Testscript, all we have to do is list
the corresponding testscript file as its prerequisite (and which, being a fixed name, doesn’t

need an explicit target type, similar to manifest).

To see Testscript in action, let’s say we’ve made our program more forgiving by falling back to a

default name if one wasn’t specified:
#include <iostream>

int main (int argc, char* argvl[])

{
const char* n (argc > 1 ? argv[l] : "World");
std::cout << "Hello, " << n << "!’ << std::endl;

If we forget to adjust the missing—name test, then this is what we could expect to see when

running the tests:

$ b test

c++ hello/cxx{hello} —-> hello/obje{hello}

1d hello/exe{hello}

test hello/exe{hello} + hello/testscript{testscript}

hello/testscript:7:1: error: hello/hello exit code 0 ==

info: stdout: hello/test-hello/missing—name/stdout

Revision 0.18, July 2025 The build2 Build System

35

1.4.2 Testing

Testscript-based integration testing is the default setup for executable (-t exe) projects created
by bdep—-new (1) . Here is the recap of the overall layout:

hello/

—— build/

-— hello/
|—— hello.cxx
|- testscript
+—— buildfile

—-— buildfile

-—— manifest

For libraries (-t 1ib), however, the integration testing setup is a bit different. Here are the rele-
vant parts of the layout:

libhello/

—— build/

—— libhello/

—— hello.hxx

—— hello.cxx

—-— export.hxx

—— version.hxx.in

+—— buildfile

-— tests/

—— build/
| -— bootstrap.build
-—— root.build

-— basics/
|—— driver.cxx
+—— buildfile
+—— buildfile

—-— buildfile

-—— manifest

Specifically, there is no testscript in libhello/, the project’s source subdirectory.
Instead, we have the tests/ subdirectory which itself looks like a project: it contains the
build/ subdirectory with all the familiar files, etc. In fact, tests is a subproject of our
libhello project.

While we will be examining tests in greater detail later, in a nutshell, the reason it is a subpro-
ject is to be able to test an installed version of our library. By default, when tests is built as
part of its parent project (called amalgamation), the locally built 1ibhello library will be auto-
matically imported. However, we can also configure a build of tests out of its amalgamation,
in which case we can import an installed version of 1ibhello. We will learn how to do all that
as well as the underlying concepts (subproject/amalgamation, import, etc) in the coming sections.

36 The build2 Build System Revision 0.18, July 2025

1.4.3 Installing

Inside tests/ we have the basics/ subdirectory which contains a simple test for our library’s
API. By default it doesn’t use Testscript but if you want to, you can. You can also rename
basics/ to something more meaningful and add more tests next to it. For example, if we were
creating an XML parsing and serialization library, then our tests/ could have the following
layout:

tests/

| -— build/
.

| -- parser/
.
|-- serializer/

+—— buildfile

Nothing prevents us from having the test s/ subdirectory for executable projects. And it can be
just a subdirectory or a subproject, the same as for libraries. Making it a subproject makes sense if
your program has complex installation, for example, if its execution requires configuration and/or
data files that need to be found, etc. For simple programs, however, testing the executable before
installing it is usually sufficient.

For a general discussion of functional/integration and unit testing refer to the Tests section in the
toolchain introduction. For details on the unit test support implementation see [[mplementing Unit |

1.4.3 Installing

The module defines the install and uninstall operations. As the name
suggests, this module provides support for project installation.

Installation in build2 is modeled after UNIX-like operation systems though the installation
directory layout is highly customizable. While build2 projects can import build2 libraries
directly, installation is often a way to "export" them in a form usable by other build systems.

The root installation directory is specified with the config.install.root configuration
variable. Let’s install our hello program into /tmp/install:

$ cd hello/ # Change to project root.

$ b install config.install.root=/tmp/install/

And see what we’ve got (executables are marked with *):

Revision 0.18, July 2025 The build2 Build System 37

1.4.3 Installing

$ tree /tmp/install/

/tmp/install/
|-- bin/
| -—— *hello
-—— share/
-—— doc/
+—— hello/
-—— manifest

Similar to the test operation, install performs update as a pre-operation for targets that it
installs.

We can also configure our project with the desired config.install.* values so that we
don’t have to repeat them on every install/uninstall. For example:

$ b configure config.install.root=/tmp/install/
$ b install
$ b uninstall

Now let’s try the same for 1ibhello (symbolic link targets are shown with —> and actual
static/shared library names may differ on your operating system):

$ rm -r /tmp/install

$ cd libhello/ # Change to project root.

$ b install config.install.root=/tmp/install/
$ tree /tmp/install/

/tmp/install/
—— include/

+—— libhello/
—— hello.hxx
—-— export.hxx
+—— version.hxx
-- 1lib/

|—— pkgconfig/

| -- libhello.pc

| —— libhello.shared.pc

| -—— libhello.static.pc

|-- libhello.a

|—— libhello.so —> libhello-0.1l.so0

+—— libhello-0.1l.s0
-—— share/

-—— doc/

+—— libhello/
-—— manifest

As you can see, the library headers go into the customary include/ subdirectory while static
and shared libraries (and their pkg—config (1) files) — into 1ib/. Using this installation we
should be able to import this library from other build systems or even use it in a manual build:

38 The build2 Build System Revision 0.18, July 2025

1.4.3 Installing

$ g++ —-I/tmp/install/include -L/tmp/install/lib greet.cxx —lhello

If we want to install into a system-wide location like /usr or /usr/local, then we most
likely will need to specify the sudo (1) program:

$ b config.install.root=/usr/local/ config.install.sudo=sudo

In build2 only actual install/uninstall commands are executed with sudo (1). And while on
the topic of sensible implementations, uninstall can be generally trusted to work reliably.

The default installability of a target as well as where it is installed is determined by its target type.
For example, exe{} is by default installed into bin/, doc{} - into
share/doc/<project>/,and £file{} is not installed.

We can, however, override these defaults with the install target-specific variable. Its value
should be either special false indicating that the target should not be installed or the directory
to install the target to. As an example, here is what the root buildfile from our 1ibhello
project looks like:

./: {*/ -build/} manifest

tests/: install = false

The first line we have already seen and the purpose of the second line should now be clear: it
makes sure we don’t try to install anything in the test s/ subdirectory.

If the value of the install variable is not false, then it is normally a relative path with the
first path component being one of these names:

name default override

root config.install.root
data_root root/ config.install.data_root
exec_root root/ config.install.exec_root
bin exec_root/bin/ config.install.bin

sbin exec_root/sbin/ config.install.sbin

1lib exec_root/lib/ config.install.lib
libexec exec_root/libexec/<project>/ config.install.libexec
pkgconfig lib/pkgconfig/ config.install.pkgconfig
etc data_root/etc/ config.install.etc
include data_root/include/ config.install.include
include_arch include/ config.install.include_arch
share data_root/share/ config.install.share
data share/<project>/ config.install.data
buildfile share/build2/export/<project>/ config.install.buildfile

Revision 0.18, July 2025 The build2 Build System 39

1.4.3 Installing

doc share/doc/<project>/ config.install.doc
legal doc/ config.install.legal
man share/man/ config.install.man
man<N> man/man<N>/ config.install.man<N>

Let’s see what’s going on here: The default install directory tree is derived from the
config.install.root value but the location of each node in this tree can be overridden by
the user that installs our project using the corresponding config.install. * variables (see
the module documentation for details on their meaning). In our buildfiles, in
turn, we use the node names instead of actual directories. As an example, here is a buildfile
fragment from the source subdirectory of our 1ibhello project:

hxx{*}:

{
install = include/libhello/
install.subdirs = true

}

Here we set the installation location for headers to be the 1ibhello/ subdirectory of the
include installation location. Assuming config.install.root is /usr/, the install
module will perform the following steps to resolve this relative path to the actual, absolute instal-
lation directory:

include/libhello/
data_root/include/libhello/
root/include/libhello/
/usr/include/libhello/

In the above buildfile fragment we also see the use of the install.subdirs variable.
Setting it to true instructs the install module to recreate subdirectories starting from this
point in the project’s directory hierarchy. For example, if our 1ibhello/ source subdirectory
had the details/ subdirectory with the utility.hxx header, then this header would have
been installed as . . . /include/libhello/details/utility.hxx.

By default the generated pkg-config files will contain install.include and
install.lib directories as header (—I) and library (-L) search paths, respectively. However,
these can be customized with the {c, cxx}.pkgconfig. {include, 1ib} variables. For
example, sometimes we may need to install headers into a subdirectory of the include directory
but include them without this subdirectory:

Install headers into hello/libhello/ subdirectory of, say,
/usr/include/ but include them as <libhello/*>.
#
hxx{*}:
{
install = include/hello/libhello/
install.subdirs true

}

lib{hello}: cxx.pkgconfig.include = include/hello/

40 The build2 Build System Revision 0.18, July 2025

1.4.4 Distributing

1.4.4 Distributing

The last module that we load in our bootstrap.build is dist which provides support for
the preparation of source distributions and defines the dist meta-operation. Similar to
configure, dist is a meta-operation rather than an operation because, conceptually, we are
preparing a distribution for performing operations (like update, test) on targets rather than
targets themselves.

The preparation of a correct distribution requires that all the necessary project files (sources,
documentation, etc) be listed as prerequisites in the project’s buildfiles.

You may wonder why not just use the export support offered by many version control systems?
The main reason is that in most real-world projects version control repositories contain a lot more
than what needs to be distributed. In fact, it is not uncommon to host multiple build system
projects/packages in a single repository. As a result, with this approach we seem to inevitably end
up maintaining an exclusion list, which feels backwards: why specify all the things we don’t want
in a new list instead of making sure the already existing list of things that we do want is
complete? Also, once we have the complete list, it can be put to good use by other tools, such as
editors, IDEs, etc.

The preparation of a distribution also requires an out of source build. This allows the dist
module to distinguish between source and output targets. By default, targets found in src are
included into the distribution while those in out are excluded. However, we can customize this
with the dist target-specific variable.

As an example, let’s prepare a distribution of our hello project using the out of source build
configured in hello-out/. Weuse config.dist.root to specify the directory to write the
distribution to:

$ b dist: hello-out/ config.dist.root=/tmp/dist

$ 1s -1 /tmp/dist
hello-0.1.0/

$ tree /tmp/dist/hello-0.1.0/
/tmp/dist/hello-0.1.0/
—-— build/
| -— bootstrap.build
-—— root.build
—— hello/
|—— hello.cxx
|- testscript
-—— buildfile
—-— buildfile
-—— manifest

Revision 0.18, July 2025 The build2 Build System 41

1.4.4 Distributing

As we can see, the distribution directory includes the project version (from the version vari-
able which, in our case, is extracted from manifest by the version module). Inside the
distribution directory we have our project’s source files (but, for example, without any .gitig-
nore files that we may have had in hello/).

We can also ask the dist module to package the distribution directory into one or more archives
and generate their checksum files for us. For example:

$ b dist: hello-out/ \
config.dist.root=/tmp/dist \
config.dist.archives="tar.gz zip" \
config.dist.checksums=sha256

$ 1s -1 /tmp/dist

hello-0.1.0/
hello-0.1.0.tar.gz
hello-0.1.0.tar.gz.sha256
hello-0.1.0.zip
hello-0.1.0.zip.sha256

We can also configure our project with the desired config.dist . * values so we don’t have to
repeat them every time. For example:

$ b configure: hello-out/ config.dist.root=/tmp/dist ...
$ b dist

Let’s now take a look at an example of customizing what gets distributed. Most of the time you
will be using this mechanism to include certain targets from out. Here is a fragment from the
libhello source subdirectory buildfile:

hxx{version}: in{version} $src_root/manifest

Our library provides the version.hxx header that the users can include to obtain its version.
This header is generated by the version module from the version.hxx.in template. In
essence, the version module takes the version value from our manifest, splits it into various
components (major, minor, patch, etc) and then preprocesses the in{} file substituting these
values (see the module documentation for details). The end result is an automatically
maintained version header.

Usually there is no need to include this header into the distribution since it will be automatically
generated if and when necessary. However, we can if we need to. For example, we could be
porting an existing project and its users could be expecting the version header to be shipped as
part of the archive. Here is how we can achieve this:

hxx{version}: in{version} $src_root/manifest

{
dist = true
clean = ($src_root != $out_root)

42 The build2 Build System Revision 0.18, July 2025

1.5 Target Importation

Because this header is an output target, we have to explicitly request its distribution with
dist=true. Notice that we have also disabled its cleaning for the in source build so that the
clean operation results in a state identical to distributed.

1.5 Target Importation

Recall that if we need to depend on a target defined in another buildfile within our project,
then we simply include the said buildfile and reference the target. For example, if our
hello included both an executable and a library in separate subdirectories next to each other:

hello/
| -- build/

|-- hello

| -—— buildfile
-—— libhello/

+—— buildfile

Then our executable buildfile could look like this:
include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

What if instead 1ibhello were a separate project? The inclusion approach would no longer
work for two reasons: we don’t know the path to 1ibhello (after all, it’s an independent
project and can reside anywhere) and we can’t assume the path to the 1ib{hello} target
within 1ibhello (the project directory layout can change).

To depend on a target from a separate project we use importation instead of inclusion. This mech-
anism is also used to depend on targets that are not part of any project, for example, installed
libraries.

The importing project’s side is pretty simple. This is what the above buildfile will look like
if 1ibhello were a separate project:

import libs = libhello%$lib{hello}

exe{hello}: {hxx cxx}{**} $libs
The import directive is a kind of variable assignment that resolves a project-qualified relative
target (Libhello%1lib{hello}) to an unqualified absolute target and stores it in the variable

(1ibs in our case). We can then expand the variable ($1ibs), normally in the dependency
declaration, to get the imported target.

Revision 0.18, July 2025 The build2 Build System 43

1.5 Target Importation

If we needed to import several libraries, then we simply repeat the import directive, usually
accumulating the result in the same variable, for example:

import libs = libformat%$lib{format}
import libs += libprint%$lib{print}
import libs += libhello%lib{hello}

exe{hello}: {hxx cxx}{**} S$libs

Let’s now try to build our hel1lo project that uses imported Libhello:

$ b hello/
error: unable to import target libhello%lib{hello}
info: use config.import.libhello command line variable to specify
its project out_root

While that didn’t work out well, it does make sense: the build system cannot know the location of
libhello or which of its builds we want to use. Though it does helpfully suggest that we use
config.import.libhello to specify its out directory (out_root). Let’s point it to
libhello source directory to use its in source build (out_root == src_root):

$ b hello/ config.import.libhello=libhello/

c++ libhello/libhello/cxx{hello} —-> libhello/libhello/objs{hello}
1d libhello/libhello/libs{hello}

c++ hello/hello/cxx{hello} —-> hello/hello/obje{hello}

1d hello/hello/exe{hello}

And it works. Naturally, the importation mechanism works the same for out of source builds and
we can persist the config.import.* variables in the project’s configuration. As an example,
let’s configure Clang builds of the two projects out of source:

$ b configure: libhello/@libhello-clang/ config.cxx=clang++
$ b configure: hello/@hello-clang/ config.cxx=clang++ \
config.import.libhello=1libhello-clang/

$ b hello-clang/

c++ libhello/libhello/cxx{hello} -> libhello-clang/libhello/objs{hello}
1d libhello-clang/libhello/libs{hello}

c++ hello/hello/cxx{hello} —-> hello-clang/hello/obje{hello}

1d hello-clang/hello/exe{hello}

If the corresponding config.import.* variable is not specified, import searches for a
project in a couple of other places. First, it looks in the list of subprojects starting from the
importing project itself and then continuing with its outer amalgamations and their subprojects
(see [Subprojects and Amalgamations|for details on this subject).

We’ve actually seen an example of this search step in action: the tests subproject in
libhello. The test imports 1ibhello which is automatically found as an amalgamation
containing this subproject.

44 The build2 Build System Revision 0.18, July 2025

1.5 Target Importation

To skip searching in subprojects/amalgamations and proceed directly to the rule-specific search
(described below), specify the config.import . * variable with an empty value. For example:

$ b configure: ... config.import.libhello=

If the project being imported cannot be located using any of these methods, then import falls
back to the rule-specific search. That is, a rule that matches the target may provide support for
importing certain target types based on rule-specific knowledge. Support for importing installed
libraries by the C++ link rule is a good example of this. Internally, the cxx module extracts the
compiler’s library search paths (that is, paths that would be used to resolve —1foo) and then the
link rule uses them to search for installed libraries. This allows us to use the same import direc-
tive regardless of whether we import a library from a separate build, from a subproject, or from
an installation directory.

Importation of an installed library will work even if it is not a build2 project. Besides finding
the library itself, the link rule will also try to locate its pkg—config (1) file and, if present,
extract additional compile/link flags from it (see [[mportation of Installed Libraries| for details).
The link rule also automatically produces pkg—config (1) files for libraries that it installs.

A common problem with importing and using third-party C/C++ libraries is compiler warnings.
Specifically, we are likely to include their headers into our project’s source files which means we
may see warnings in such headers (which we cannot always fix) mixed with warnings in our code
(which we should normally be able to fix). See [Compilation Internal Scope| for a mechanism to
deal with this problem.

Let’s now examine the exporting side of the importation mechanism. While a project doesn’t
need to do anything special to be found by import, it does need to handle locating the exported
target (or targets; there could be several) within the project as well as loading their build-
files. And this is the job of an export stub, the build/export .build file that you might
have noticed in the 1ibhello project:

libhello
| -— build/
| +—— export.build

Let’s take a look inside:
Sout_root/

{
include libhello/

}

export $out_root/libhello/$import.target

Revision 0.18, July 2025 The build2 Build System 45

1.5 Target Importation

An export stub is a special kind of buildfile that bridges from the importing project into
exporting. It is loaded in a special temporary scope outside of any project, in a "no man’s land" so
to speak. The only variables set on the temporary scope are src_root and out_root of the
project being imported as well as import.target containing the name of the target being
imported (without project qualification; that is, 1ib{hello} in our example).

Typically, an export stub will open the scope of the exporting project, load the buildfile that
defines the target being exported and finally "return" the absolute target name to the importing
project using the export directive. And this is exactly what the export stub in our 1ibhello
does.

We now have all the pieces of the importation puzzle in place and you can probably see how they
all fit together. To summarize, when the build system sees the import directive, it looks for a
project with the specified name. If found, it creates a temporary scope, sets the src/out_root
variables to point to the project and import.target — to the target name specified in the
import directive. And then it load the project’s export stub in this scope. Inside the export stub
we switch to the project’s root scope, load its buildfile and then use the export directive to
return the exported target. Once the export stub is processed, the build system obtains the
exported target and assigns it to the variable specified in the import directive.

Our export stub is quite "loose" in that it allows importing any target defined in the project’s
source subdirectory buildfile. While we found it to be a good balance between strictness and
flexibility, if you would like to "tighten" your export stubs, you can. For example:

if ($import.target == libi{hello})
export $out_root/libhello/$import.target

If no export directive is executed in an export stub then the build system assumes that the
target is not exported by the project and issues appropriate diagnostics.

Let’s revisit the executable buildfile with which we started this section. Recall that it is for
an executable that depends on a library which resides in the same project:

include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

If lib{hello} is exported by this project, then instead of manually including its buildfile
we can use project-local importation:

import 1lib = lib{hello}

exe{hello}: {hxx cxx}{**} $1lib

46 The build2 Build System Revision 0.18, July 2025

1.5 Target Importation

The main advantage of project-local importation over inclusion is the ability to move things
around without having to adjust locations in multiple places (the only place we need to do it is the
export stub). This advantage becomes noticeable in more complex projects with a large number
of components.

An import is project-local if the target being imported has no project name. Note that the target
must still be exported in the project’s export stub. In other words, project-local importation use
the same mechanism as the normal import.

Another special type of importation is ad hoc importation. It is triggered if the target being
imported has no project name and is either absolute or is a relative directory (in which case it is
interpreted as relative to the importing scope). Semantically this is similar a normal import but
with the location of the project being imported hard-coded into the buildfile. While this
would be a bad idea in most case, sometimes we may want to create a special glue buildfile
that "pulls" together several projects, usually for convenience of development.

One typical case that calls for such a glue buildfile is a multi-package project. For example,
we may have a hello project (in a more general sense, as in a version control repository) that
contains the 1ibhello library and hello executable packages (which are independent build
system projects):

hello/

-— .git/

—— hello/

-— build/

—— hello/

—-— buildfile
-—— manifest
-—— libhello/

—— build/

—-— libhello/
—-— buildfile
-—— manifest

Notice that the root of this repository is not a build system project and we cannot, for example,
just run the build system driver without any arguments to update all the packages. Instead we
have to list them explicitly:

$ b hello/ libhello/

And that’s inconvenient. To overcome this shortcoming we can turn the repository root into a
simple build system project by adding a glue buildfile that imports (using ad hoc importa-
tion) and builds all the packages:

Revision 0.18, July 2025 The build2 Build System 47

1.6 Library Exportation and Versioning

import pkgs = */

./: Spkgs

Unlike other import types, ad hoc importation does not rely (or require) an export stub. Instead, it
directly loads a buildfile that could plausibly declare the target being imported.

In the unlikely event of a project-local importation of a directory target, it will have to be spelled
with an explicit dir{} target type, for example:

import d = dir{tests/}

1.6 Library Exportation and Versioning

By now we have examined and explained every line of every buildfile in our hello
executable project. There are, however, still a few lines to be covered in the source subdirectory
buildfilein 1ibhello. Here it is in its entirety:

intf_libs = # Interface dependencies.
impl_libs # Implementation dependencies.

lib{hello}: {hxx ixxX txx cxx}{** -version} hxx{version} \
$impl_libs $intf_libs

hxx{version}: in{version} $src_root/manifest

Build options.
#
cxx.poptions =+ "-I$out_root" "-ISsrc_root"

obja{*}: cxx.poptions += -DLIBHELLO_STATIC_BUILD
objs{*}: cxx.poptions += -DLIBHELLO_SHARED_BUILD

Export options.

#

lib{hello}:

{
cxx.export.poptions = "-IS$out_root" "-IS$src_root"
cxx.export.libs = $intf_libs

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.

#
if Sversion.pre_release
lib{hello}: bin.lib.version = "-$version.project_id"
else
lib{hello}: bin.lib.version = "-$version.major.$version.minor"

48 The build2 Build System Revision 0.18, July 2025

1.6 Library Exportation and Versioning

Install into the libhello/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
install
install.subdirs

}

include/libhello/
true

Let’s start with all those cxx.export.* variables. It turns out that merely exporting a library
target is not enough for the importers of the library to be able to use it. They also need to know
where to find its headers, which other libraries to link, etc. This information is carried in a set of
target-specific cxx .export . * variables that parallel the cxx . * set and that together with the
library’s prerequisites constitute the library metadata protocol. Every time a source file that
depends on a library is compiled or a binary is linked, this information is automatically extracted
by the compile and link rules from the library dependency chain, recursively. And when the
library is installed, this information is carried over to its pkg—config (1) file.

Similar to the c¢.* and cc.* sets discussed earlier, there are also c.export.* and
cc.export.* sets.

Note, however, that there is no *.export.coptions since a library imposing compilation
options on its consumers is bad practice (too coarse-grained, does not compose, etc). Instead, the
recommended approach is to specify in the library documentation that it expects its consumers to
use a certain compilation option. And if your library is unusable without exporting a compilation
option and you are sure benefits outweigh the drawbacks, then you can specify it as part of
* .export .poptions (itis still a good idea to prominently document this).

Here are the parts relevant to the library metadata protocol in the above buildfile:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
lib{hello}: ... $impl_libs $intf_libs
lib{hello}:
{
cxx.export.poptions = "-I$out_root" "-IS$src_root"

cxx.export.libs = $intf_libs

}

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

As a first step we classify all our library dependencies into interface dependencies and implemen-
tation dependencies. A library is an interface dependency if it is referenced from our interface, for
example, by including (importing) one of its headers (modules) from one of our (public) headers
(modules) or if one of its functions is called from our inline or template functions. Otherwise, it is
an implementation dependency.

Revision 0.18, July 2025 The build2 Build System 49

1.6 Library Exportation and Versioning

To illustrate the distinction between interface and implementation dependencies, let’s say we’ve
reimplemented our 1ibhello to use libformat to format the greeting and 1ibprint to
print it. Here is our new header (hello.hxx):

#include <libformat/format.hxx>

namespace hello

{
void
say_hello_formatted (std::ostream&, const std::string& hello);

inline void
say_hello (std::ostream& o, const std::string& name)
{
say_hello_formatted (o, format::format_hello ("Hello", name));

}

And this is the new source file (hello.cxx):
#include <libprint/print.hxx>

namespace hello
{
void
say_hello_formatted (ostream& o, const string& h)

{
print::print_hello (o, h);
}

In this case, 1ibformat is our interface dependency since we both include its header in our
interface and call it from one of our inline functions. In contrast, 1libprint is only included and
used in the source file and so we can safely treat it as an implementation dependency. The corre-
sponding import directives in our buildfile will therefore look like this:

import intf_libs
import impl_libs

libformat%lib{format}
libprint%lib{print}

The preprocessor options (popt ions) of an interface dependency must be made available to our
library’s users. The library itself should also be explicitly linked whenever our library is linked.
All this is achieved by listing the interface dependencies in the cxx .export .1libs variable:

lib{hello}:
{
cxx.export.libs = $intf_libs

}

More precisely, the interface dependency should be explicitly linked if a user of our library may
end up with a direct call to the dependency in one of their object files. Not linking such a library
is called underlinking while linking a library unnecessarily (which can happen because we’ve

50 The build2 Build System Revision 0.18, July 2025

1.6 Library Exportation and Versioning

included its header but are not actually calling any of its non-inline/template functions) is called
overlinking. Underlinking is an error on some platforms while overlinking may slow down the
process startup and/or waste its memory.

Note also that this only applies to shared libraries. In case of static libraries, both interface and
implementation dependencies are always linked, recursively. Specifically, when linking a shared
library, only libraries specified in its * .export.libs are linked. While when linking a static
library, all its library prerequisites as well as those specified in *.1ibs are linked. Note that
* .export.libs is not used when linking a static library since it is naturally assumed that all
such libraries are also specified as library prerequisites or in *. 1ibs.

The remaining lines in the library metadata fragment are:

lib{hello}:
{
cxx.export.poptions = "-I$Sout_root" "-I$src_root"

}

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

The first line makes sure the users of our library can locate its headers by exporting the relevant
—I options. The last two lines define the library type macros that are relied upon by the
export . hxx header to properly setup symbol exporting.

The 1iba{} and 1ibs{} target types correspond to the static and shared libraries, respectively.
And 1ib{} is actually a target group that can contain one, the other, or both as its members.

Specifically, when we build a 1ib{} target, which members will be built is determined by the
config.bin.lib variable with the static, shared, and both (default) possible values.
So to only build a shared library we can run:

$ b config.bin.lib=shared

When it comes to linking 1ib{} prerequisites, which member is picked is controlled by the
config.bin. {exe,liba,libs}.lib variables for the executable, static library, and
shared library targets, respectively. Each contains a list of shared and static values that
determine the linking preferences. For example, to build both shared and static libraries but to
link executable to static libraries we can run:

$ b config.bin.lib=both config.bin.exe.lib=static

See the module documentation for more information.

Revision 0.18, July 2025 The build2 Build System 51

1.6 Library Exportation and Versioning

Note also that we don’t need to change anything in the above buildfile if our library is
header-only. In build2 this is handled dynamically and automatically based on the absence of
source file prerequisites. In fact, the same library can be header-only on some platforms or in
some configuration and "source-ful" in others.

In build2 a header-only library (or a module interface-only library) is not a different kind of
library compared to static/shared libraries but is rather a binary-less, or binless for short, static or
shared library. So, theoretically, it is possible to have a library that has a binless static and a
binary-ful (binful) shared variants. Note also that binless libraries can depend on binful libraries
and are fully supported where the pkg-config (1) functionality is concerned.

One counter-intuitive aspect of having a binless library that depends on a system binful library,
for example, —1m, is that you still have to specify the system library in both * .export.libs
and *.1libs because the latter is used when linking the static variant of the binless library. For
example:

cxx.libs = -1m
lib{hello}: cxx.export.libs = —-1lm

If you are creating a new library with bdep—new (1) and are certain that it will always be
binless and in all configurations, then you can produce a simplified buildfile by specifying
the binless option, for example:

$ bdep new -1 c++ -t lib,binless libheader-only

Let’s now turn to the second subject of this section and the last unexplained bit in our build-
file: shared library versioning. Here is the relevant fragment:

if S$Sversion.pre_release

lib{hello}: bin.lib.version = "-$version.project_id"
else
lib{hello}: bin.lib.version = "-$version.major.$version.minor"

Shared library versioning is a murky, platform-specific area. Instead of trying to come up with a
unified versioning scheme that few are likely to comprehend (similar to autoconf), build2
provides a platform-independent versioning scheme as well as the ability to specify plat-
form-specific versions in a native format.

The library version is specified with the bin.1lib.version target-specific variable. Its value
should be a sequence of @-pairs with the left hand side (key) being the platform name and the
right hand side (value) being the version. An empty key (in which case @ can be omitted) signi-
fies the platform-independent version (see the module documentation for the exact seman-
tics). For example:

52 The build2 Build System Revision 0.18, July 2025

1.7 Subprojects and Amalgamations

lib{hello}: bin.lib.version = -1.2 1linux@3

While the interface for platform-specific versions is defined, their support is currently only imple-
mented on Linux.

A platform-independent version is embedded as a suffix into the library name (and into its
soname on relevant platforms) while platform-specific versions are handled according to the
platform. Continuing with the above example, these would be the resulting shared library names
on select platforms:

libhello.so.3 # Linux
libhello-1.2.d11 # Windows
libhello-1.2.dylib # Mac OS

With this background we can now explain what’s going in our buildfile:

if S$version.pre_release

lib{hello}: bin.lib.version = "-$version.project_id"
else
lib{hello}: bin.lib.version = "-$version.major.$version.minor"

Here we only use platform-independent library versioning. For releases we embed both major and
minor version components assuming that patch releases are binary compatible. For pre-releases,
however, we use the complete version to make sure it cannot be used in place of another
pre-release or the final version.

The version.project_id variable contains the project’s (as opposed to package’s), shortest
"version id". See the module documentation for details.

1.7 Subprojects and Amalgamations

In build?2 projects can contain other projects, recursively. In this arrangement the outer project
is called an amalgamation and the inner — subprojects. In contrast to importation where we
merely reference a project somewhere else, amalgamation is physical containment. It can be
strong where the src directory of a subproject is within the amalgamating project or weak where
only the out directory is contained.

There are several distinct use cases for amalgamations. We’ve already discussed the tests/
subproject in 1ibhello. To recap: traditionally, it is made a subproject rather than a subdirec-
tory to support building it as a standalone project in order to test library installations.

As discussed in [Target Importation} subprojects and amalgamations (as well as their subprojects,
recursively) are automatically considered when resolving imports. As a result, amalgamation can
be used to bundle dependencies to produce an external dependency-free distribution. For
example, if our hello project imports 1ibhello, then we could copy the 1ibhello project
into hello, for example:

Revision 0.18, July 2025 The build2 Build System 53

1.7 Subprojects and Amalgamations

$ tree hello/

hello/

-— build/

—— hello/
|—— hello.cxx

—— libhello/

-— build/

—— libhello/
|-- hello.hxx
|—— hello.cxx

-— tests/

+—— buildfile
+—— buildfile

$ b hello/

c++ hello/libhello/libhello/cxx{hello} ->
hello/libhello/libhello/objs{hello}

1d hello/libhello/libhello/libs{hello}

c++ hello/hello/cxx{hello} —-> hello/hello/obje{hello}

1d hello/hello/exe{hello}

Note, however, that while project bundling can be useful in certain cases, it does not scale as a
general dependency management solution. For that, independent packaging and proper depen-
dency management are the appropriate mechanisms.

By default build2 looks for subprojects only in the root directory of a project. That is, every
root subdirectory is examined to see if it itself is a project root. If you need to place a subproject
somewhere else in your project’s directory hierarchy, then you will need to specify its location
(and of all other subprojects) explicitly with the subprojects variable in boot-
strap.build. For example, if above we placed 1ibhello into the extras/ subdirectory
of hello, then our bootstrap.build would need to start like this:

project = hello
subprojects = extras/libhello/

Note also that while importation of specific targets from subprojects is always performed,
whether they are loaded and built as part of the overall project build is controlled using the stan-
dard subdirectories inclusion and dependency mechanisms. Continuing with the above example,
if we adjust the root buildfile in hello to exclude the extras/ subdirectory from the
build:

./: {*/ -build/ -extras/}

54 The build2 Build System Revision 0.18, July 2025

1.7 Subprojects and Amalgamations

Then while we can still import 1ibhello from any buildfile in our project, the entire
libhello (for example, its tests) will never be built as part of the hel1lo build.

Similar to subprojects we can also explicitly specify the project’s amalgamation with the amal-
gamation variable (again, in bootstrap.build). This is rarely necessary except if you
want to prevent the project from being amalgamated, in which case you should set it to the empty
value.

If either of these variables is not explicitly set, then they will contain the automatically discovered
values.

Besides affecting importation, another central property of amalgamation is configuration inheri-
tance. As an example, let’s configure the above bundled he1l1lo project in its src directory:

$ b configure: hello/ config.cxx=clang++ config.cxx.coptions=—-g

$ tree
hello/
—— build/
| -— config.build
—— libhello/
| -— build/
| |—— config.build
| - ...

As you can see, we now have the config.build files in both projects’ build/ subdirecto-
ries. If we examine the amalgamation’s config.build, we will see the familiar picture:

$ cat hello/build/config.build

config.cxx = clang++
config.cxx.poptions = [null]

config.cxx.coptions = —g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]

The subproject’s config.build, however, is pretty much empty:
$ cat hello/libhello/build/config.build

Base configuration inherited from ../

Revision 0.18, July 2025 The build2 Build System 55

1.7 Subprojects and Amalgamations

As the comment suggests, the base configuration is inherited from the outer project. We can,
however, override some values if we need to. For example (note that we are re-configuring the
libhello subproject):

$ b configure: hello/libhello/ config.cxx.coptions=-02
$ cat hello/libhello/build/config.build
Base configuration inherited from ../

config.cxx.coptions = -02

This configuration inheritance combined with import resolution is behind the most common use
of amalgamations in build2 — shared build configurations. Let’s say we are developing multi-
ple projects, for example, hello and 1ibhello that it imports:

$ 1s -1
hello/
libhello/

And we want to build them with several compilers, let’s say GCC and Clang. As we have already
seen in |Configuringl we can configure several out of source builds for each compiler, for
example:

$ b configure: libhello/@libhello-gcc/ config.cxx=g++
$ b configure: libhello/@libhello-clang/ config.cxx=clang++
$ b configure: hello/@hello-gcc/ \
config.cxx=g++ \
config.import.libhello=1libhello-gcc/
$ b configure: hello/@hello-clang/ \
config.cxx=clang++ \
config.import.libhello=1libhello-clang/

$ 1s -1

hello/
hello—gcc/
hello-clang/
libhello/
libhello—gcc/
libhello-clang/

Needless to say, this is a lot of repetitive typing. Another problem is future changes to the config-
urations. If, for example, we need to adjust compile options in the GCC configuration, then we
will have to (remember to) do it in both places.

You can probably sense where this is going: why not create two shared build configurations (that
is, amalgamations), one for GCC and one for Clang, within each of which we build both of our
projects (as their subprojects)? This is how we can do that:

56 The build2 Build System Revision 0.18, July 2025

1.7 Subprojects and Amalgamations

$ b create: build-gcc/,cc config.cxx=g++
$ b create: build-clang/,cc config.cxx=clang++

$ b configure: libhello/@build-gcc/libhello/
$ b configure: hello/@build-gcc/hello/

$ b configure: libhello/@build-clang/libhello/
$ b configure: hello/@build-clang/hello/

$ 1s -1
hello/
libhello/
build-gcc/
build-clang/

Let’s explain what’s going on here. First, we create two build configurations using the create
meta-operation. These are real build2 projects just tailored for housing other projects as
subprojects. In create, after the directory name, we specify the list of modules to load in the
project’s root .build. In our case we specify cc which is a common module for C-based
languages (see b (1) for details on create and its parameters).

When creating build configurations it is a good idea to get into the habit of using the cc module
instead of ¢ or cxx since with more complex dependency chains we may not know whether
every project we build only uses C or C++. In fact, it is not uncommon for a C++ project to have
C implementation details and even the other way around (yes, really, there are C libraries with
C++ implementations).

Once the configurations are ready we simply configure our 1ibhello and hello as subpro-
jects in each of them. Note that now we neither need to specify config.cxx, because it will be
inherited from the amalgamation, nor config. import . *, because the import will be automat-
ically resolved to a subproject.

Now, to build a specific project in a particular configuration we simply build the corresponding
subdirectory. We can also build the entire build configuration if we want to. For example:

$ b build-gcc/hello/

$ b build-clang/
In case you’ve already looked into bpkg (1) and/or bdep (1), their build configurations are
actually these same amalgamations (created underneath with the create meta-operation) and

their packages are just subprojects. And with this understanding you are free to interact with them
directly using the build system interface.

Revision 0.18, July 2025 The build2 Build System 57

1.8 Buildfile Language

1.8 Buildfile Language

By now we should have a good overall sense of what writing buildfiles feels like. In this
section we will examine the language in slightly more detail and with more precision.

Buildfile is primarily a declarative language with support for variables, pure functions, repetition
(for-loop), conditional inclusion/exclusion (i f-else), and pattern matching (switch). At the
lexical level, buildfiles are UTF-8 encoded text restricted to the Unicode graphic characters,
tabs (\t), carriage returns (\r), and line feeds (\n).

Buildfile is a line-oriented language. That is, every construct ends at the end of the line unless
escaped with line continuation (trailing \). For example:

exe{hello}: {hxx cxx}{**} \
Slibs

Some lines may start a block if followed by { on the next line. Such a block ends with a closing }
on a separate line. Some types of blocks can nest. For example:

if ($cxx.target.class == ’'windows’)
{
if ($cxx.target.system == 'ming32’)

{

}
}

A comment starts with # and everything from this character and until the end of the line is
ignored. A multi-line comment starts with #\ on a separate line and ends with the same character
sequence, again on a separate line. For example:

Single line comment.

info ’"Hello, World!’ # Trailing comment.
#\

Multi-

line

comment .

#\

The three primary Buildfile constructs are dependency declaration, directive, and variable assign-
ment. We’ve already used all three but let’s see another example:

include ../libhello/ # Directive.
exe{hello}: {hxx cxx}{**} ../libhello/lib{hello} # Dependency.

cxx.poptions += —-DNDEBUG # Variable.

58 The build2 Build System Revision 0.18, July 2025

1.8 Buildfile Language

There is also the scope opening (we’ve seen one in export .build) as well as target-specific
and prerequisite-specific variable assignment blocks. The latter two are used to assign several
entity-specific variables at once. For example:

details/ # Scope.
{
hxx{*}: install = false
}
lib{hello}: # Target-specific.
{
cxx.export.poptions = "-I$src_root"

cxx.export.libs = $intf_libs

exe{test}: file{test.roundtrip}: # Prerequisite-specific.
{

test.stdin = true

test.stdout true

Variable assignment blocks can be combined with dependency declarations, for example:

h{config}: in{config}
{
in.symbol = '@’
in.mode = lax

SYSTEM_NAME = S$c.target.system
SYSTEM_PROCESSOR = $c.target.cpu

In case of a dependency chain, if the chain ends with a colon (:), then the block applies to the last
set of prerequisites. Otherwise, it applies to the last set of targets. For example:

./: exe{test}: cxx{main}

{
test = true # Applies to the exe{test} target.

./: exe{test}: libue{test}:

bin.whole = false # Applies to the libue{test} prerequisite.

All prerequisite-specific variables must be assigned at once as part of the dependency declaration
since repeating the same dependency again duplicates the prerequisite rather than references the
already existing one.

There is also the target type/pattern-specific variable assignment block, for example:

Revision 0.18, July 2025 The build2 Build System 59

1.8.1 Expansion and Quoting

exe{*.test}:

{
test = true
install = false

}
See[Variables| for a more detailed discussion of variables.

Each buildfile is processed linearly with directives executed and variables expanded as they
are encountered. However, certain variables, for example cxx.poptions, are also expanded
by rules during execution in which case they will "see" the final value set in the buildfile.

Unlike GNU make (1), which has deferred (=) and immediate (:=) variable assignments, all
assignments in build2 are immediate. For example:

X = X
y = $x
x = X

info $y # Prints ’'x’, not ’'X’.

1.8.1 Expansion and Quoting

While we’ve discussed variable expansion and lookup earlier, to recap, to get the variable’s value
we use $ followed by its name. The variable name is first looked up in the current scope (that is,
the scope in which the expansion was encountered) and, if not found, in the outer scopes, recur-
sively.

There are two other kinds of expansions: function calls and evaluation contexts, or eval contexts
for short. Let’s start with the latter since function calls are built on top of eval contexts.

An eval context is essentially a fragment of a line with additional interpretations of certain char-
acters to support value comparison, logical operators, and a few other constructs. Eval contexts
begin with (, end with), and can nest. Here are a few examples:

info (Ssrc_root != Sout_root) # Prints true or false.
info ($src_root == $out_root ? "in’ : 'out’) # Prints in or out.
macos = ($cxx.target.class == ’'macos’) # Assigns true or false.
linux = ($cxx.target.class == ’linux’) # Assigns true or false.

if (Smacos || $linux) # Also eval context.

Below is the eval context grammar that shows supported operators and their precedence.

60 The build2 Build System Revision 0.18, July 2025

1.8.1 Expansion and Quoting

eval: " (" (eval—-comma | eval—-qual)? ")’

eval—-comma: eval-ternary (’,’ eval-ternary)*

eval-ternary: eval-or (’?’ eval-ternary ’:’ eval-ternary)?

eval-or: eval—-and (’||’ eval—and) *

eval—-and: eval-comp (’&&’ eval-comp) *

eval-comp: eval-value ((/=='|’!="|/</|/>"|/<="|'>=") eval-value)*
eval-value: value—attributes? (<value> | eval | "1’ eval-value)
eval—-qual: <name> '’ :’ <name>

value-attributes: ' [’ <key-value-pairs> "]’

Note that ?: (ternary operator) and ! (logical not) are right-associative. Unlike C++, all the
comparison operators have the same precedence. A qualified name cannot be combined with any
other operator (including ternary) unless enclosed in parentheses. The eval option in the
eval-value production shall contain a single value only (no commas).

Additionally, the * (backtick) and | (bitwise or) tokens are reserved for future support of arith-
metic evaluation contexts and evaluation pipelines, respectively.

A function call starts with $ followed by its name and an eval context listing its arguments. Note
that there is no space between the name and (. For example:

x =
y =Y

info S$empty ($x) # true
info S$empty (Sy) # false

if Sregex.match(S$Sy, ' [A-Z]')

p = $src_base/foo.txt

info $path.leaf ($src_base) # foo.txt
info S$Spath.directory ($src_base) # S$src_base
info Spath.base ($path.leaf ($src_base)) # foo

Note that the majority of functions in build2 are pure in a sense that they do not alter the build

state in any way (see [Functions| for details).

Functions in build2 are currently defined either by the build system core or build system
modules and are implemented in C++. In the future it will be possible to define custom functions
in buildfiles (also in C++).

Variable and function names follow the C identifier rules. We can also group variables into
namespaces and functions into families by combining multiple identifiers with .. These rules are
used to determine the end of the variable name in expansions. If, however, a name is recognized
as being longer than desired, then we can use the eval context to explicitly specify its boundaries.
For example:

Revision 0.18, July 2025 The build2 Build System 61

1.8.1 Expansion and Quoting

base = foo
name S (base) .txt

What is the structure of a variable value? Consider this assignment:

x = foo bar

The value of x could be a string, a list of two strings, or something else entirely. In build2 the
fundamental, untyped value is a list of names. A value can be typed to something else later but it
always starts as a list of names. So in the above example we have a list of two names, foo and
bar, the same as in this example (notice the extra spaces):

x = foo bar

The motivation behind going with a list of names instead of a string or a list of strings is that at its
core we are dealing with targets and their prerequisites and it would be natural to make the repre-
sentation of their names (that is, the way we refer to them) the default. Consider the following
two examples; it would be natural for them to mean the same thing:

exe{hello}: {hxx cxx}{**}

prereqgs = {hxx cxx}{**}
exe{hello}: $prereqgs

Note also that the name semantics was carefully tuned to be reversible to its syntactic representa-
tion for common non-name values, such as paths, command line options, etc., that are usually
found in buildfiles.

To get to individual elements of a list, an expansion can be followed by a subscript. Note that
subscripts are only recognize inside evaluation contexts and there should be no space between the
expansion and [. For example:

x = foo bar
info ($x[0]) # foo
info ($regex.split(’foo bar’, ' 7, "7)[1]) # bar

Names are split into a list at whitespace boundaries with certain other characters treated as syntax
rather than as part of the value. Here are a few examples:

x = Sy # expansion

X = (a == b) # eval context

x = {foo bar} # name generation
x = [null] # attributes

x = name@value # pairs

x = # start of a comment

62 The build2 Build System Revision 0.18, July 2025

1.8.1 Expansion and Quoting

The complete set of syntax characters is $ () { } @#"” plus space and tab, as well as [], but only
in certain contexts (see for details). If instead we need these characters to appear liter-
ally as part of the value, then we either have to escape or quote them.

Additionally, *? [will be treated as wildcards in name patterns (see [Name Patterns| for details).
Note that this treatment can only be inhibited with quoting and not escaping.

While name patterns are recognized inside evaluation contexts, in certain cases the ? [characters
are treated as part of the ternary operator and value subscript, respectively. In such case, to be
treat as wildcards rather than as syntax, these characters have to be escaped, for example:

x = (foo.\?xx)
y ($foo\[123].txt)

To escape a special character, we prefix it with a backslash (\; to specify a literal backslash,
double it). For example:

x = \$
y = C:\\Program\ Files

Similar to UNIX shells, build2 supports single (’ ’) and double (" ") quoting with roughly the
same semantics. Specifically, expansions (variable, function call, and eval context) and escaping
are performed inside double-quoted strings but not in single-quoted. Note also that quoted strings
can span multiple lines with newlines treated literally (unless escaped in double-quoted strings).
For example:

"(a !=Db)" # true
"(a != b))’ # (a !'= b)

X
Yy

X "C:\\Program Files"

y = "C:\Program Files’

t = ’line one
line two
line three’

Since quote characters are also part of the syntax, if you need to specify them literally in the
value, then they will either have to be escaped or quoted. For example:

cxx.poptions += —-DOUTPUT=’"debug"’
cxxX.poptions += —-DTARGET=\"$cxx.target\"

An expansion can be one of two kinds: spliced or concatenated. In a spliced expansion the vari-
able, function, or eval context is separated from other text with whitespaces. In this case, as the
name suggests, the resulting list of names is spliced into the value. For example:

Revision 0.18, July 2025 The build2 Build System 63

1.8.1 Expansion and Quoting

"foo fox’
bar $x baz # Three names: ’'bar’ ’foo fox’ ’'baz’.

X
Yy

This is an important difference compared to the semantics of UNIX shells where the result of
expansion is re-parsed. In particular, this is the reason why you won’t see quoted expansions in
buildfiles as often as in (well-written) shell scripts.

In a concatenated expansion the variable, function, or eval context are combined with unseparated
text before and/or after the expansion. For example:

"foo fox’
bar$ (x) foz # Single name: ’'barfoo foxbaz’

X
Yy

A concatenated expansion is typed unless it is quoted. In a typed concatenated expansion the
parts are combined in a type-aware manner while in an untyped — literally, as string. To illustrate
the difference, consider this buildfile fragment:

info $src_root/foo.txt
info "S$src_root/foo.txt"

If we run it on a UNIX-like operating system, we will see two identical lines, along these lines:

/tmp/test/foo.txt
/tmp/test/foo.txt

However, if we run it on Windows (which uses backslashes as directory separators), we will see
the output along these lines:

C:\test\foo.txt
C:\test/foo.txt

The typed concatenation resulted in a native directory separator because dir_path (the
src_root type) did the right thing.

Not every typed concatenation is well defined and in certain situations we may need to force
untyped concatenation with quoting. Options specifying header search paths (-I) are a typical
case, for example:

cxx.poptions =+ "-IS$Sout_root" "-IS$src_root"

If we were to remove the quotes, we would see the following error:

buildfile:6:20: error: no typed concatenation of <untyped> to dir_path
info: use quoting to force untyped concatenation

64 The build2 Build System Revision 0.18, July 2025

1.8.2 Conditions (if-else)

1.8.2 Conditions (if-else)

The if directive can be used to conditionally exclude buildfile fragments from being
processed. The conditional fragment can be a single (separate) line or a block with the initial if
optionally followed by a number of elif directives and a final else, which together form the
if-else chain. An if-else block can contain nested i f—else chains. For example:

if ($cxx.target.class == ’'linux’)
info ’linux’
elif ($Scxx.target.class == 'windows’)
{
if ($cxx.target.system == 'mingw32’)
info ’windows-mingw’
elif ($Scxx.target.system == 'win32-msvc’)
info ’windows-msvc’
else

info ’windows-other’

}
else
info ’other’

The if and elif directive names must be followed by an expression that expands to a single,
literal true or false. This can be a variable expansion, a function call, an eval context, or a
literal value. For example:

if S$version.pre_release
if Sregex.match($x, ' [A-Z]')
if ($cxx.target.class == ’'linux’)

if false
{

disabled fragment
}

x = X
if $x # Error, must expand to true or false.

There are also 1f! and elif! directives which negate the condition that follows (note that there
is no space before !). For example:

if! $version.pre_release

elif! Sregex.match($x, ' [A-Z]')

Revision 0.18, July 2025 The build2 Build System 65

1.8.2 Conditions (if-else)

Besides these general if-directives there is also a number of specialized shortcuts for checking
whether a value is/is-not null or empty:

ifn ... ~ if $null(...)

ife ... ~ 1if Sempty(...)
ifn! ... ~ 1f! S$null(...)
ife! ... ~ 1if! Sempty(...)
elifn ... ~ elif S$null(...)
elife ... ~ elif Sempty(...)
elifn! ... ~ elif! S$null(...)
elife! ... ~ elif! Sempty(...)

For example, the following two constructs are equivalent:
if Snull ($foo)

elif! Sempty ($bar)

ifn $foo

elife! $bar

Note that a null value is considered empty.

Note also that there is no notion of variable locality in 1 f-else blocks and any value set inside
is visible outside. For example:

if true

info $x # Prints ’'X’'.

The if-else chains should not be used for conditional dependency declarations since this
would violate the expectation that all of the project’s source files are listed as prerequisites, irre-
spective of the configuration. Instead, use the special include prerequisite-specific variable to
conditionally include prerequisites into the build. For example:

66 The build2 Build System Revision 0.18, July 2025

1.8.3 Pattern Matching (switch)

Incorrect.

#

if ($cxx.target.class == ’'linux’)
exe{hello}: cxx{hello-linux}

elif (Scxx.target.class == 'windows’)

exe{hello}: cxx{hello-win32}

Correct.

#
exe{hello}: cxx{hello-linux}: include = ($cxx.target.class == ’linux’)
exe{hello}: cxx{hello-win32}: include = ($cxx.target.class == ’'windows’)

1.8.3 Pattern Matching (switch)

The switch directive is similar to if-else in that it allows us to conditionally exclude
buildfile fragments from being processed. The difference is in the way the conditions are
structured: while in 1f-else we can do arbitrary tests, in switch we match one or more
values against a set of patterns. For instance, this is how we can reimplement the first example
from [Conditionals (i f-else)|using switch:

switch $cxx.target.class, S$cxx.target.system

{
case ’linux’
info ’linux’

case ’'windows’, ’'mingw32’
info ’windows-mingw’

case ’'windows’, ’'win32-msvc’
info ’windows-msvc’

case ’'windows’
info ’windows-other’

default
info ’other’

Similar to 1 f-else, the conditional fragment can be a single (separate) line or a block with a
zero or more case lines/blocks optionally followed by default. A case-default block
can contain nested switch directives (though it is often more convenient to use multiple values
in a single switch, as shown above). For example:

switch $cxx.target.class

{

case ’windows’
{
switch $cxx.target.system

{
case 'mingw32’
info ’windows-mingw’

Revision 0.18, July 2025 The build2 Build System 67

1.8.3 Pattern Matching (switch)

case ’'win32-msvc’
info ’windows-msvc’

default
info ’windows-other’

All the case fragments are tried in the order specified with the first that matches evaluated and
all the others ignored (that is, there is no explicit break nor the ability to fall through). If none of
the case patterns matched and there is the default fragment, then it is evaluated. Multiple
case lines can be specified for a single conditional fragment. For example:

switch $cxx.target.class, $cxx.id
{
case ’'windows’, ’'msvc’
case ’'windows’, ’clang’
info ’'msvcrt’

The switch directive name must be followed by one or more value expressions separated with a
comma (,). Similarly, the case directive name must be followed by one or more pattern expres-
sions separated with a comma (,). These expressions can be variable expansions, function calls,
eval contexts, or literal values.

If multiple values/patterns are specified, then all the case patterns must match in order for the
corresponding fragment to be evaluated. However, if some trailing patterns are omitted, then they
are considered as matching. For example:

switch $cxx.target.class, S$cxx.target.system

{
case ’'windows’, ’'mingw32’
info ’'windows-mingw’

case ’'windows’, ’'win32-msvc’
info ’windows-msvc’

case ’'windows’
info ’windows-other’

The first pattern in the pattern expression can be optionally followed by one or more alternative
patterns separated by a vertical bar (|). Only one of the alternatives need to match in order for the
whole pattern expression to be considered as matching. For example:

switch $cxx.id

{

case ’clang’ "clang—apple’

68 The build2 Build System Revision 0.18, July 2025

1.8.3 Pattern Matching (switch)

The value in the value expression can be optionally followed by a colon (:) and a match function.
If the match function is not specified, then equality is used by default. For example:

switch $cxx.target.cpu: regex.match

{
case 'i[3-6]86"

case ’'x86_64'

}

The match function name can be optionally followed by additional values that are passed as the
third argument to the match function. This is normally used to specify additional match flags, for
example:

switch $cxx.target.cpu: regex.match icase

{

}

Other commonly used match functions are regex.search () (similar to regex.match ()
but searches for any match rather than matching the whole value), path.match () (match
using shell wildcard patterns) and string.icasecmp () (match using equality but ignoring
case). Additionally, any other function that takes the value as its first argument, the pattern as its
second, and returns bool can be used as a match function.

Note that there is no special wildcard or match-anything pattern at the syntax level. In most
common cases the desired semantics can be achieved with default and/or by omitting trailing
patterns. If you do need it, then we recommend using path.match () and its * wildcard. For
example:

switch $cxx.target.class: path.match, \
Scxx.target.system: path.match, \
$Scxx.id: path.match

{

case ’'windows’, ’*’, ’‘clang’

}

Note also that similar to if-else, there is no notion of variable locality in the switch and
case—default blocks and any value set inside is visible outside. Additionally, the same
considerations about conditional dependency declarations apply.

Revision 0.18, July 2025 The build2 Build System 69

1.9 Implementing Unit Testing

1.8.4 Repetitions (for)

The for directive can be used to repeat the same buildfile fragment multiple times, once for
each element of a list. The fragment to repeat can be a single (separate) line or a block, which
together form the for loop. A for block can contain nested for loops. For example:

for n: foo bar baz

{
exe{$n}: cxx{$n}

}

The for directive name must be followed by the variable name (called loop variable) that on
each iteration will be assigned the corresponding element, :, and an expression that expands to a
potentially empty list of values. This can be a variable expansion, a function call, an eval context,
or a literal list as in the above fragment. Here is a somewhat more realistic example that splits a
space-separated environment variable value into names and then generates a dependency declara-
tion for each of them:

for n: $regex.split ($getenv (NAMES), ' +’, '7")
{
exe{$n}: cxx{$n}

}

Note also that there is no notion of variable locality in for blocks and any value set inside is
visible outside. At the end of the iteration the loop variable contains the value of the last element,
if any. For example:

for x: x X

info $x # Prints ’X’.
info $y # Prints ’Y’.

1.9 Implementing Unit Testing

As an example of how many of these features fit together to implement more advanced function-
ality, let’s examine a buildfile that provides support for unit testing. This support is added by
the bdep—new (1) command if we specify the unit-tests option when creating executable
(-t exe,unit-tests) or library (-t 1lib,unit-tests) projects. Here is the source
subdirectory buildfile of an executable created with this option:

./: exe{hello}: libue{hello}: {hxx cxx}{** —** _test...}
Unit tests.
#

exe{*.test}:

{

70 The build2 Build System Revision 0.18, July 2025

1.9 Implementing Unit Testing

test = true
install = false

for t: cxx{**.test...}

[}
|

= S$directory (St)
$name (St) ...

o}
Il

./: $d/exe{$n}: S$t $d/hxx{+$n} $d/testscript{+$n}
Sd/exe{$n}: libue{hello}: bin.whole = false
}

cxx.poptions =+ "-IS$Sout_root" "-IS$src_root"

The basic idea behind this unit testing arrangement is to keep unit tests next to the source code
files that they test and automatically recognize and build them into test executables without
having to manually list each in the buildfile. Specifically, if we have hello.hxx and
hello.cxx, then to add a unit test for this module all we have to do is drop the
hello.test.cxx source file next to them and it will be automatically picked up, built into an
executable, and run during the test operation.

As an example, let’s say we’ve renamed hello.cxx to main.cxx and factored the printing
code into the hello.hxx/hello.cxx module that we would like to unit-test. Here is the new
layout:

hello/
-— build
-— hello
|—— hello.cxx
|-- hello.hxx
|—— hello.test.cxx
|—— main.cxx
+—— buildfile

Let’s examine how this support is implemented in our buildfile, line by line. Because now
we link hello.cxx object code into multiple executables (unit tests and the hello program
itself), we have to place it into a utility library. This is what the first line does (it has to explicitly
list exe{hello} as a prerequisite of the default targets since we now have multiple targets that
should be built by default):

./: exe{hello}: libue{hello}: {hxx cxx}{** —** _test...}

A utility library (u in 1ibue) is a static library that is built for a specific type of a primary target
(e in 1libue for executable). If we were building a utility library for a library then we would
have used the 1ibul{} target type instead. In fact, this would be the only difference in the
above unit testing implementation if it were for a library project instead of an executable:

Revision 0.18, July 2025 The build2 Build System 71

1.9 Implementing Unit Testing

./: lib{hello}: libul{hello}: {hxx cxx}{** —** test...}

Unit tests.
#

for t: cxx{**.test...}

{

Sd/exe{$n}: libul{hello}: bin.whole = false
}

Going back to the first three lines of the executable buildfile, notice that we had to exclude
source files in the * .test .cxx form from the utility library. This makes sense since we don’t
want unit testing code (each with its own main ()) to end up in the utility library.

The exclusion pattern, —** . test. . ., looks a bit cryptic. What we have here is a second-level
extension (. test) which we use to classify our source files as belonging to unit tests. Because it
is a second-level extension, we have to indicate this fact to the pattern matching machinery with
the trailing triple dot (meaning "there are more extensions coming"). If we didn’t do that, . test
would have been treated as a first-level extension explicitly specified for our source files (see

for details).

The next couple of lines set target type/pattern-specific variables to treat all unit test executables
as tests that should not be installed:

exe{*.test}:

{
test = true
install = false

}

You may be wondering why we had to escape the second-level .test extension in the name
pattern above but not here. The answer is that these are different kinds of patterns in different
contexts. In particular, patterns in the target type/pattern-specific variables are only matched
against target names without regard for extensions. See [Name Patterns|for details.

Then we have the for-loop that declares an executable target for each unit test source file. The
list of these files is generated with a name pattern that is the inverse of what we’ve used for the
utility library:

72 The build2 Build System Revision 0.18, July 2025

1.10 Diagnostics and Debugging

for t: cxx{**.test...}

[}
|

= S$directory (St)
$name (St) ...

o}
Il

./: $d/exe{$n}: S$t $d/hxx{+$n} $d/testscript{+$n}
Sd/exe{$n}: libue{hello}: bin.whole = false
}

In the loop body we first split the test source file into the directory (remember, we can have
sources, including tests, in subdirectories) and name (which contains the .test second-level
extension and which we immediately escape with .. .). And then we use these components to
declare a dependency for the corresponding unit test executable. There is nothing here that we
haven’t already seen except for using variable expansions instead of literal names.

By default utility libraries are linked in the "whole archive" mode where every object file from
the static library ends up in the resulting executable or library. This behavior is what we want
when linking the primary target but can normally be relaxed for unit tests to speed up linking.
This is what the last line in the loop does using the bin.whole prerequisite-specific variable.

You can easily customize this and other aspects on a test-by-test basis by excluding the specific
test(s) from the loop and then providing a custom implementation. For example:

for t: cxx{**.test... —-special.test...}

{
}

./: exe{special.test...}: cxx{special.test...} libue{hello}

Note also that if you plan to link any of your unit tests in the whole archive mode, then you will
also need to exclude the source file containing the primary executable’s main () from the utility
library. For example:

./: exe{hello}: cxx{main} libue{hello}
libue{hello}: {hxx cxx}{** —main —**.test...}

1.10 Diagnostics and Debugging

Sooner or later we will run into a situation where our buildfiles don’t do what we expect
them to. In this section we examine a number of techniques and mechanisms that can help us
understand the cause of a misbehaving build.

To perform a build the build system goes through several phases. During the load phase the
buildfiles are loaded and processed. The result of this phase is the in-memory build state
that contains the scopes, targets, variables, etc., defined by the buildfiles. Next is the match
phase during which rules are matched to the targets that need to be built, recursively. Finally,
during the execute phase the matched rules are executed to perform the build.

Revision 0.18, July 2025 The build2 Build System 73

1.10 Diagnostics and Debugging

The load phase is always serial and stops at the first error. In contrast, by default, both match and
execute are parallel and continue in the presence of errors (similar to the "keep going" make
mode). While beneficial in normal circumstances, during debugging this can lead to both inter-
leaved output that is hard to correlate as well as extra noise from cascading errors. As a result, for
debugging, it is usually helpful to run serially and stop at the first error, which can be achieved
with the ——serial-stop|-s option.

The match phase can be temporarily switched to either (serial) load or (parallel) execute. The
former is used, for example, to load additional buildfiles during the dir{} prerequisite to
target resolution, as described in|Output Directories and Scopes While the latter is used to update
generated source code (such as headers) that is required to complete the match.

Debugging issues in each phase requires different techniques. Let’s start with the load phase. As
mentioned in [Buildfile Languagel buildfiles are processed linearly with directives executed
and variables expanded as they are encountered. As we have already seen, to print a variable
value we can use the info directive. For example:

x = X
info $x

This will print something along these lines:

buildfile:2:1: info: X

Or, if we want to clearly see where the value begins and ends (useful when investigating whites-
pace-related issues):

x =" xXx ™"
info "’$x’'™"

Which prints:
buildfile:2:1: info: 7 X ’/

Besides the info directive, there are also text, which doesn’t print the info: prefix, warn,
which prints a warning, as well as fail which prints an error and causes the build system to exit
with an error. Here is an example of using each:

text "note: we are about to get an error’
warn ’‘the error is imminent’

fail "this is the end’

info "we will never get here’

This will produce the following output:

74 The build2 Build System Revision 0.18, July 2025

1.10 Diagnostics and Debugging

buildfile:1:1: note: we are about to get an error
buildfile:2:1: warning: the error is imminent
buildfile:3:1: error: this is the end

If you find yourself writing code like this:

if ($cxx.target.class == ’'windows’)
fail "Windows is not supported’

Then the assert directive is a more concise way to express the same:

assert ($cxx.target.class != 'windows’) ’'Windows is not supported’

The assert condition must be an expression that evaluates to true or false, similar to the i £
directive (see [Conditions (i f—else)|for details). The description after the condition is optional
and, similar to i £, there is also the assert ! variant, which fails if the condition is t rue.

All the diagnostics directives write to stderr. If instead we need to write something to
stdout to, for example, send some information back to our caller, then we can use the print
directive. For example, this will print the C++ compiler id and its target:

print "S$cxx.id S$cxx.target"

To query the value of a target-specific variable we use the qualified name syntax (the
eval-qual production) of eval context, for example:

obj{main}: cxx.poptions += -DMAIN
info $(obj{main}: cxx.poptions)

There is no direct way to query the value of a prerequisite-specific variable since a prerequisite
has no identity. Instead, we can use the dump directive discussed next to print the entire depen-
dency declaration, including prerequisite-specific variables for each prerequisite.

While printing variable values is the most common mechanism for diagnosing buildfile
issues, sometimes it is also helpful to examine targets and scopes. For that we use the dump
directive.

Without any arguments, dump prints (to stderr) the contents of the scope it was encountered
in and at that point of processing the buildfile. Its output includes variables, targets and their
prerequisites, as well as nested scopes, recursively. As an example, let’s print the source subdi-
rectory scope of our hello executable project. Here is its buildfile with the dump directive
at the end:

exe{hello}: {hxx cxx}{**}
cxx.poptions =+ "-IS$Sout_root" "-IS$src_root"

dump

Revision 0.18, July 2025 The build2 Build System 75

1.10 Diagnostics and Debugging

This will produce the output along these lines:

buildfile:5:1: dump:
/tmp/hello/hello/
{
[strings] cxx.poptions = —-I/tmp/hello -I/tmp/hello
[dir_path] out_base = /tmp/hello/hello/
[dir_path] src_base = /tmp/hello/hello/

buildfile{buildfile.}:

exe{hello.?}: cxx{hello.?}

}

The question marks (?) in the dependency declaration mean that the file extensions haven’t been
assigned yet, which happens during the match phase.

Instead of printing the entire scope, we can also print individual targets by specifying one or more
target names in dump. To make things more interesting, let’s convert our hello project to use a
utility library, similar to the unit testing setup (Implementing Unit Testing). We will also link to
the d1 library to see an example of a target-specific variable being dumped:

exe{hello}: libue{hello}: bin.whole = false
exe{hello}: cxx.libs += -1d1
libue{hello}: {hxx cxx}{**}

dump exe{hello}

The output will look along these lines:

buildfile:5:1: dump:
/tmp/hello/hello/exe{hello.?}:
{
[strings] cxx.libs = -1d1
}
/tmp/hello/hello/exe{hello.?}: /tmp/hello/hello/:libue{hello.?}:
{
[bool] bin.whole = false
}

The output of dump might look familiar: in [OQutput Directories and Scopes| we’ve used the
——dump option to print the entire build state, which looks pretty similar. In fact, the dump direc-
tive uses the same mechanism but allows us to print individual scopes and targets from within a
buildfile.

There is, however, an important difference to keep in mind: dump prints the state of a target or
scope at the point in the buildfile load phase where it was executed. In contrast, the ——dump
option can be used to print the state after the load phase (-——dump 1load) and/or after the match
phase (——dump match). In particular, the after match printout reflects the changes to the build
state made by the matching rules, which may include entering of additional dependencies, setting

76 The build2 Build System Revision 0.18, July 2025

1.10 Diagnostics and Debugging

of additional variables, resolution of prerequisites to targets, assignment of file extensions, etc. As
a result, while the dump directive should be sufficient in most cases, sometimes you may need to
use the ——dump option to examine the build state just before rule execution.

It is possible to limit the output of —-dump to specific scopes and/or targets with the
——dump-scope and ——dump-target options.

Let’s now move from state to behavior. As we already know, to see the underlying commands
executed by the build system we use the —v options (which is equivalent to ——verbose 2).
Note, however, that these are logical rather than actual commands. You can still run them and
they should produce the desired result, but in reality the build system may have achieved the
same result in a different way. To see the actual commands we use the —V option instead (equiva-
lent to ——verbose 3). Let’s see the difference in an example. Here is what building our
hello executable with —v might look like:

$ b -s -v
g++ —o hello.o -c hello.cxx
g++ —o hello hello.o

And here is the same build with —V:

$ b -s -V

g++ -MD -E —-fdirectives-only -MF hello.o.t -o hello.o.ii hello.cxx
g++ —-E —fpreprocessed —-fdirectives-only hello.o.ii

g++ -0 hello.o -c —-fdirectives-only hello.o.ii

g++ —o hello hello.o

From the second listing we can see that in reality build2 first partially preprocessed
hello.cxx while extracting its header dependency information. It then preprocessed it fully,
which is used to extract module dependency information, calculate the checksum for ignorable
change detection, etc. When it comes to producing hello.o, the build system compiled the
partially preprocessed output rather than the original hello.cxx. The end result, however, is
the same as in the first listing.

Verbosity level 3 (=V) also triggers printing of the build system module configuration informa-
tion. Here is what we would see for the cxx module:

cxx hello@/tmp/hello/

CXX g++@/usr/bin/g++

id gcc

version 7.2.0 (Ubuntu 7.2.0-1lubuntul~16.04)
major 7

minor 2

patch 0

build (Ubuntu 7.2.0-1lubuntul~16.04)

signature gcc version 7.2.0 (Ubuntu 7.2.0-lubuntul~16.04)
checksum 09b3b59d337eb9%9a760dd028fa0df585b307e6a49c2bfal0b3[...]
target x86_64-1inux—gnu

Revision 0.18, July 2025 The build2 Build System 77

1.10 Diagnostics and Debugging

runtime libgcc
stdlib libstdc++
c stdlib glibc

Verbosity levels higher than 3 enable build system tracing. In particular, level 4 is useful for
understanding why a rule doesn’t match a target or if it does, why it determined the target to be
out of date. For example, assuming we have an up-to-date build of our hello, let’s change a
compile option:

$ b -s —-verbose 4
info: /tmp/hello/dir{hello/} is up to date

$ b -s —-verbose 4 config.cxx.poptions+=-DNDEBUG
trace: cxx::compile_rule::apply: options mismatch forcing update
of /tmp/hello/hello/obje{hello.o}

Higher verbosity levels result in more and more tracing statements being printed. These include
buildfile loading and parsing, prerequisite to target resolution, as well as build system
module and rule-specific logic.

While the tracing statements can be helpful in understanding what is happening, they don’t make
it easy to see why things are happening a certain way. In particular, one question that is often
encountered during build troubleshooting is which dependency chain causes matching or execu-
tion of a particular target. These questions can be answered with the help of the
—-—trace-match and —-trace-execute options. For example, if we want to understand
what causes the update of obje{hello} inthe hello project above:

$ b -s ——-trace-execute ’'obje{hello}’
info: updating hello/obje{hello}
info: using rule cxx.compile
info: while updating hello/libue{hello}
info: while updating hello/exe{hello}
info: while updating dir{hello/}
info: while updating dir{./}

Another useful diagnostics option is ——mtime-check. When specified, the build system
performs a number of file modification time sanity checks that can be helpful in diagnosing spuri-
ous rebuilds.

If neither state dumps nor behavior analysis are sufficient to understand the problem, there is
always an option of running the build system under a C++ debugger in order to better understand
what’s going on. This can be particularly productive for debugging complex rules.

Finally, to help with diagnosing the build system performance issues, there is the ——stat
option. It causes build2 to print various execution statistics which can be useful for pin-point-
ing the bottlenecks. There are also a number of options for tuning the build system’s perfor-

78 The build2 Build System Revision 0.18, July 2025

2 Project Configuration

mance, such as, the number of jobs to perform in parallel, the stack size, queue depths, etc. See
the b (1) man pages for details.

2 Project Configuration

As discussed in the introduction (specifically, [Project Structure]) support for build configurations
is an integral part of build2 with the same mechanism used by the build system core (for
example, for project importation via the config.import.* variables), by the build system
modules (for example, for supplying compile options such as config.cxx.coptions), as
well as by our projects to provide any project-specific configurability. Project configuration is the
topic of this chapter.

The build2 build system currently provides no support for autoconf-style probing of the
build environment in order to automatically discover available libraries, functions, features, etc.

The main reason for omitting this support is the fundamental ambiguity and the resulting brittle-
ness of such probing due to the reliance on compiler, linker, or test execution failures. Specifi-
cally, in many such tests it is impossible for a build system to distinguish between a missing
feature, a broken test, and a misconfigured build environment. This leads to requiring a user inter-
vention in the best case and to a silently misconfigured build in the worst. Other issues with this
approach include portability, speed (compiling and linking takes time), as well as limited applica-
bility during cross-compilation (specifically, inability to run tests).

As a result, we recommend using expectation-based configuration where your project assumes a
feature to be available if certain conditions are met. Examples of such conditions at the source
code level include feature test macros, platform macros, runtime library macros, compiler
macros, etc., with the build system modules exposing some of the same information via variables
to allow making similar decisions in buildfiles. The standard pre-installed build
system module provides emulation of GNU autoconf using this approach.

Another alternative 1s to automatically adapt to missing features using more advanced techniques
such as C++ SFINAE. And in situations where none of this is possible, we recommend delegating
the decision to the user via a configuration value. Our experience with build2 as well as those
of other large cross-platform projects such as Boost show that this is a viable strategy.

Having said that, build2 does provide the ability to extract configuration information from the
environment ($getenv () function) or other tools ($process.run* () family of functions).
Note, however, that for this to work reliably there should be no ambiguity between the "no
configuration available" case (if such a case is possible) and the "something went wrong" case.
We show a realistic example of this in [Configuration Report] where we extract the GCC plugin
directory while dealing with the possibility of it being configured without plugin support.

Revision 0.18, July 2025 The build2 Build System 79

https://github.com/build2/libbuild2-autoconf/

2 Project Configuration

Before we delve into the technical details, let’s discuss the overall need for project configurabil-
ity. While it may seem that making one’s project more user-configurable is always a good idea,
there are costs: by having a choice we increase the complexity and open the door for potential
incompatibility. Specifically, we may end up with two projects in the same build needing a shared
dependency with incompatible configurations.

While some languages, such as Rust, support having multiple differently-configured projects in
the same build, this is not something that is done often in C/C++. This ability is also not without
its drawbacks, most notably code bloat.

As a result, our recommendation is to strive for simplicity and avoid user configurability when-
ever possible. For example, there is a common desire to make certain functionality optional in
order not to make the user pay for things they don’t need. This, however, is often better addressed
either by always providing the optional functionality if it’s fairly small or by factoring it into a
separate project if it’s substantial. If a configuration value is to be provided, it should have a
sensible default with a bias for simplicity and compatibility rather than the optimal result. For
example, in the optional functionality case, the default should probably be to provide it.

As discussed in the introduction, the central part of the build configuration functionality are the
configuration variables. One of the key features that make them special is support for automatic
persistence in the build/config.build file provided by the module (see
for details).

Another mechanism that can be used for project configuration is environment variables. While
not recommended, sometimes it may be forced on us by external factors. In such cases, environ-
ment variables that affect the build result should be reported with the config.environment
directive as discussed in|[Hermetic Build Configurations|

The following example, based on the libhello project from the introduction, gives an
overview of the project configuration functionality with the remainder of the chapter providing
the detailed explanation of all the parts shown as well as the alternative approaches.

libhello/
-— build/

| -— root.build
—— libhello/

|—— hello.cxx
|-- buildfile

build/root.build

config [string] config.libhello.greeting ?= ’Hello’

80 The build2 Build System Revision 0.18, July 2025

2 Project Configuration

libhello/buildfile

cxx.poptions += "-DLIBHELLO_GREETING=\"$config.libhello.greeting\""
// libhello/hello.cxx

void say_hello (ostream& o, const string& n)

{
0 << LIBHELLO_GREETING ", " << n << ’!’ << endl;

}

$ b configure config.libhello.greeting=Hi -v
config libhello@/tmp/libhello/
greeting Hi

$ cat build/config.build
config.libhello.greeting = Hi

$ b -v
g++ ... —-DLIBHELLO_GREETING="Hi" ...

By (enforced) convention, configuration variables start with config., for example,
config.import.libhello. In case of a build system module, the second component in its
configuration variables should be the module name, for example, config.cxx,
config.cxx.coptions. Similarly, project-specific configuration variables should have the
project name as their second component, for example, config.libhello.greeting.

More precisely, a project configuration variable must match the
config[.**].<project>.** pattern where additional components may be present after
config. in case of subprojects. Overall, the recommendation is to use hierarchical names, such
as config.libcurl.tests.remote for subprojects, similar to build system submodules.

If a build system module for a tool (such as a source code generator) and the tool itself share a
name, then they may need to coordinate their configuration variable names in order to avoid
clashes. Note also that when importing an executable target in the
<project>%exe{<project>} form, the config.<project> variable is treated as an
alias for config.import.<project>.<project>.exe.

For an imported buildfile, <project> may refer to either the importing project or the
project from which the said buildfile was imported.

The build system core reserves build and import as the second component in configuration
variables as well as configured as the third and subsequent components.

A variable in the config.<project>.develop form has pre-defined semantics: it allows a
project to distinguish between development and consumption builds. While normally there is no
distinction between these two modes, sometimes a project may need to provide additional func-
tionality during development. For example, a source code generator which uses its own generated

Revision 0.18, July 2025 The build2 Build System 81

2.1 config Directive

code in its implementation may need to provide a bootstrap step from the pre-generated code.
Normally, such a step is only needed during development.

While some communities, such as Rust, believe that building and running tests is only done
during development, we believe its reasonable for an end-user to want to run tests for all their
dependencies. As a result, we strongly discourage restricting tests to the development mode only.
Test are an integral part of the project and should always be available.

If used, the config.<project>.develop variable should be explicitly defined by the
project with the bool type and the false default value. For example:

build/root.build

config [bool] config.libhello.develop ?= false

If the config.<project>.develop variable is specified by the user of the project but the
project does not define it (that is, the project does not distinguish between development and
consumption), then this variable is silently ignored. By default bdep—init (1) configures
projects being initialized for development. This can be overridden with explicit
config.<project>.develop=false.

2.1 config Directive

To define a project configuration variable we add the config directive into the project’s
build/root.build file (see|Project Structure). For example:

config [bool] config.libhello. fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

The irony does not escape us: these configuration variables are exactly of the kind that we advo-
cate against. However, finding a reasonable example of build-time configurability in a "Hello,
World!" library is not easy. In fact, it probably shouldn’t have any. So, for this chapter, do as we
say, not as we do.

Similar to import (see[Target Importation), the config directive is a special kind of variable
assignment. Let’s examine all its parts in turn.

First comes the optional list of variable attributes inside []. The only attribute that we have in
the above example is the variable type, bool and string, respectively. It is generally a good
idea to assign static types to configuration variables because their values will be specified by the
users of our project and the more automatic validation we provide the better (see for the
list of available types). For example, this is what will happen if we misspell the value of the
fancy variable:

82 The build2 Build System Revision 0.18, July 2025

2.1 config Directive

$ b configure config.libhello.fancy=fals
error: invalid bool value ’'fals’ in variable config.libhello.fancy

After the attribute list we have the variable name. The config directive will validate that it
matches the config[.**].<project>.** pattern (with one exception discussed in

uration Report)).

Finally, after the variable name comes the optional default value. Note that unlike normal vari-
ables, the default value assignment (?=) is the only valid form of assignment in the config
directive.

The semantics of the config directive is as follows: First an overridable variable is entered with
the specified name, type (if any), and global visibility. Then, if the variable is undefined and the
default value is specified, it is assigned the default value. After this, if the variable is defined
(either as user-defined or default), it is marked for persistence. Finally, a defined variable is also
marked for reporting as discussed in |Configuration Reportl Note that if the variable is
user-defined, then the default value is not evaluated.

Note also that if the configuration value is not specified by the user and you haven’t provided the
default, the variable will be undefined, not null, and, as a result, omitted from the persistent
configuration (build/config.build file). In fact, unlike other variables, project configura-
tion variables are by default not nullable. For example:

$ b configure config.libhello.fancy=[null]
error: null value in non-nullable variable config.libhello.fancy

There are two ways to make null a valid value of a project configuration variable. Firstly, if the
default value is null, then naturally the variable is assumed nullable. This is traditionally used
for optional configuration values. For example:

config [string] config.libhello.fallback_name ?= [null]

If we need a nullable configuration variable but with a non-null default value (or no default
value at all), then we have to use the null variable attribute. For example:

config [string, null] config.libhello.fallback_name ?= "World"

A common approach for representing an C/C++ enum-like value is to use string as a type and
pattern matching for validation. In fact, validation and propagation can often be combined. For
example, if our library needed to use a database for some reason, we could handle it like this:

config [string] config.libhello.database ?= [null]
using cxx
switch $config.libhello.database

{

case [null]

Revision 0.18, July 2025 The build2 Build System 83

2.1 config Directive

No database in use.
}
case ’sglite’
{
cxx.poptions += -DLIBHELLO_WITH_SQLITE

}
case ’'pgsqgl’
{
cxx.poptions += -DLIBHELLO_WITH_PGSQL

}
default

{
fail "invalid config.libhello.database value \

"$Sconfig.libhello.database’"
}

While it is generally a good idea to provide a sensible default for all your configuration variables,
if you need to force the user to specify its value explicitly, this can be achieved with an extra
check. For example:

config [string] config.libhello.database

if! S$defined(config.libhello.database)
fail ’"config.libhello.database must be specified’

A configuration variable without a default value is omitted from config.build unless the
value is specified by the user. This semantics is useful for values that are normally derived from
other configuration values but could also be specified by the user. If the value is derived, then we
don’t want it saved in config.build since that would prevent it from being re-derived if the
configuration values it is based on are changed. For example:

config [strings] config.hello.database

assert ($size($config.hello.database) > 0) \
"database must be specified with config.hello.database’

config [bool, config.report.variable=multi] config.hello.multi_database
multi = (Sdefined(config.hello.multi_database) \
? $config.hello.multi_database \

$size(config.hello.database) > 1)

assert (Smulti || $size (config.hello.database) == 1) \
"one database can be specified if config.hello.multi_database=false’

If computing the default value is expensive or requires elaborate logic, then the handling of a
configuration variable can be broken down into two steps along these lines:

84 The build2 Build System Revision 0.18, July 2025

config [string] config.libhello.greeting
if! $defined(config.libhello.greeting)
{

greeting = ... # Calculate default value.

if ($greeting == [null])

fail "unable to calculate default greeting, specify manually \

with config.libhello.greeting"

config config.libhello.greeting ?= $greeting

2.1 config Directive

Other than assigning the default value via the config directive, configuration variables should
not be modified by the project’s buildfiles. Instead, if further processing of the configuration
value is necessary, we should assign the configuration value to a different, non-config. *, vari-
able and modify that. The two situations where this is commonly required are post-processing of
configuration values to be more suitable for use in buildfiles as well as further customiza-

tion of configuration values. Let’s see examples of both.

To illustrate the first situation, let’s say we need to translate the database identifiers specified by

the user:
config [string] config.libhello.database ?= [null]

switch $config.libhello.database
{
case [null]
database = [null]

case ’sqglite’
database = 'SQLITE’

case ’'pgsqgl’
database = "PGSQL’

case 'mysqgl’
case ’'mariadb’

database = "MYSQL’

default
fail "..."

using cxx

if ($database !'= [null])
cxx.poptions += "-DLIBHELLO_WITH_S$database"

Revision 0.18, July 2025 The build2 Build System

85

2.1 config Directive

For the second situation, the typical pattern looks like this:
config [strings] config.libhello.options

options = # Overridable options go here.
options += $config.libhello.options
options += # Non-overridable options go here.

That is, assuming that the subsequently specified options (for example, command line options)
override any previously specified, we first set default buildfile options that are allowed to be
overridden by options from the configuration value, then append such options, if any, and finish
off by appending buildfile options that should always be in effect.

As a concrete example of this approach, let’s say we want to make the compiler warning level of
our project configurable (likely a bad idea; also ignores compiler differences):

config [strings] config.libhello.woptions

woptions = -Wall -Wextra
woptions += $config.libhello.woptions
woptions += -Werror

using cxx

cxx.coptions += S$Swoptions

With this arrangement, the users of our project can customize the warning level but cannot
disable the treatment of warnings as errors. For example:

$ b -v config.libhello.woptions=-Wno-extra
g++ ... —-Wall -Wextra -Wno-extra —-Werror ...

If you do not plan to package your project, then the above rules are the only constraints you have.
However, if your project is also a package, then other projects that use it as a dependency may
have preferences and requirements regarding its configuration. And it becomes the job of the
package manager (bpkg) to negotiate a suitable configuration between all the dependents of your
project (see Dependency Configuration Negotiation for details). This can be a difficult problem to
solve optimally in a reasonable time and to help the package manager come up with the best
configuration quickly you should follow the below additional rules and recommendations for
configuration of packages (but which are also generally good ideas):

1. Prefer bool configuration variables. For example, if your project supports a fixed number
of backends, then provide a bool variable to enable each rather than a single variable that
lists all the backends to be enabled.

2. Avoid project configuration variable dependencies, that is, where the default value of one
variable depends on the value of another. But if you do need such a dependency, make sure
it is expressed using the original config.<project>. * variables rather than any inter-
mediate/computed values. For example:

86 The build2 Build System Revision 0.18, July 2025

2.1 config Directive

Enable Y only if X is enabled.

#

config [bool] config.hello.x ?= false

config [bool] config.hello.y ?= S$config.libhello.x

3. Do not make project configuration variables conditional. In other words, the set of configu-
ration variables and their types should be a static property of the project. If you do need to
make a certain configuration variable "unavailable" or "disabled" if certain conditions are
met (for example, on a certain platform or based on the value of another configuration vari-
able), then express this with a default value and/or a check. For example:

windows = ($cxx.target.class == ’'windows’)

Y should only be enabled if X is enabled and we are not on
Windows.

#

config [bool] config.hello.x ?= false

config [bool] config.hello.y ?= ($Sconfig.hello.x && !S$windows)

if $config.libhello.y
{

assert $config.hello.x "Y can only be enabled if X is enabled"
assert (!Swindows) "Y cannot be enabled on Windows"

Additionally, if you wish to factor some config directives into a separate file (for example, if
you have a large number of them or you would like to share them with subprojects) and source it
from your build/root.build, then it is recommended that you place this file into the
build/config/ subdirectory, where the package manager expects to find such files (see
Package Build System Skeleton for background). For example:

root.build
#

source $src_root/build/config/common.build

If you would prefer to keep such a file in a different location (for example, because it contains
things other than config directives), then you will need to manually list it in your package’s
manifest file, see the build-file value for details.

Another effect of the config directive is to print the configuration variable in the project’s
configuration report. This functionality is discussed in the following section. While we have
already seen some examples of how to propagate the configuration values to our source code,
[Configuration Propagation| discusses this topic in more detail.

Revision 0.18, July 2025 The build2 Build System 87

2.2 Configuration Report

2.2 Configuration Report

One of the effects of the config directive is to mark a defined configuration variable for report-
ing. The project configuration report is printed automatically at a sufficiently high verbosity level
along with the build system module configuration. For example (some of the cxx module config-
uration is omitted for brevity):

$ b config.libhello.greeting=Hey -v
cxx libhello@/tmp/libhello/

CXX g++@/usr/bin/g++
id gcc
version 9.1.0

config libhello@/tmp/libhello/
fancy false
greeting Hey

The configuration report is printed immediately after loading the project’s
build/root.build file. It is always printed at verbosity level 3 (=V) or higher. It is also
printed at verbosity level 2 (-v) if any of the reported configuration variables have a new value.
A value is considered new if it was set to default or was overridden on the command line.

The project configuration report header (the first line) starts with the special config module
name (the config module itself does not have a report) followed by the project name and its
out_root path. After the header come configuration variables with the
config[.**].<project> prefix removed. The configuration report for each variable can be
customized using a number of config.report* attributes as discussed next.

The config.report attribute controls whether the variable is included into the report and, if
so, the format to print its value in. For example, this is how we can exclude a variable from the
report:

config [bool, config.report=false] config.libhello.selftest ?= false

While we would normally want to report all our configuration variables , if some of them are
internal and not meant to be used by the users of our project, it probably makes sense to exclude
them.

The only currently supported alternative printing format is multiline which prints a list value
one element per line. Other printing formats may be supported in the future. For example:

config [dir_paths, config.report=multiline] config.libhello.search_dirs

$ b config.libhello.search_dirs="/etc/default /etc" -v
config libhello@/tmp/libhello/
search_dirs
/etc/default/
/etc/

88 The build2 Build System Revision 0.18, July 2025

2.2 Configuration Report

The config.report attribute can also be used to include a non-config. * variable into a
report. This is primarily useful for configuration values that are always discovered automatically
but that are still useful to report for troubleshooting. Here is a realistic example:

using cxx

Determine the GCC plugin directory.
#

if ($cxx.id == ’'gcc’)

{

plugin_dir = [dir_path] $process.run($cxx.path -print-file-name=plugin)

If plugin support is disabled, then -print-file-name will print
the name we have passed (the real plugin directory will always
be absolute).
#
if ("$plugin_dir" == plugin)

fail "$recall ($cxx.path) does not support plugins"

config [config.report] plugin_dir

This is the only situation where a variable that does not match the
config[.**].<project>.** pattern is allowed in the config directive. Note also that a
value of such a variable is never considered new.

Note that this mechanism should not be used to report configuration values that require
post-processing because of the loss of the new value status (unless you are reporting both the
original and post-processed values). Instead, use the config.report.variable attribute to
specify an alternative variable for the report. For example:

config [strings, config.report.variable=woptions] \
config.libhello.woptions

woptions = -Wall -Wextra
woptions += $config.libhello.woptions
woptions += -Werror

$ b config.libhello.woptions=-Wno-extra -v
config libhello@/tmp/libhello/
woptions -Wall -Wextra -Wno-extra -Werror

The config.report.module attribute can be used to override the reporting module name,
that is, config in the config libhello@/tmp/libhello/ line above. It is primarily
useful in imported buildfiles that wish to report non-config. * variables under their own
name. For example:

Revision 0.18, July 2025 The build2 Build System 89

2.3 Configuration Propagation

config [string] config.rtos.board

Load the board description and report key information such as the
capability revoker.

#
revoker =
config [config.report.module=rtos] revoker

$ b config.rtos.board=ibex-safe-simulator -v
rtos hello@Q/tmp/hello/

board ibex-safe-simulator

revoker hardware

2.3 Configuration Propagation

Using configuration values in our buildfiles is straightforward: they are like any other
buildfile variables and we can access them directly. For example, this is how we could
provide optional functionality in our library by conditionally including certain source files: See
[Conditions (i f—else)|for why we should not use i f to implement this.

build/root.build
config [strings] config.libhello.io ?= true
libhello/buildfile

lib{hello}: {hxx ixx txx cxx}{** -version -hello-io} hxx{version}
lib{hello}: {hxx cxx}{hello-io}: include = S$config.libhello.io

On the other hand, it is often required to propagate the configuration information to our source
code. In fact, we have already seen one way to do it: we can pass this information via C/C++
preprocessor macros defined on the compiler’s command line. For example:

build/root.build

config [bool] config.libhello. fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

libhello/buildfile

if $config.libhello.fancy
cxx.poptions += -DLIBHELLO_FANCY

cxx.poptions += "-DLIBHELLO_GREETING=\"S$config.libhello.greeting\""

90 The build2 Build System Revision 0.18, July 2025

2.3 Configuration Propagation

// libhello/hello.cxx

void say_hello (ostream& o, const string& n)
{
#ifdef LIBHELLO_FANCY
// TODO: something fancy.
#else
0 << LIBHELLO_GREETING ", " << n << ’!’ << endl;
#endif
}

We can even use the same approach to export certain configuration information to our library’s
users (see [Library Exportation and Versioning|for details):

libhello/buildfile

Export options.
#
if $config.libhello.fancy
lib{hello}: cxx.export.poptions += -DLIBHELLO_FANCY

This mechanism is simple and works well across compilers so there is no reason not to use it
when the number of configuration values passed and their size are small. However, it can quickly
get unwieldy as these numbers grow. For such cases, it may make sense to save this information
into a separate auto-generated source file with the help of the |in|module, similar to how we do it
for the version header.

The often-used approach is to generate a header file and include it into source files that need
access to the configuration information. Historically, this was a C header full of macros called
config.h. However, for C++ projects, there is no reason not to make it a C++ header and, if
desired, to use modern C++ features instead of macros. Which is what we will do here.

As an example of this approach, let’s convert the above command line-based implementation to
use the configuration header. We will continue using macros as a start (or in case this is a C
project) and try more modern techniques later. The build/root .build file is unchanged
except for loading the in module:

build/root.build

config [bool] config.libhello.fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

using in

The 1ibhello/config.hxx. in file is new:

Revision 0.18, July 2025 The build2 Build System 91

2.3 Configuration Propagation

// libhello/config.hxx.in
#pragma once

#define LIBHELLO_FANCY $Sconfig.libhello.fancy$
#define LIBHELLO_GREETING "$config.libhello.greeting$"

As you can see, we can reference our configuration variables directly in the config.hxx.in
substitutions (see the [in]module documentation for details on how this works).

With this setup, the way to export configuration information to our library’s users is to make the
configuration header public and install it, similar to how we do it for the version header.

The rest is changed as follows:
libhello/buildfile
lib{hello}: {hxx ixx txx cxx}{** -version -config} hxx{version config}

hxx{config}: in{config}
{

install = false

// libhello/hello.cxx
#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
#if LIBHELLO_FANCY
// TODO: something fancy.
#else
0 << LIBHELLO_GREETING ", " << n << ’!’ << endl;
#endif
}

Notice that we had to replace #ifdef LIBHELLO_FANCY with #if LIBHELLO_FANCY. If
you want to continue using #ifdef, then you will need to make the necessary arrangements
yourself (the in module is a generic preprocessor and does not provide any special treatment for
#define). For example:

#define LIBHELLO_FANCY $config.libhello.fancy$
#if !LIBHELLO_FANCY

undef LIBHELLO_FANCY

#endif

Now that the macro-based version is working, let’s see how we can take advantage of modern
C++ features to hopefully improve on some of their drawbacks. As a first step, we can replace the
LIBHELLO_FANCY macro with a compile-time constant and use if constexpr instead of
#ifdef in our implementation:

92 The build2 Build System Revision 0.18, July 2025

2.3 Configuration Propagation

// libhello/config.hxx.in

namespace hello

{

inline constexpr bool fancy = $config.libhello.fancy$;

// libhello/hello.cxx
#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
if constexpr (fancy)
{
// TODO: something fancy.
}
else
0 << LIBHELLO_GREETING ", " << n << ’!’ << endl;

Note that with 1f constexpr the branch not taken must still be valid, parsable code. This is
both one of the main benefits of using it instead of #1if (the code we are not using is still guaran-
teed to be syntactically correct) as well as its main drawback (it cannot be used, for example, for
platform-specific code without extra efforts, such as providing shims for missing declarations,
etc).

Next, we can do the same for LIBHELLO_GREETING:
// libhello/config.hxx.in

namespace hello

{

inline constexpr char greeting[] = "$config.libhello.greeting$";

// libhello/hello.cxx
#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
if constexpr (fancy)
{
// TODO: something fancy.
}
else
o0 << greeting << ", " << n << '’ << endl;

Note that for greet ing we can achieve the same result without using inline variables or cons—
texpr and which would be usable in older C++ and even C. All we have to do is add the
config.cxx.in source file next to our header with the definition of the greeting variable.

Revision 0.18, July 2025 The build2 Build System 93

3 Targets and Target Types

For example:
// libhello/config.hxx.in

namespace hello

{

extern const char greetingl[];

}

// libhello/config.cxx.in
#include <libhello/config.hxx>

namespace hello

{
const char greeting[] = "$config.libhello.greeting$";

}
libhello/buildfile
lib{hello}: {hxx ixx txx cxx}{** —-config} {hxx cxx}{config}

hxx{config}: in{config}
{

install = false

}

cxx{config}: in{config}

As this illustrates, the in module can produce as many auto-generated source files as we need.
For example, we could use this to split the configuration header into two, one public and installed
while the other private.

3 Targets and Target Types

This chapter is a work in progress and is incomplete.

3.1 Target Types

A target type is part of a target’s identity. The core idea behind the concept of target types is to
abstract away from file extensions which can vary from project to project (for example, C++
source files extensions) or from platform to platform (for example, executable file extensions). It
also allows us to have non-file-based targets.

Target types form a base-derived inheritance tree. The root of this tree is the abstract target { }
type. The build2 core defines a number of standard target types, such as file{}, doc{}, and
exe{}. Build system modules can define additional target types that are based on the standard
ones (or on types defined by other modules). For example, the ¢ module that provides the C
compilation support defines the h{} and c{} target types. Finally, buildfiles can derive

94 The build2 Build System Revision 0.18, July 2025

3.1 Target Types

project-local target types using the define directive.

If a target type represents a file type with a well-established extension, then by convention such
an extension is used as the target type name. For example, the C language header and source files
use the .h and . c extensions and the target types are called h{} and c{}.

Speaking of conventions, as you may have noticed, when mentioning a target type we customar-
ily add {} after its name. We found that this helps with comprehension since target type names
are often short (you can also search for <t ype>{ to narrow it down to target types). In a way
this is a similar approach to adding () after a function name except here we use {}, which
mimics target type usage in target names, for example c{hello} for hello.c.

The following listing shows the hierarchy of the standard target types defined by the build2
core (the abstract target types are marked with *) while the following sections describe each stan-
dard target type in detail. For target types defined by a module refer to the respective module
documentation.

mtime_target*——-. alias fsdir

path_target* group dir

.————-doc————— . exe Jjson Dbuildfile

legal man manifest

man<N>

While target types replace (potentially variable) extensions, there still needs to be a mechanism
for specifying them since in most cases targets have to be mapped to files. There are several ways
this can be achieved.

If a target type represents a file type with a well-established extension, then such an extension is
normally used by default and we don’t need to take any extra steps. For example the h{} and
c{} target types for C header and source files default to the .h and . c extensions, respectively,
and if our project follows this convention, then we can simply write:

exe{utility}: c{utility} h{utility}
And c{utility} willbe mappedtoutility.candh{utility}—toutility.h.

There are two variants of this default extension case: fixed extension and customizable extension.
A target type may choose to fix the default extension if it’s a bad idea to deviate from the default
extension. A good example of such a target is manl { }, which fixes the default extension to be
. 1. More commonly, however, a target will have a default extension but will allow customizing

Revision 0.18, July 2025 The build2 Build System 95

3.1 Target Types

it with the extension variable.

A good example where extension customization is often required are the hxx{} and cxx{}
target types for C++ header and source files, which default to the .hxx and .cxx extensions,
respectively. If our project uses other extensions, for example, . hpp and .cpp, then we can
adjust the defaults (typically done in root .build, after loading the cxx module):

hxx{*}: extension hpp
cxx{*}: extension = cpp

Then we can write:

exe{utility}: cxx{utility} hxx{utility}

And cxx{utility} will be mapped to utility.cpp and hxx{utility} - to
utility.hpp.

What about exe{utility}, where does its extension come from? This is an example of a
target type with an extension that varies from platform to platform. In such cases the extension is
expected to be assigned by the rule that matches the target. In the above example, the link rule
from the cxx module that matches updating exe {utility} will assign a suitable extension
based on the target platform of the C++ compiler that it was instructed to use.

Finally, it is always possible to specify the file extension explicitly as part of the target name. For
example:

exe{utility}: cxx{utility.cc} hxx{utility.hh}

This is normally only needed if the default extension is not appropriate or if the target type does
not have a default extension, as is the case, for example, for the [file{}| and [doc{ }] target
types. This mechanism can also be used to override the automatically derived extension. For
example:

exe{ ($cxx.target.class == ’'windows’ ? utility.com : utility)}:

If you need to specify a name that does not have an extension, then end it with a single dot. For
example, for a header utility you would write hxx{utility. }. If you need to specify a
name with an actual trailing dot, then escape it with a double dot, for example,
hxx{utility..}.

More generally, anywhere in a name, a double dot can be used to specify a dot that should not be
considered the extension separator while a triple dot — which should. For example, in
obja{foo.a.o} the extension is .o and if instead we wanted .a.o to be considered the
extension, then we could rewrite it either as obja{foo.a..o} oras obja{foo...a.o}.

96 The build2 Build System Revision 0.18, July 2025

3.1.1 target{}

To derive a new target type in a buildfile we use the define directive. Such target types
are project-local, meaning they cannot be exported to other projects. Typically this is used to
provide a more meaningful name to a set of files and also avoid having to specify their extensions
explicitly. Compare:

./: doc{README.md PACKAGE-README.md INSTALL.md}

To:

define md: doc
doc{*}: extension = md

./: md{README PACKAGE-README INSTALL}

3.1.1 target{}

The target{} target type is a root of the target type hierarchy. It is abstract and is not
commonly used directly, except perhaps in patterns (target type/pattern-specific variable, pattern
rules).

3.1.2alias{}and dir{}

The alias{} target type is used for non-file-based targets that serve as aliases for their prereq-
uisite.

Alias targets in build2 are roughly equivalent to phony targets in make.

For example:
alias{tests}: exe{testl test2 test3}

S b test: alias{tests}

An alias{} target can also serve as an "action" if supplied with an ad hoc recipe (or matched
by an ad hoc pattern rule). For example:

alias{strip}: exe{hello}
{{

diag strip $<

strip $path ($<)
+}

The dir{} target type is a special kind of alias that represents a directory. Building it means
building everything inside the directory. See [Project Structure| for background.

Revision 0.18, July 2025 The build2 Build System 97

3.1.3 fsdir{}

A target without a type that ends with a directory separator (/) is automatically treated as dir{}.
For example, the following two lines are equivalent:

./: exe{testl test2}
dir{./}: exe{testl test2}

Omitting the target type in such situations is customary.

3.1.3 £sdir{}

The f£sdir{} target type represents a filesystem directory. Unlike dir{} above, it is not an
alias and listing an £sdir{} directory as a prerequisite of a target will cause that directory to be
created on update and removed on clean.

While we usually don’t need to list explicit £sdir{} prerequisites for our targets, one situation
where this is necessary is when the target resides in a subdirectory that does not correspond to an
existing source directory. A typical example of this situation is placing object files into subdirec-
tories. Compare:

obj{foo}: c{foo}
sub/obj{bar}: c{bar} fsdir{sub/}

3.14mtime_target{} and path_target{}

The mt ime_target {} target type represents a target that uses modification times to determine
if it is out of date. The path_target {} target type represents a target that has a corresponding
filesystem entry. It is derived from mt ime_target {} and uses the modification time of that
filesystem entry to determine if the target is out of date.

Both of these target types are abstract and are not commonly used directly, except perhaps in
patterns (target type/pattern-specific variable, pattern rules).

3.1.5 group{}

The group{ } target type represents a user-defined explicit target group, that is, a target that has
multiple member targets that are all built together with a single recipe.

Normally this target type is not used to declare targets or prerequisites but rather as a base of a
derived group. If desired, such a derived group can be marked with an attribute as "see-through",
meaning that when the group is listed as a prerequisite of a target, the matching rule "sees" its
members, rather than the group itself. For example:

define [see_through] thrift_cxx: group

98 The build2 Build System Revision 0.18, July 2025

3.1.6 file{)

3.1.6 file{}

The £ile{} target type represents a generic file. This target type is used as a base for most of
the file-based targets and can also be used to declare targets and prerequisites when there are no
more specific target types.

A target or prerequisite without a target type is automatically treated as £ile{ }. However, omit-
ting a target type in such situations is not customary.

The file{} target type has no default extension and one cannot be assigned with the exten—
sion variable. As aresult, if a file{} target has an extension, then it must be specified explic-
itly as part of the target name. For example:

./: file{example.conf}

3.1.7 doc{}, legal{},and man{}

The doc{} target type represents a generic documentation file. It has semantics similar to
file{} (from which it derives): it can be used as a base or declare targets/prerequisites and
there is no default extension. One notable difference, however, is that doc{} targets are by
default installed into the doc/ installation location (see|[install Module). For example:

./: doc{README.md Changelog.txt}

The 1legal{} target type is derived from doc{ } and represents a legal documentation file, such
as a license, copyright notice, authorship information, etc. The main purpose of having a separate
target type like this is to help with installing licensing-related files into a different location. To
this effect, legal {} targets are installed into the 1egal/ installation location, which by default
is the same as doc/ but can be customized. For example:

./: legal {COPYRIGHT LICENSE AUTHORS.md}

The man{} target type is derived from doc{} and represents a manual page. This target type
requires an explicit extension specification and is installed into the man/ installation location

If you are using the man{} target type directly (instead of one of man<N>{} described below),
for example, to install a localized version of a man page, then you will likely need to adjust the
installation location on the per target basis.

The man<N>{ } target types (where <N> is an integer between 1 and 9) are derived from man { }
and represent manual pages in the respective sections. These target types have fixed default
extensions . <N> (but an explicit extension can still be specified, for example manl{foo.1lp})
and are installed into the man<N>/ installation locations. For example:

Revision 0.18, July 2025 The build2 Build System 99

4 Variables

./: manl{foo}

3.1.8 exe{}

The exe{} target type represents an executable file. Executables in build2 appear in two
distinct but sometimes overlapping contexts: We can build an executable target, for example from
C source files. Or we can list an executable target as a prerequisite in order to execute it as part of
a recipe. And sometimes this can be the same executable target. For example, one project may
build an executable target that is a source code generator and another project may import this
executable target and use it in its recipes in order to generate some source code.

To support this semantics the exe { } target type has a peculiar default extension logic. Specifi-
cally, if the exe { } target is "output", then the extension is expected to be assigned by the match-
ing rule according to the target platform for which this executable is built. But if it does not, then
we fall back to no extension (for example, a script). If, however, the exe { } target is "input" (that
is, it’s listed as a prerequisite and there is no corresponding "output" target), then the extension of
the host platform is used as the default.

In all these cases the extension can also be specified explicitly. This, for example, would be
necessary if the executable were a batch file:
h{generate}: exe{generate.bat}
{{
diag $< -> $>
$< —o $path($>)
}}

Here, without the explicit extension, the . exe extension would have been used by default.

3.1.9 json{}

The json{} target type represents a JSON text file. It is derived from file{} and has the
. Json default extension.

4 Variables

This chapter is a work in progress and is incomplete.

The following variable/value types can currently be used in buildfiles:
bool

int64
int64s

uintoe4
uinte4s

100 The build2 Build System Revision 0.18, July 2025

string
strings
string_set
string_map

path
paths
dir_path
dir_paths

json
json_array
json_object
json_set
json_map

name
names
name_pair

cmdline
project_name
target_triplet

4 Variables

Note that while expansions in the target and prerequisite-specific assignments happen in the
corresponding target and prerequisite contexts, respectively, for type/pattern-specific assignments
they happen in the scope context. Plus, a type/pattern-specific prepend/append is applied at the

time of expansion for the actual target. For example:

X = s
file{foo}: # target
{
X += t # st
y =8%8xy #sty
}
file{foo}: file{bar} # prerequisite

{
X +=p # x t p
y=%xy #xtpy
}

file{b*}: # type/pattern
{

X += w # <append w>

y = $x w # <assign s w>

info $(file{bar}: x)
info $(file{bar}: y)

Revision 0.18, July 2025 The build2 Build System

101

5 Functions

S Functions
This chapter is a work in progress and is incomplete.

Functions in build2 are organized into families, such as the $string.* () family for manip-
ulating strings or $regex.* () for working with regular expressions. Most functions are pure
and those that are not, such as $builtin.getenv (), are explicitly documented as such.

Some functions, such as from the $regex. * () family, can only be called fully qualified with
their family name. For example:

if $regex.match ($name, ' (.+)—-(.+)")

While other functions can be called without explicit qualification. For example:

path = $getenv (/' PATH')

There are also functions that can be called unqualified only for certain types of arguments (this
fact will be reflected in their synopsis and/or documentation). Note, however, that every function
can always be called qualified.

5.1 Builtin Functions

The $builtin.* () function family contains fundamental build2 functions.

5.1.1 $builtin.defined ()

Sdefined (<variable>)
Return true if the specified variable is defined in the calling scope or any outer scopes.

Note that this function is not pure.

5.1.2 $builtin.visibility ()

Svisibility (<variable>)
Return variable visibility if it is known and null otherwise.

Possible visibility value are:

global -- all outer scopes

project —— this project (no outer projects)

scope —— this scope (no outer scopes)

target —-- target and target type/pattern-specific
prereq -—- prerequisite-specific

102 The build2 Build System Revision 0.18, July 2025

5.1.3 $builtin.type()

Note that this function is not pure.

5.1.3 $builtin.type ()

Stype (<value>)

Return the type name of the value or empty string if untyped.
5.14 $builtin.null ()

Snull (<value>)

Return true if the value is null.

5.1.5 $builtin.empty ()

Sempty (<value>)

Return true if the value is empty.

5.1.6 $builtin.first (), $builtin.second ()

$first (<value>[, <not_pair>])
$second (<value>[, <not_pair>])

Return the first or the second half of a pair, respectively. If a value is not a pair, then return null
unless the not_pair argument is t rue, in which case return the non-pair value.

If multiple pairs are specified, then return the list of first/second halfs. If an element is not a pair,
then omit it from the resulting list unless the not_pair argument is t rue, in which case add
the non-pair element to the list.

5.1.7 $builtin.quote ()
Squote (<value>[, <escape>])

Quote the value returning its string representation. If escape is true, then also escape (with a
backslash) the quote characters being added (this is useful if the result will be re-parsed, for
example as a script command line).

5.1.8 $builtin.getenv ()

$getenv (<name>)

Get the value of the environment variable. Return null if the environment variable is not set.

Revision 0.18, July 2025 The build2 Build System 103

5.2 String Functions

Note that if the build result can be affected by the variable being queried, then it should be
reported with the config.environment directive.

Note that this function is not pure.

5.2 String Functions

5.2.1 $string.icasecmp ()

$string.icasecmp (<untyped>, <untyped>)
$icasecmp (<string>, <string>)

Compare ASCII strings ignoring case and returning the boolean value.

5.2.2 $string.contains ()

$string.contains (<untyped>, <untyped>[, <flags>])
Scontains (<string>, <string>[, <flags>])

Check if the string (first argument) contains the given substring (second argument). The substring
must not be empty.

The following flags are supported:
icase - compare ignoring case

once — check if the substring occurs exactly once

See also $string.starts_with(), $string.ends_with (), $regex.search ().

5.23 $string.starts_with ()

$string.starts_with (<untyped>, <untyped>[, <flags>])
$starts_with(<string>, <string>[, <flags>])

Check if the string (first argument) begins with the given prefix (second argument). The prefix
must not be empty.

The following flags are supported:

icase - compare ignoring case

See also $string.contains ().

104 The build2 Build System Revision 0.18, July 2025

5.2.4 $string.ends_with()

5.2.4 $string.ends_with ()

$string.ends_with (<untyped>, <untyped>[, <flags>])
Sends_with (<string>, <string>[, <flags>])

Check if the string (first argument) ends with the given suffix (second argument). The suffix must
not be empty.

The following flags are supported:

icase - compare ignoring case

See also $string.contains ().

5.2.5 $string.replace ()

$string.replace (<untyped>, <from>, <to> [, <flags>])
Sreplace (<string>, <from>, <to> [, <flags>])

Replace occurences of substring from with to in a string. The from substring must not be
empty.

The following flags are supported:

icase — compare ignoring case
first_only - only replace the first match
last_only — only replace the last match

If both first_only and last_only flags are specified, then from is replaced only if it
occurs in the string once.

See also Sregex.replace ().

5.2.6 $string.trim()

$string.trim(<untyped>)
$trim(<string>)

Trim leading and trailing whitespaces in a string.

5.2.7 $string.lcase (), $string.ucase ()

$string.lcase (<untyped>)
$string.ucase (<untyped>)
$lcase (<string>)
Sucase (<string>)

Revision 0.18, July 2025 The build2 Build System 105

5.2.8 $string.size()

Convert ASCII string into lower/upper case.

5.2.8 $string.size ()

$size (<strings>)
$size (<string-set>)
$size (<string-map>)
$size (<string>)

First three forms: return the number of elements in the sequence.

Fourth form: return the number of characters (bytes) in the string.

5.29 $string.sort ()
$sort (<strings> [, <flags>])

Sort strings in ascending order.

The following flags are supported:
icase - sort ignoring case

dedup - in addition to sorting also remove duplicates

5.2.10 $string.£find ()

$find(<strings>, <string>[, <flags>])
Return true if the string sequence contains the specified string.

The following flags are supported:

icase - compare ignoring case

See also $Sregex.find_match () and $regex.find_search ().

5.2.11 $string. find_index ()

$find_index (<strings>, <string>[, <flags>])

Return the index of the first element in the string sequence that is equal to the specified string or
$size (strings) if none is found.

The following flags are supported:

106 The build2 Build System Revision 0.18, July 2025

icase - compare ignoring case

5.2.12 $string.keys ()

$keys (<string-map>)
Return the list of keys in a string map.

Note that the result is sorted in ascending order.

5.3 Integer Functions

5.3.1 $integer.string()

Sstring (<int64>)
$string(<uint64>[, <base>[, <width>]])

5.3 Integer Functions

Convert an integer to a string. For unsigned integers we can specify the desired base and width.

For example:

x = [uint64] Ox0000ffff

c.poptions += "-DOFFSET=$x" # —-DOFFSET=65535
c.poptions += "-DOFFSET=$string($x, 16)" # -DOFFSET=0xffff
c.poptions += "-DOFFSET=$string($x, 16, 8)" # -DOFFSET=0x0000ffff

5.3.2 $integer.integer_sequence ()

$integer_sequence (<begin>, <end>[, <step>])

Return the list of uint64 integers starting from begin (including) to end (excluding) with the
specified step or 1 if unspecified. If begin is greater than end, empty list is returned.

5.3.3 $integer.size ()

S$size (<ints>)

Return the number of elements in the sequence.

5.3.4 $integer.sort ()

$sort (<ints> [, <flags>])
Sort integers in ascending order.

The following flags are supported:

Revision 0.18, July 2025 The build2 Build System

107

5.4 Bool Functions

dedup - in addition to sorting also remove duplicates
5.3.5 $integer.£find ()

$find(<ints>, <int>)

Return true if the integer sequence contains the specified integer.
5.3.6 $integer. find_index ()

$find_index (<ints>, <int>)

Return the index of the first element in the integer sequence that is equal to the specified integer
or $size (ints) if none is found.

5.4 Bool Functions
5.4.1 $bool.string()
$string (<bool>)

Convert a boolean value to a string literal t rue or false.

5.5 Path Functions

The $path. * () function family contains function that manipulating filesystem paths.

5.5.1 $path.string()

$string (<paths>)

Return the traditional string representation of a path (or a list of string representations for a list of
paths). In particular, for directory paths, the traditional representation does not include the trailing
directory separator (except for the POSIX root directory). See Srepresentation () below
for the precise string representation.

5.5.2 $path.posix_string()

$posix_string (<paths>)
$path.posix_string (<untyped>)

Return the traditional string representation of a path (or a list of string representations for a list of
paths) using the POSIX directory separators (forward slashes).

108 The build2 Build System Revision 0.18, July 2025

5.5.3 $path.representation()

5.5.3 $path.representation ()

Srepresentation (<paths>)

Return the precise string representation of a path (or a list of string representations for a list of
paths). In particular, for directory paths, the precise representation includes the trailing directory
separator. See $string () above for the traditional string representation.

5.5.4 $path.posix_representation|()

Sposix_representation (<paths>)
Spath.posix_representation (<untyped>)

Return the precise string representation of a path (or a list of string representations for a list of
paths) using the POSIX directory separators (forward slashes).

5.5.5 $path.absolute ()

$absolute (<path>)
$path.absolute (<untyped>)

Return true if the path is absolute and false otherwise.

5.5.6 $path.simple ()

$simple (<path>)
Spath.simple (<untyped>)

Return true if the path is simple, that is, has no direcrory component, and false otherwise.

Note that on POSIX / foo is not a simple path (it is foo in the root directory) while / is (it is the
root directory).

5.5.7 $path.sub_path ()

$sub_path (<path>, <path>)
$Spath.sub_path (<untyped>, <untyped>)

Return true if the path specified as the first argument is a sub-path of the one specified as the
second argument (in other words, the second argument is a prefix of the first) and false otherwise.
Both paths are expected to be normalized. Note that this function returns true if the paths are
equal. Empty path is considered a prefix of any path.

Revision 0.18, July 2025 The build2 Build System 109

5.5.8 $path.super_path()

5.5.8 $path.super_path ()

$super_path (<path>, <path>)
$path.super_path (<untyped>, <untyped>)

Return true if the path specified as the first argument is a super-path of the one specified as the
second argument (in other words, the second argument is a suffix of the first) and false otherwise.
Both paths are expected to be normalized. Note that this function returns true if the paths are
equal. Empty path is considered a suffix of any path.

5.5.9 $path.directory ()

Sdirectory (<paths>)
$path.directory (<untyped>)

Return the directory part of a path (or a list of directory parts for a list of paths) or an empty path
if there is no directory. A directory of a root directory is an empty path.

5.5.10 $path.root_directory ()

Sroot_directory (<paths>)
$path.root_directory (<untyped>)

Return the root directory of a path (or a list of root directories for a list of paths) or an empty path
if the specified path is not absolute.

5.5.11 $path.leaf ()

$leaf (<paths>)

Spath.leaf (<untyped>)

$leaf (<paths>, <dir-path>)
$Spath.leaf (<untyped>, <dir-path>)

First form (one argument): return the last component of a path (or a list of last components for a
list of paths).

Second form (two arguments): return a path without the specified directory part (or a list of paths
without the directory part for a list of paths). Return an empty path if the paths are the same. Issue
diagnostics and fail if the directory is not a prefix of the path. Note: expects both paths to be
normalized.

5.5.12 $path.relative ()

Srelative (<paths>, <dir-path>)
$path.relative (<untyped>, <dir-path>)

110 The build2 Build System Revision 0.18, July 2025

5.5.13 $path.base()

Return the path relative to the specified directory that is equivalent to the specified path (or a list
of relative paths for a list of specified paths). Issue diagnostics and fail if a relative path cannot be
derived (for example, paths are on different drives on Windows).

Note: to check if a path if relative, use $path.absolute ().

5.5.13 $path.base ()

$base (<paths>)
$path.base (<untyped>)

Return the base part (without the extension) of a path (or a list of base parts for a list of paths).

5.5.14 $path.extension ()

Sextension (<path>)
$Spath.extension (<untyped>)

Return the extension part (without the dot) of a path or empty string if there is no extension.

5.5.15 $path.complete ()

Scomplete (<paths>)
$path.complete (<untyped>)

Complete the path (or list of paths) by prepending the current working directory unless the path is
already absolute.

5.5.16 $path.canonicalize ()

$canonicalize (<paths>)
$path.canonicalize (<untyped>)

Canonicalize the path (or list of paths) by converting all the directory separators to the canonical
form for the host platform. Note that multiple directory separators are not collapsed.

5.5.17 $path.normalize (), Spath.try_normalize ()

$normalize (<paths>)
$path.normalize (<untyped>)
Stry_normalize (<path>)
$path.try_normalize (<untyped>)

Normalize the path (or list of paths) by collapsing the . and . . components if possible, collaps-
ing multiple directory separators, and converting all the directory separators to the canonical form
for the host platform.

Revision 0.18, July 2025 The build2 Build System 111

5.5.18 $path.actualize(), $path.try_actualize()

If the resulting path would be invalid, the $normalize () version issues diagnostics and fails
while the $try_normalize () version returns null. Note that $try_normalize () only
accepts a single path.

5.5.18 $path.actualize (), Spath.try_actualize()

Sactualize (<paths>)
$path.actualize (<untyped>)
Stry_actualize (<path>)
$path.try_actualize (<untyped>)

Actualize the path (or list of paths) by first normalizing it and then for host platforms with
case-insensitive filesystems obtaining the actual spelling of the path.

Only an absolute path can be actualized. If a path component does not exist, then its (and all
subsequent) spelling is unchanged. Note that this is a potentially expensive operation.

If the resulting path would be invalid or in case of filesystem errors (other than non-existent
component), the Sactualize () version issues diagnostics and fails while the $try_actu-
alize () versionreturns null. Note that $try_actualize () only accepts a single path.

Note that this function is not pure.

5.5.19 $path.size()

$size (<paths>)
$size (<path>)

First form: return the number of elements in the paths sequence.

Second form: return the number of characters (bytes) in the path. Note that for dir_path the
result does not include the trailing directory separator (except for the POSIX root directory).

5.5.20 $path.sort ()

$sort (<paths>[, <flags>])

Sort paths in ascending order. Note that on host platforms with a case-insensitive filesystem the
order is case-insensitive.

The following flags are supported:

dedup - in addition to sorting also remove duplicates

112 The build2 Build System Revision 0.18, July 2025

5.5.21 $path.find()

5.5.21 $path.£find ()

$find (<paths>, <path>)

Return true if the paths sequence contains the specified path. Note that on host platforms with a
case-insensitive filesystem the comparison is case-insensitive.

5.5.22 $path.find_index ()

$find_index (<paths>, <path>)

Return the index of the first element in the paths sequence that is equal to the specified path or
$size (paths) if none is found. Note that on host platforms with a case-insensitive filesystem
the comparison is case-insensitive.

5.5.23 $path.match ()

$path.match (<entry>, <pattern>[, <start-dir>])

Match a filesystem entry name against a name pattern (both are strings), or a filesystem entry
path against a path pattern. For the latter case the start directory may also be required (see below).
The pattern is a shell-like wildcard pattern. The semantics of the pattern and entry argu-
ments is determined according to the following rules:

1. The arguments must be of the string or path types, or be untyped.

2. If one of the arguments is typed, then the other one must be of the same type or be untyped. In
the later case, an untyped argument is converted to the type of the other argument.

3. If both arguments are untyped and the start directory is specified, then the arguments are
converted to the path type.

4. If both arguments are untyped and the start directory is not specified, then, if one of the argu-
ments is syntactically a path (the value contains a directory separator), then they are converted to
the path type, otherwise -- to the string type (match as names).

If pattern and entry paths are both either absolute or relative and not empty, and the first pattern
component is not a self-matching wildcard (doesn’t contain ***), then the start directory is not
required, and is ignored if specified. Otherwise, the start directory must be specified and be an
absolute path.

Revision 0.18, July 2025 The build2 Build System 113

5.6 Name Functions

5.6 Name Functions

The $name.* () function family contains function that operate on target and prerequisite
names. See also the[Starget . * () function family|for functions that operate on actual targets.

5.6.1 $name.name ()

Sname (<names>)

Return the name of a target (or a list of names for a list of targets).

5.6.2 $name .extension ()

Sextension (<name>)
Return the extension of a target.

Note that this function returns null if the extension is unspecified (default) and empty string if
it’s specified as no extension.

5.6.3 $name .directory ()

$directory (<names>)

Return the directory of a target (or a list of directories for a list of targets).
5.6.4 $name .target_type ()

Starget_type (<names>)

Return the target type name of a target (or a list of target type names for a list of targets).

5.6.5 $name .project ()

$Sproject (<name>)

Return the project of a target or null if not project-qualified.

5.6.6 Sname.is_a ()

$is_a(<name>, <target-type>)

Return true if the name’s target type is-a target -t ype. Note that this is a dynamic type check
that takes into account target type inheritance.

114 The build2 Build System Revision 0.18, July 2025

5.7 Target Functions

5.6.7 $name.filter (), $Sname.filter_out ()

$filter (<names>, <target-types>)
$filter_out (<names>, <target-types>)

Return names with target types which are-a (filter) or not are-a (filter_out) one of
target—-types. See $is_a () for background.

5.6.8 $name.size ()

Ssize (<names>)

Return the number of elements in the sequence.
5.6.9 $name. sort ()

$sort (<names>[, <flags>])

Sort names in ascending order.

The following flags are supported:

dedup - in addition to sorting also remove duplicates

5.6.10 Sname . find ()

$find (<names>, <name>)

Return true if the name sequence contains the specified name.

5.6.11 $name. find_index ()

$find_index (<names>, <name>)

Return the index of the first element in the name sequence that is equal to the specified name or
$size (names) if none is found.

5.7 Target Functions

The $target.* () function family contains function that operate on targets. See also the
[Sname. * () function family|for functions that operate on target (and prerequisite) names.

Revision 0.18, July 2025 The build2 Build System 115

5.8 Regex Functions

5.7.1 $target .path ()

$path (<names>)

Return the path of a target (or a list of paths for a list of targets). The path must be assigned,
which normally happens during match. As a result, this function is normally called from a recipe,
but can also be called from a buildfile provided the target has been updated during load.

Note that while this function is technically not pure, we don’t mark it as such since it can only be
called (normally from a recipe) after the target has been matched, meaning that this target is a
prerequisite and therefore this impurity has been accounted for.

5.7.2 $target .process_path ()

$Sprocess_path (<name>)
Return the process path of an executable target.

Note that while this function is not technically pure, we don’t mark it as such for the same
reasons as for Spath () above.

5.8 Regex Functions

The $regex.* () function family contains function that provide comprehensive regular expres-
sion matching and substitution facilities. The supported regular expression flavor is ECMAScript,
more precisely, ECMA-262-based C++11 regular expressions. Note that the match_not_null
flag is in effect unless the string being matched is empty.

In the $Sregex.* () functions the substitution escape sequences in the format string (the fmt
argument) are extended with a subset of the Perl escape sequences: \n, \u, \1, \U, \L, \E, \1
.. \9, and \\. Note that the standard ECMAScript escape sequences ($1, $2, $&, etc) are still
supported.

Note that functions from the $regex.* () family can only be called fully qualified with their
family name. For example:

if $regex.match($name, ' (.+)-(.+)")

5.8.1 $regex.match ()

Sregex.match (<val>, <pat> [, <flags>])

116 The build2 Build System Revision 0.18, July 2025

5.8.2 $regex.find_match()

Match a value of an arbitrary type against the regular expression. Convert the value to string prior
to matching. Return the boolean value unless return_subs flag is specified (see below), in
which case return names (or null if no match).

The following flags are supported:
icase — match ignoring case

return_subs - return names (rather than boolean), that contain
sub-strings that match the marked sub-expressions
and null if no match

5.8.2 $regex.find_match ()

$regex.find_match (<vals>, <pat> [, <flags>])

Match list elements against the regular expression and return true if the match is found. Convert
the elements to strings prior to matching.

The following flags are supported:

icase - match ignoring case

58.3 $regex.filter_match (), $Sregex.filter_out_match()

Sregex.filter_match(<vals>, <pat> [, <flags>])
Sregex.filter_out_match(<vals>, <pat> [, <flags>])

Return elements of a list that match (filter) or do not match (filter_out) the regular
expression. Convert the elements to strings prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.4 $regex.search ()

Sregex.search (<val>, <pat> [, <flags>])

Determine if there is a match between the regular expression and some part of a value of an arbi-
trary type. Convert the value to string prior to searching. Return the boolean value unless
return_match or return_subs flag is specified (see below) in which case return names
(null if no match).

The following flags are supported:

Revision 0.18, July 2025 The build2 Build System 117

5.8.5 $regex.find_search()

icase - match ignoring case

return_match - return names (rather than boolean), that contain a
sub-string that matches the whole regular expression
and null if no match

return_subs - return names (rather than boolean), that contain

sub-strings that match the marked sub-expressions
and null if no match

If both return_match and return_subs flags are specified then the sub-string that matches
the whole regular expression comes first.

See also $string.contains (), $Sstring.starts_with (),
Sstring.ends_with ().

5.8.5 $regex.find_search ()

$regex.find_search(<vals>, <pat> [, <flags>])

Determine if there is a match between the regular expression and some part of any of the list
elements. Convert the elements to strings prior to matching.

The following flags are supported:
icase - match ignoring case

5.8.6 $Sregex.filter_search(),
$regex.filter_out_search()

Sregex.filter_search(<vals>, <pat> [, <flags>])
Sregex.filter_out_search(<vals>, <pat> [, <flags>])

Return elements of a list for which there is a match (filter) or no match (filter_out)
between the regular expression and some part of the element. Convert the elements to strings
prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.7 $regex.replace ()

Sregex.replace (<val>, <pat>, <fmt> [, <flags>])

Replace matched parts in a value of an arbitrary type, using the format string. Convert the value
to string prior to matching. The result value is always untyped, regardless of the argument type.

118 The build2 Build System Revision 0.18, July 2025

5.8.8 $regex.replace_lines()

The following flags are supported:
icase — match ignoring case
format_first_only - only replace the first match

format_no_copy — do not copy unmatched value parts into the
result

If both format_first_only and format_no_copy flags are specified then the result will
only contain the replacement of the first match.

See also Sstring.replace ().

5.8.8 $regex.replace_lines ()

Sregex.replace_lines (<val>, <pat>, <fmt> [, <flags>])

Convert the value to string, parse it into lines and for each line apply the $regex.replace ()
function with the specified pattern, format, and flags. If the format argument is null, omit the
"all-null" replacements for the matched lines from the result. Return unmatched lines and line

replacements as a name list unless return_lines flag is specified (see below), in which case
return a single multi-line simple name value.

The following flags are supported in addition to the $regex.replace () function’s flags:

return_lines - return the simple name (rather than a name list)
containing the unmatched lines and line replacements
separated with newlines.

Note that if format_no_copy is specified, unmatched lines are not copied either.

5.8.9 $regex.split ()

Sregex.split (<val>, <pat>, <fmt> [, <flags>])

Split a value of an arbitrary type into a list of unmatched value parts and replacements of the
matched parts, omitting empty ones (unless the format_copy_empty flag is specified).
Convert the value to string prior to matching.

The following flags are supported:

icase — match ignoring case
format_no_copy — do not copy unmatched value parts into the
result

format_copy_empty - copy empty elements into the result

Revision 0.18, July 2025 The build2 Build System 119

5.8.10 $regex.merge()

5.8.10 $regex.merge ()

$regex.merge (<vals>, <pat>, <fmt> [, <delim> [, <flags>]])

Replace matched parts in a list of elements using the regex format string. Convert the elements to
strings prior to matching. The result value is untyped and contains concatenation of transformed

non-empty elements (unless the format_copy_empty flag is specified) optionally separated
with a delimiter.

The following flags are supported:

icase - match ignoring case

format_first_only - only replace the first match

format_no_copy — do not copy unmatched value parts into the
result

format_copy_empty - copy empty elements into the result

If both format_first_only and format_no_copy flags are specified then the result will
be a concatenation of only the first match replacements.

5.8.11 $regex.apply ()

Sregex.apply (<vals>, <pat>, <fmt> [, <flags>])

Replace matched parts of each element in a list using the regex format string. Convert the
elements to strings prior to matching. Return a list of transformed elements, omitting the empty
ones (unless the format_copy_empty flag is specified).

The following flags are supported:
icase — match ignoring case
format_first_only - only replace the first match

format_no_copy — do not copy unmatched value parts into the
result

format_copy_empty - copy empty elements into the result

If both format_first_only and format_no_copy flags are specified then the result
elements will only contain the replacement of the first match.

120 The build2 Build System Revision 0.18, July 2025

5.9 JSON Functions

5.9 JSON Functions

The $json.* () function family contains function that operate on the JSON types: json,
json_array, and json_object. For example:

J = [json] one@Rl two@abc three@R([json] x@1 y@-1)
for m: $3j

Smember_name ($m)
Smember_value (Sm)

o}
Il

<
Il

info $n $value_type ($v) Sv
}

5.9.1 $json.value_type ()

$value_type (<json>[, <distinguish_numbers>])

Return the type of a JSON value: null, boolean, number, string, array, or object. If
the distinguish_numbers argument is true, then instead of number return signed
number, unsigned number, or hexadecimal number.

5.9.2 $json.value_size()

Svalue_size (<json>)

Return the size of a JSON value.

The size of a null value is 0. The sizes of simple values (boolean, number, and string) is
1. The size of array and object values is the number of elements and members, respectively.

Note that the size of a st ring JSON value is not the length of the string. To get the length call
$string.size () instead by casting the JSON value to the st ring value type.

5.9.3 $json.member_name ()

Smember_name (<json-member>)

Return the name of a JSON object member.

5.9.4 $json.member_value ()

Smember_value (<json-member>)

Return the value of a JSON object member.

Revision 0.18, July 2025 The build2 Build System 121

5.9.5 $json.object_names|()

5.9.5 $json.object_names ()

$Sobject_names (<json-object>)

Return the list of names in the JSON object. If the JSON null is passed instead, assume it is a
missing object and return an empty list.

5.9.6 $json.array_size()
Sarray_size (<json—-array>)

Return the number of elements in the JSON array. If the JSON null value is passed instead,
assume it is a missing array and return 0.

5.9.7 $json.array_£find ()

Sarray_find(<json-array>, <json>)

Return true if the JSON array contains the specified JSON value. If the JSON null value is
passed instead, assume it is a missing array and return false.

598 $json.array_find_index()

Sarray_find_index (<json-array>, <Jjson>)

Return the index of the first element in the JSON array that is equal to the specified JSON value
or Sarray_size (json—array) if none is found. If the JSON null value is passed instead,
assume it is a missing array and return O.

5.9.9 $json.load()

$json.load (<path>)

Parse the contents of the specified file as JSON input text and return the result as a value of the
json type.

See also $json.parse ().

Note that this function is not pure.

5.9.10 $json.parse ()

$json.parse (<text>)

Parse the specified JSON input text and return the result as a value of the json type.

122 The build2 Build System Revision 0.18, July 2025

5.10 Process Functions

See also $json.load () and $json.serialize ().

5.9.11 $json.serialize ()

$serialize (<json>[, <indentation>])
Serialize the specified JSON value and return the resulting JSON output text.

The optional indentation argument specifies the number of indentation spaces that should be
used for pretty-printing. If 0 is passed, then no pretty-printing is performed. The default is 2
spaces.

See also $json.parse ().

5.9.12 $json.size ()

$size (<json-set>)
$size (<json-map>)

Return the number of elements in the sequence.

5.9.13 $json.keys ()

Skeys (<json-map>)
Return the list of keys in a json map as a json array.

Note that the result is sorted in ascending order.

5.10 Process Functions

5.10.1 $process.run ()

Sprocess.run (<prog>[<args>...])
Run builtin or external program and return trimmed stdout output.

Note that if the result of executing the program can be affected by environment variables and this
result can in turn affect the build result, then such variables should be reported with the
config.environment directive.

Note that this function is not pure and can only be called during the load phase.

Revision 0.18, July 2025 The build2 Build System 123

5.11 Filesystem Functions

5.10.2 $process.run_regex ()

Sprocess.run_regex (<prog>[<args>...], <pat>[, <fmt>])

Run builtin or external program and return stdout output lines matched and optionally
processed with a regular expression.

Each line of stdout (including the customary trailing blank) is matched (as a whole) against pat
and, if successful, returned, optionally processed with fmt, as an element of a list. See the
$regex.* () function family for details on regular expressions and format strings.

Note that if the result of executing the program can be affected by environment variables and this
result can in turn affect the build result, then such variables should be reported with the
config.environment directive.

Note that this function is not pure and can only be called during the load phase.

5.11 Filesystem Functions

5.11.1 $filesystem.file_exists|()

Sfile_exists (<path>)

Return true if a filesystem entry at the specified path exists and is a regular file (or is a symlink to
a regular file) and false otherwise.

Note that this function is not pure.

5.11.2 $filesystem.directory_exists ()

$directory_exists (<path>)

Return true if a filesystem entry at the specified path exists and is a directory (or is a symlink to a
directory) and false otherwise.

Note that this function is not pure.

5.11.3 $filesystem.path_search ()

$path_search (<pattern>[, <start-dir>])

Return filesystem paths that match the shell-like wildcard pattern. If the pattern is an absolute
path, then the start directory is ignored (if present). Otherwise, the start directory must be speci-
fied and be absolute.

124 The build2 Build System Revision 0.18, July 2025

5.12 Project Name Functions

Note that this function is not pure.

5.12 Project Name Functions

The S$project_name.* () function family contains function that operate on the
project_name type.

5.12.1 $project_name.string()

$string (<project—-name>)

Return the string representation of a project name. See also the $variable () function below.
5.12.2 $project_name.base ()

$base (<project—-name>[, <extension>])

Return the base part (without the extension) of a project name.

If extension is specified, then only remove that extension. Note that extension should not
include the dot and the comparison is always case-insensitive.

5.12.3 $project_name.extension ()

Sextension (<project—-name>)

Return the extension part (without the dot) of a project name or empty string if there is no exten-
sion.

5.12.4 $project_name.variable ()

Svariable (<project—-name>)

Return the string representation of a project name that is sanitized to be usable as a variable
name. Specifically, ., —, and + are replaced with _.

5.13 Process Path Functions

The S$process_path.* () function family contains function that operate on the
process_path type and its extended process_path_ex variant. These types describe a
path to an executable that, if necessary, has been found in PATH, completed with an extension,
etc. The process_path_ex variant includes additional metadata, such as the stable process
name for diagnostics and the executable checksum for change tracking.

Revision 0.18, July 2025 The build2 Build System 125

5.14 Target Triplet Functions

5.13.1 $process_path.recall ()

$recall (<process-path>)

Return the recall path of an executable, that is, a path that is not necessarily absolute but which
nevertheless can be used to re-run the executable in the current environment. This path, for
example, could be used in diagnostics when printing the failing command line.

5.13.2 $process_path.effect ()

Seffect (<process—-path>)

Return the effective path of an executable, that is, the absolute path to the executable that will
also include any omitted extensions, etc.

5.13.3 $process_path.name ()

$name (<process-path-ex>)

Return the stable process name for diagnostics.

5.13.4 $process_path.checksum/()

$checksum (<process-path-ex>)

Return the executable checksum for change tracking.

5.13.5 $process_path.env_checksum()

$env_checksum (<process-path-ex>)

Return the environment checksum for change tracking.

5.14 Target Triplet Functions

The S$target_triplet.* () function family contains function that operate on the
target_triplet type that represents the ubiquitous cpu-vendor-os target platform
triplet.

5.14.1 $target_triplet.string()

$string(<target-triplet>)

Return the canonical (that is, without the unknown vendor component) target triplet string.

126 The build2 Build System Revision 0.18, July 2025

6 Directives

5.14.2 $target_triplet.representation|()

Srepresentation (<target-triplet>)

Return the complete target triplet string that always contains the vendor component.

6 Directives

This chapter is a work in progress and is incomplete.

6.1 define

define <derived>: <base>

Define a new target type <derived> by inheriting from existing target type <base>. See

for details.

6.2 include

include <file>
include <directory>

Load the specified file (the first form) or buildfile in the specified directory (the second
form). In both cases the file is loaded in the scope corresponding to its directory. Subsequent
inclusions of the same file are automatically ignored. See also

6.3 source

source <file>

Load the specified file in the current scope as if its contents were copied and pasted in place of
the source directive. Note that subsequent sourcing of the same file in the same scope are not

automatically ignored. See also

6.4 update

update <target>...

Update the specified targets during load before continuing evaluating the buildfile. Updating
a target during load is primarily useful when the information it contains is required in the
buildfile itself. For example, we may need to know the target architecture byte-order in order
to decide which source files must be included into the build. And, at least in case of the C/C++
compilation, the only reliable source of this information are the compiler macros. To extract this
information from the compiler and make it available during the buildfile evaluation, we can
generate a buildfile fragment during load and then source it into the main buildfile. For

Revision 0.18, July 2025 The build2 Build System 127

6.4 update

example (see|C Compiler Predefined Macro Extraction| for the actual extraction):

./: buildfile{byte-order} # Make sure it gets cleaned.

buildfile{byte-order}:
{{

diag gen $>

echo ’'little_endian = true’ >$path ($>)
H}

update buildfile{byte-order}
source S$path(buildfile{byte-order})
./: exe{hello}: cxx{hello}

exe{hello}: cxx{hello-big}: include = (!$little_endian)
exe{hello}: cxx{hello-little}: include Slittle_endian

Once a target is updated during load, its path can be queried with the $path () function (or
Sprocess_path (), for executables). The resulting path is normally used to load the informa-
tion contained in the target into the buildfile, for example, using the source directive as in
the above example, using the $json.load () function if the target is a JSON file, or using the
run directive or $process.run* () function if the target is either an executable or the infor-
mation it contains can be extracted using builtin commands such as cat or sed.

Updating targets during load should only be used as a last resort because such updates happen
serially and block further buildfile evaluation until completed. Even during the incremental
build where the target in question is already up-to-date, this check is performed serially during
load whereas it would be performed in parallel with other targets if updated normally.

More precisely, each update directive is processed serially as the buildfile is evaluated.
However, targets specified in each directive (and their prerequisites) are updated in parallel. As
result, if you need to update several targets during load, it is beneficial to do it with a single
update directive if possible.

As a result, if you do need to update certain targets during load, try to make the update (and the
up-to-date check) as fast as possible by limiting the amount of work done during load to the abso-
lute minimum, including limiting the number of prerequisites to only what’s necessary. If a
certain prerequisite, for example, generated config.h, is also used for other purposes and thus
contains more information than what’s needed during load, consider making a smaller version (or
even a static version, if possible) specifically for update during load.

Another reason to avoid update during load unless absolutely necessary is the counter-intuitive
behavior during operations other than update. Since updating such targets is required to
continue evaluating the buildfile, this is performed regardless of the operation requested by
the user, including, for example, during clean. As a result, the user may see targets being
updated in unexpected situations.

128 The build2 Build System Revision 0.18, July 2025

6.4 update

While there is nothing we can do about clean, we can limit update during load to the perform
meta-operation only. This will be especially helpful for the configure meta-operation since
seeing update commands during configuration will be surprising, especially if they are coming
from a third-party dependency.

Limiting update during load to perform is safe to do if the accurate information is only required
during perform and we are able to provide a suitable fallback for other meta-operations. For
example:

./: buildfile{byte-order} # Make sure it gets cleaned.

buildfile{byte-order}:
{{

diag gen $>

echo ’'little_endian = true’ >$path ($>)
+}

if (Sbuild.meta_operation == ’'perform’)
{
update buildfile{byte-order}
source S$path(buildfile{byte-order})
}
else
{
little_endian = true

}

./: exe{hello}: cxx{hello}
exe{hello}: cxx{hello-big}: include = (!$little_endian)
exe{hello}: cxx{hello-little}: include Slittle_endian

One scenario where limiting update during load to per form would not work is if, for example,
we were using the extracted information to set default values of the configuration variables.

A target being updated during load should be defined in the buildfile containing the
update directive and this buildfile should be standalone, that is, it should be possible to
load it on its own. Note also that everything pertaining to updating the target (prerequisites,
options, recipes/rules, etc) should be in effect before the update directive since the target will
be updated without evaluating the rest of the buildfile.

The update during load mechanism also has a number of restrictions and limitations:

® [t cannot be used in bootstrap.build (but can be used in root .build).

® Targets (and their prerequisites) that are updated during load should not be aliases
(alias{}, including dir{}).

® Post hoc prerequisites will not yet be updated after the update directive.

Revision 0.18, July 2025 The build2 Build System 129

7 Attributes

7 Attributes

This chapter is a work in progress and is incomplete.

The only currently recognized target attribute is rule_hint which specifies the rule hint. Rule
hints can be used to resolve ambiguity when multiple rules match the same target as well as to
override an unambiguous match. For example, the following rule hint makes sure our executable
is linked with the C++ compiler even though it only has C sources:

[rule_hint=cxx] exe{hello}: c{hello}

8 Name Patterns

For convenience, in certain contexts, names can be generated with shell-like wildcard patterns. A
name is a name pattern if its value contains one or more unquoted wildcard characters or charac-
ter sequences. For example:

ARV # All (immediate) subdirectories
exe{hello}: {hxx cxx}{**} # All C++ header/source files.
pattern = ’*._.txt’ # Literal "*.txt’.

Pattern-based name generation is not performed in certain contexts. Specifically, it is not
performed in target names where it is interpreted as a pattern for target type/pattern-specific vari-
able assignments. For example.

s = *.txt # Variable assignment (performed).
./ oexx{*} # Prerequisite names (performed).
cxx{*}: dist = false # Target pattern (not performed).

In contexts where it is performed, it can be inhibited with quoting, for example:

pat = ’foo*bar’
./: cxx{’ foo*bar’}

The following wildcards are recognized:

* - match any number of characters (including zero)
? - match any single character
[...] — match a character with a bracket expression

Currently only literal character and range bracket expressions are supported. Specifically, no
character or equivalence classes, etc., are supported nor the special characters backslash-escaping.
See the "Pattern Matching Notation" section in the POSIX "Shell Command Language" specifica-
tion for details.

130 The build2 Build System Revision 0.18, July 2025

8 Name Patterns

Note that some wildcard characters may have special meaning in certain contexts. For instance, [
at the beginning of a value will be interpreted as the start of the attribute list while ? and [in the
eval context are part of the ternary operator and value subscript, respectively. In such cases the
character will need to be escaped in order to be treated as a wildcard, for example:

X \[1-9]-foo.txt
y (foo.\?xx)
z = ($foo\[123].txt)

If a pattern ends with a directory separator, then it only matches directories. Otherwise, it only
matches files. Matches that start with a dot (.) are automatically ignored unless the pattern itself
also starts with this character.

In addition to the above wildcards, ** and ** * are recognized as wildcard sequences. If a pattern
contains **, then it is matched just like * but in all the subdirectories, recursively, but excluding
directories that contain the .buildignore file. The *** wildcard behaves like ** but also
matches the start directory itself. For example:

exe{hello}: cxx{**} # All C++ source files recursively.

A group-enclosed ({ }) pattern value may be followed by inclusion/exclusion patterns/matches. A
subsequent value is treated as an inclusion or exclusion if it starts with a literal, unquoted plus (+)
or minus (—) sign, respectively. In this case the remaining group values, if any, must all be inclu-
sions or exclusions. If the second value doesn’t start with a plus or minus, then all the group
values are considered independent with leading pluses and minuses not having any special
meaning. For regularity as well as to allow patterns without wildcards, the first pattern can also
start with the plus sign. For example:

Exclude foo if exists.

Include bar if exists.

Exclude foo and fox if exist.
Exclude foo and bar if exist.
Same as above.

Pattern without wildcards.
Names matching three patterns.

exe{hello}: cxx{f* —-foo}
exe{hello}: cxx{f* +bar}
exe{hello}: cxx{f* —-fo?}
exe{hello}: cxx{f* +b* -foo -bar}
exe{hello}: cxx{+f* +b* —-foo -bar}
exe{hello}: cxx{+foo}

exe{hello}: cxx{f* b* —-z*}

e o

Inclusions and exclusions are applied in the order specified and only to the result produced up to
that point. The order of names in the result is unspecified. However, it is guaranteed not to
contain duplicates. The first pattern and the following inclusions/exclusions must be consistent
with regards to the type of filesystem entry they match. That is, they should all match either files
or directories. For example:

exe{hello}: cxx{f* —foo +*oo} # Exclusion has no effect.
exe{hello}: cxx{f* +*o00} # Ok, no duplicates.
./ {*/ —-build} # Error: exclusion not a directory.

Revision 0.18, July 2025 The build2 Build System 131

8 Name Patterns

As a more realistic example, let’s say we want to exclude source files that reside in the test/
directories (and their subdirectories) anywhere in the tree. This can be achieved with the follow-
ing pattern:

exe{hello}: cxx{** —***/test/**}

Similarly, if we wanted to exclude all source files that have the —test suffix:

exe{hello}: cxx{** —-**-test}

In contrast, the following pattern only excludes such files from the top directory:

exe{hello}: cxx{** —-*-test}

If many inclusions or exclusions need to be specified, then an inclusion/exclusion group can be
used. For example:

exe{hello}: cxx{f* —-{foo bar}}
exe{hello}: cxx{+{f* b*} —{foo bar}}

This is particularly useful if you would like to list the names to include or exclude in a variable.
For example, this is how we can exclude certain files from compilation but still include them as
ordinary file prerequisites (so that they are still included into the source distribution):

exc = foo.cxx bar.cxx
exe{hello}: cxx{+{f* b*} —{Sexc}} file{S$exc}

If we want to specify our pattern in a variable, then we have to use the explicit inclusion syntax,
for example:

pat = 1 fx/
exe{hello}: cxx{+$pat} # Pattern match.
exe{hello}: cxx{$pat} # Literal ’f*’.

pat = "+£*’
exe{hello}: cxx{$pat} # Literal ’'+f*’.

inc = "£*7 rpx’
exc = "f*o’ '"b*r’
exe{hello}: cxx{+{$inc} —-{Sexc}}

One common situation that calls for exclusions is auto-generated source code. Let’s say we have
auto-generated command line parser in options.hxx and options.cxx. Because of the
in/out of source builds, our name pattern may or may not find these files. Note, however, that we
cannot just include them as non-pattern prerequisites. We also have to exclude them from the
pattern match since otherwise we may end up with duplicate prerequisites. As a result, this is how
we have to handle this case provided we want to continue using patterns to find other, non-gener-
ated source files:

132 The build2 Build System Revision 0.18, July 2025

8 Name Patterns

exe{hello}: {hxx cxx}{* -options} {hxx cxx}{options}

If all our auto-generated source files have a common prefix or suffix, then we can exclude them
wholesale with a pattern. For example, if all our generated files end with the ‘-options* suffix:

exe{hello}: {hxx cxx}{** —**-options} {hxx cxx}{foo-options bar-options}

If the name pattern includes an absolute directory, then the pattern match is performed in that
directory and the generated names include absolute directories as well. Otherwise, the pattern
match is performed in the pattern base directory. In buildfiles this is src_base while on the
command line — the current working directory. In this case the generated names are relative to the
base directory. For example, assuming we have the foo.cxx and b/bar.cxx source files:

exe{hello}: $src_base/cxx{**} # Ssrc_base/cxx{foo} $src_base/b/cxx{bar}
exe{hello}: cxx{**} # cxx{foo} b/cxx{bar}

Pattern matching as well as inclusion/exclusion logic is target type-specific. If the name pattern
does not contain a type, then the dir{} type is assumed if the pattern ends with a directory sepa-
rator and £ile{} otherwise.

For the dir{} target type the trailing directory separator is added to the pattern and all the inclu-
sion/exclusion patterns/matches that do not already end with one. Then the filesystem search is
performed for matching directories. For example:

./: dir{* -build} # Search for */, exclude build/.

For the file{} and file{ }-based target types the default extension (if any) is added to the
pattern and all the inclusion/exclusion patterns/matches that do not already contain an extension.
Then the filesystem search is performed for matching files.

For example, the cxx { } target type obtains the default extension from the extension variable
(see for background). Assuming we have the following line in our root .build:

cxx{*}: extension = cxx
And the following in our buildfile:
exe{hello}: {cxx}{* —-foo -bar.cxx}

The pattern match will first search for all the files matching the *.cxx pattern in src_base
and then exclude foo.cxx and bar.cxx from the result. Note also that target type-specific
decorations are removed from the result. So in the above example if the pattern match produces
baz.cxx, then the prerequisite name is cxx {baz}, not cxx{baz.cxx}.

Revision 0.18, July 2025 The build2 Build System 133

9 config Module

If the name generation cannot be performed because the base directory is unknown, target type is
unknown, or the target type is not directory or file-based, then the name pattern is returned as is
(that is, as an ordinary name). Project-qualified names are never considered to be patterns.

9 config Module

This chapter is a work in progress and is incomplete.

9.1 Hermetic Build Configurations

Hermetic build configurations save environment variables that affect the project along with other
project configuration in the build/config.build file. These saved environment variables
are then used instead of the current environment when performing operations on the project, thus
making sure the project "sees" exactly the same environment as during configuration.

While currently hermetic configurations only deal with the environment, in the future this func-
tionality may be extended to also support disallowing changes to external resources (compilers,
system headers and libraries, etc).

To create a hermetic configuration we use the config.config.hermetic configuration
variable. For example:

$ b configure config.config.hermetic=true

Hermetic configurations are not the default because they are not without drawbacks. Firstly, a
hermetic configuration may break if the saved environment becomes incompatible with the rest of
the system. For example, you may re-install an external program (say, a compiler) into a different
location and update your PATH to match the new setup. However, a hermetic configuration will
"see" the first change but not the second.

Another issue is the commands printed during a hermetic build: they are executed in the saved
environment which may not match the environment in which the build system was invoked. As a
result, we cannot easily re-execute such commands, which is often handy during build trou-
bleshooting.

It is also important to keep in mind that a non-hermetic build configuration does not break or
produce incorrect results if the environment changes. Instead, changes to the environment are
detected and affected targets are automatically rebuilt.

The two use-cases where hermetic configurations are especially useful are when we need to save
an environment which is not generally available (for example, an environment of a Visual Studio
development command prompt) or when our build results need to exactly match the specific
configuration (for example, because parts of the overall result have already been built and

134 The build2 Build System Revision 0.18, July 2025

9.1 Hermetic Build Configurations

installed, as is the case with build system modules).

If we now examine config.build, we will see something along these lines:
$ cat build/config.build

config.config.hermetic = true
config.config.environment = CPATH CPLUS_INCLUDE_PATH PATH=...

Hermetic configuration support is built on top of the low-level config.config.environ-
ment configuration variable which allows us to specify custom environment variables and their
values. Specifically, it contains a list of environment variable "sets" (name=value) and "unsets"
(name). For example:

$ b configure \
config.config.environment="PATH=/bin:/usr/bin LD_LIBRARY_PATH"

Specifying config.config.hermetic=true simply instructs the config module to
collect and save in config.config.environment environment variables that affect the
project. These include:

® built-in variables (such as PATH and LD_LIBRARY_PATH or equivalent),

® variables that affect external programs as reported by build system modules (such as
CPLUS_INCLUDE_PATH reported by the cxx module) or by imported programs via meta-
data,

® variables reported by the project itself with the config.environment directive
(discussed below).

Reconfiguring a hermetic configuration preserves the saved environment unless re-hermetization
is explicitly requested with the config.config.hermetic.reload configuration vari-
able. For example:

$ b configure config.config.hermetic.reload=true

Note that config.config.hermetic.reload is transient and is not stored in
config.build. In other words, there is no way to create a hermetic configuration that is
re-hermetized by default during reconfiguration.

To de-hermetize a hermetic build configuration, reconfigure it with
config.config.hermetic=false.

The config.config.hermetic variable has essentially a tri-state value: t rue means keep
hermetized (save the environment in config.config.environment), false means keep
de-hermetized (clear config.config.environment) and null or undefined means don’t
touch config.config.environment.

Revision 0.18, July 2025 The build2 Build System 135

9.1 Hermetic Build Configurations

We can adjust the set of environment variables saved in a hermetic configuration using the
config.config.hermetic.environment configuration variable. It contains a list of
inclusions (name) and exclusions (name@false) which are applied to the final set of environ-
ment variables that affect the project. For example:

LC_ALL=C b configure \
config.config.hermetic=true \
config.config.hermetic.environment="LC_ALL PATH@false"

Typically, the set of environment variables that affect the project is discovered automatically.
Specifically, modules that we use (such as cxx) are expected to report the environment variables
that affect the programs they invoke (such as the C++ compiler). Similarly, programs that we
import in our buildfiles (for example to use in ad hoc recipes) are expected to report envi-
ronment variables that affect them as part of their metadata.

However, there are situations where we need to report an environment variable manually. These
include calling the $getenv () function from a buildfile or invoking a program (either in
an ad hoc recipe, the run directive, or the $run* () function family) that either does not
provide the metadata or does not report the environment as part of it. In such cases we should
report the environment variable manually using the config.environment directive. For
example:

config.environment USE_FOO
foo = $getenv (USE_FO00)

if ($foo != [null])
cxxX.poptions += "-DUSE_F00=$foo"

Additionally, if invoking a program in an ad hoc recipe that either does not provide the metadata
or does not report the environment as part of it, then we additionally should track the changes to
the relevant environment variables manually using the depdb env builtin. For example:

import! foo = foo%exe{foo} # Uses FOO and BAR environment variables.
config.environment FOO BAR

file{output}: file{input} $foo
{{

diag foo $>

depdb env FOO BAR

$foo $path($<[0]) >$path ($>)
}}

Normally, we would want to report variables that affect the build result rather than build byprod-
ucts (for example, diagnostics). This is, for example, the reason why locale-related environment
variables are not saved by default. Also, sometime environment variables only affect certain
modes of a program. If such modes are not used, then there is no need to report the corresponding
variables.

136 The build2 Build System Revision 0.18, July 2025

10 test Module

10 test Module

This chapter is a work in progress and is incomplete.

The targets to be tested as well as the tests/groups from testscripts to be run can be narrowed
down using the config.test variable. While this value is normally specified as a command
line override (for example, to quickly re-run a previously failed test), it can also be persisted in
config.build in order to create a configuration that will only run a subset of tests by default.
For example:

$ b test config.test=foo/exe{driver} # Only test foo/exe{driver} target.
$ b test config.test=bar/baz # Only run bar/baz testscript test.

The config.test variable contains a list of @-separated pairs with the left hand side being the
target and the right hand side being the testscript id path. Either can be omitted (along with @). If
the value contains a target type or ends with a directory separator, then it is treated as a target
name. Otherwise — an id path. The targets are resolved relative to the root scope where the
config.test value is set. For example:

$ b test config.test=foo/exe{driver}@bar

To specify multiple id paths for the same target we can use the pair generation syntax:

$ b test config.test=foo/exe{driver}@{bar baz}

If no targets are specified (only id paths), then all the targets are tested (with the testscript tests to
be run limited to the specified id paths). If no id paths are specified (only targets), then all the
testscript tests are run (with the targets to be tested limited to the specified targets). An id path
without a target applies to all the targets being considered.

A directory target without an explicit target type (for example, foo/) is treated specially. It
enables all the tests at and under its directory. This special treatment can be inhibited by specify-
ing the target type explicitly (for example, dir{foo/}).

The test execution time can be limited using the config.test.timeout variable. Its value
has the <operation-timeout>/<test-timeout> form where the timeouts are specified
in seconds and either of them (but not both) can be omitted. The left hand side sets the timeout
for the whole test operation and the right hand side — for individual tests. The zero value clears
the previously set timeout. For example:

$ b test config.test.timeout=20 # Test operation.
$ b test config.test.timeout=20/5 # Test operation and individual tests.
$ b test config.test.timeout=/5 # Individual tests.

Revision 0.18, July 2025 The build2 Build System 137

11 install Module

The test timeout can be specified on multiple nested root scopes. For example, we can specify a
greater timeout for the entire build configuration and lesser ones for individual projects. The tests
must complete before the nearest of the enclosing scope timeouts. Failed that, the timed out tests
are terminated forcibly causing the entire test operation to fail. See also the t imeout builtin
for specifying timeouts from within the tests and test groups.

The programs being tested can be executed via a runner program by specifying the
config.test.runner variable. Its value has the <path> [<options>] form. For
example:

$ b test config.test.runner="valgrind -gq"

When the runner program is specified, commands of simple and Testscript tests are automatically
adjusted so that the runner program is executed instead, with the test command passed to it as
arguments. For ad hoc test recipes, the runner program has to be handled explicitly. Specifically,
if config.test.runner is specified, the test . runner.path and
test.runner.options variables contain the runner program path and options, respectively,
and are set to null otherwise. These variables can be used by ad hoc recipes to detect the pres-
ence of the runner program and, if so, arrange appropriate execution of desired commands. For
example:

exe{hello}:
% test

{{
diag test $>
cmd = ($test.runner.path == [null] \
? 5>\
: Stest.runner.path S$Stest.runner.options $path($>))

$cmd ‘World’ >>>?'Hello, World!’
+}

11 install Module

This chapter is a work in progress and is incomplete.
The install module provides support for installing and uninstalling projects.

As briefly discussed in the section of the Introduction, the install module defines
the following standard installation locations:

name default config.install.*
(c.i1.*) override

root c.i.root

data_root root/ c.i.data_root

138 The build2 Build System Revision 0.18, July 2025

11 install Module

exec_root root/ c.i.exec_root
bin exec_root/bin/ c.i.bin

sbin exec_root/sbin/ c.i.sbin

1lib exec_root/lib/<private>/ c.i.lib
libexec exec_root/libexec/<private>/<project>/ c.i.libexec
pkgconfig lib/pkgconfig/ c.i.pkgconfig
etc data_root/etc/ c.i.etc
include data_root/include/<private>/ c.i.include
include_arch include/ c.i.include_arch
share data_root/share/ c.i.share
data share/<private>/<project>/ c.i.data
buildfile share/build2/export/<project>/ c.i.buildfile
doc share/doc/<private>/<project>/ c.i.doc

legal doc/ c.i.legal

man share/man/ c.i.man
man<N> man/man<N>/ c.1.man<N>

The include_arch location is meant for architecture-specific files, such as configuration
headers. By default it’s the same as include but can be configured by the user to a different
value (for example, /usr/include/x86_64-1inux-gnu/) for platforms that support
multiple architectures from the same installation location. This is how one would normally use it
fromabuildfile:

The configuration header may contain target architecture-specific
information so install it into include_arch/ instead of include/.
#

h{*}: install
h{config}: install

include/libhello/
include_arch/libhello/

The buildfile location is meant for exported buildfiles that can be imported by other projects.
If a project contains any **.build buildfiles in its build/export/ directory (or
** . pbuild2 and build2/export/ in the alternative naming scheme), then they are automat-
ically installed into this location (recreating subdirectories).

The <project>, <version>, and <private> substitutions in these config.install.*
values are replaced with the project name, version, and private subdirectory, respectively. If
either is empty, then the corresponding directory component is ignored.

The optional private installation subdirectory (<private>) mechanism can be used to hide the
implementation details of a project. This is primarily useful when installing an executable that
depends on a bunch of libraries into a shared location, such as /usr/local/. By hiding the
libraries in the private subdirectory we can make sure that they will not interfere with anything
that is already installed into such a shared location by the user and that any further such installa-
tions won’t interfere with our executable.

Revision 0.18, July 2025 The build2 Build System 139

11.1 Relocatable Installation

The private installation subdirectory is specified with the config.install.private vari-
able. Its value must be a relative directory and may include multiple components. For example:

$ b install \
config.install.root=/usr/local/ \
config.install.private=hello/

If you are relying on your system’s dynamic linker defaults to automatically find shared libraries
that are installed with your executable, then adding the private installation subdirectory will most
definitely cause this to stop working. The recommended way to resolve this problem is to use
rpath, for example:

$ b install \
config.install.root=/usr/local/ \
config.install.private=hello/ \
config.bin.rpath=/usr/local/lib/hello/

11.1 Relocatable Installation

A relocatable installation can be moved to a directory other than its original installation location.
Note that the installation should be moved as a whole preserving the directory structure under its
root (config.install.root). To request a relocatable installation, set the
config.install.relocatable variable to t rue. For example:

$ b install \
config.install.root=/tmp/install \
config.install.relocatable=true

A relocatable installation is achieved by using paths relative to one filesystem entry within the
installation to locate another. Some examples include:

® Paths specified in config.bin.rpath are made relative using the SORIGIN (Linux,
BSD) or @loader_path (Mac OS) mechanisms.

® Paths in the generated pkg-config files are made relative to the ${pcfiledir}
built-in variable.

® Paths in the generated installation manifest (config.install.manifest) are made
relative to the location of the manifest file.

While these common aspects are handled automatically, if a projects relies on knowing its instal-
lation location, then it will most likely need to add manual support for relocatable installations.

As an example, consider an executable that supports loading plugins and requires the plugin
installation directory to be embedded into the executable during the build. The common way to
support relocatable installations for such cases is to embed a path relative to the executable and
complete it at runtime, normally by resolving the executable’s path and using its directory as a
base.

140 The build2 Build System Revision 0.18, July 2025

11.2 Installation Filtering

If you would like to always use the relative path, regardless of whether the installation is relocat-
able of not, then you can obtain the library installation directory relative to the executable instal-
lation directory like this:

plugin_dir = $install.resolve($install.lib, $install.bin)

Alternatively, if you would like to continue using absolute paths for non-relocatable installations,
then you can use something like this:

plugin_dir = $install.resolve(\
$install.lib, \
($install.relocatable ? $install.bin : [dir_path]))

Finally, if you are unable to support relocatable installations, the correct way to handle this is to
assert this fact in root .build of your project, for example:

assert (!$install.relocatable) ’'relocatable installation not supported’

11.2 Installation Filtering

While project authors determine what gets installed at the buildfile level, the users of the
project can further filter the installation using the config.install.filter variable.

The value of this variable is a list of key-value pairs that specify the filesystem entries to include
or exclude from the installation. For example, the following filters will omit installing headers
and static libraries (notice the quoting of the wildcard).

$ b install config.install.filter=’include/Q@false "*.a"Q@false’

The key in each pair is a file or directory path or a path wildcard pattern. If a key is relative and
contains a directory component or is a directory, then it is treated relative to the corresponding
config.install.* location. Otherwise (simple path, normally a pattern), it is matched
against the leaf of any path. Note that if an absolute path is specified, it should be without the
config.install.chroot prefix.

The value in each pair is either t rue (include) or false (exclude). The filters are evaluated in
the order specified and the first match that is found determines the outcome. If no match is found,
the default is to include. For a directory, while false means exclude all the sub-paths inside this
directory, true does not mean that all the sub-paths will be included wholesale. Rather, the
matched component of the sub-path is treated as included with the rest of the components
matched against the following sub-filters. For example:

$ b install config.install.filter=’'
include/x86_64-1inux—gnu/Q@true
include/x86_64-1linux—-gnu/details/@false
include/@false’

Revision 0.18, July 2025 The build2 Build System 141

12 version Module

The true or false value may be followed by comma and the sym1ink modifier to only apply
to symlink filesystem entries. For example:

$ b config.install.filter=""*.so"@false,symlink’

A filter can be negated by specifying ! as the first pair. For example:

$ b install config.install.filter=’! include/Q@false "*.a"Q@false’

Note that the filtering mechanism only affects what gets physically copied to the installation
directory without affecting what gets built for install or the view of what gets installed at the
buildfile level. For example, given the include/@false *.a@false filters, static
libraries will still be built (unless arranged not to with config.bin.lib) and the
pkg-config files will still end up with —I options pointing to the header installation directory.
Note also that this mechanism applies to both install and uninstall operations.

If you are familiar with the Debian or Fedora packaging, this mechanism is somewhat similar to
(and can be used for a similar purpose as) the Debian’s . install files and Fedora’s $files
spec file sections, which are used to split the installation into multiple binary packages.

As another example, the following filters will omit all the development-related files (headers,
pkg-config files, static libraries, and shared library symlinks; assuming the platform uses the
.al. so extensions for the libraries):

$ b install config.install.filter=’'
include/Qfalse
pkgconfig/Q@false
"lib/*.a"Qfalse
"lib/*.so"@false, symlink’

12 version Module

A project can use any version format as long as it meets the package version requirements. The
toolchain also provides additional functionality for managing projects that conform to the
build2 standard version format. If you are starting a new project that uses build2, you are
strongly encouraged to use this versioning scheme. It is based on much thought and, often
painful, experience. If you decide not to follow this advice, you are essentially on your own
where version management is concerned.

The standard build2 project version conforms to [Semantic Versioning| and has the following
form:

<major>.<minor>.<patch>[-<prerel>]

142 The build2 Build System Revision 0.18, July 2025

http://semver.org/

12 version Module

For example:

N =
NN N

.2.3

.2.3-a.l

.2.3-b.2

The build2 package version that uses the standard project version will then have the following
form (epoch is the versioning scheme version and revision is the package revision):

[+<epoch>-]<major>.<minor>.<patch>[-<prerel>] [+<revision>]

For example:

1.2.3
1.2.3+1
+2-1.2.3-a.1+2

The major, minor, and patch should be numeric values between 0 and 99999 and all three
cannot be zero at the same time. For initial development it is recommended to use 0 for major,
start with version 0.1 .0, and change to 1. 0. 0 once things stabilize.

In the context of C and C++ (or other compiled languages), you should increment patch when
making binary-compatible changes, minor when making source-compatible changes, and major
when making breaking changes. While the binary compatibility must be set in stone, the source
compatibility rules can sometimes be bent. For example, you may decide to make a breaking
change in a rarely used interface as part of a minor release (though this is probably still a bad idea
if your library is widely depended upon). Note also that in the context of C++ deciding whether a
change is binary-compatible is a non-trivial task. There are resources that list the rules but no
automated tooling yet. If unsure, increment minor.

If present, the prerel component signifies a pre-release. Two types of pre-releases are supported
by the standard versioning scheme: final and snapshot (non-pre-release versions are naturally
always final). For final pre-releases the prerel component has the following form:

(a|b).<num>
For example:
1.2.3-a.1
1.2.3-b.2

The letter "a’ signifies an alpha release and 'b’ — beta. The alpha/beta numbers (num) should be
between 1 and 499.

Note that there is no support for release candidates. Instead, it is recommended that you use
later-stage beta releases for this purpose (and, if you wish, call them "release candidates" in
announcements, etc).

Revision 0.18, July 2025 The build2 Build System 143

12 version Module

What version should be used during development? The common approach is to increment to the
next version and use that until the release. This has one major drawback: if we publish intermedi-
ate snapshots (for example, for testing) they will all be indistinguishable both between each other
and, even worse, from the final release. One way to remedy this is to increment the pre-release
number before each publication. However, unless automated, this will be burdensome and
error-prone. Also, there is a real possibility of running out of version numbers if, for example, we
do continuous integration by publishing and testing each commit.

To address this, the standard versioning scheme supports snapshot pre-releases with the prerel
component having the following extended form:

(a | b) .<num>.<snapsn>[.<snapid>]

For example:

1.2.3-a2.1.20180319215815.26efe301f4a7

In essence, a snapshot pre-release is after the previous final release but before the next (a. 1 and,
perhaps, a. 2 in the above example) and is uniquely identified by the snapshot sequence number
(snapsn) and optional snapshot id (snapid).

The num component has the same semantics as in the final pre-releases except that it can be 0.
The snapsn component should be either the special value ’z’ or a numeric, non-zero value that
increases for each subsequent snapshot. It must not be longer than 16 decimal digits. The snapid
component, if present, should be an alpha-numeric value that uniquely identifies the snapshot. It
is not required for version comparison (snapsn should be sufficient) and is included for reference.
It must not be longer than 16 characters.

Where do the snapshot number and id come from? Normally from the version control system. For
example, for git, snapsn is the commit date in the YYYYMMDDhhmmss form and UTC time-
zone and snapid is a 12-character abbreviated commit id. As discussed below, the build2
version module extracts and manages all this information automatically (but the use of git
commit dates is not without limitations; see below for details).

The special 'z’ snapsn value identifies the latest or uncommitted snapshot. It is chosen to be
greater than any other possible snapsn value and its use is discussed further below.

As an illustration of this approach, let’s examine how versions change during the lifetime of a
project:

0.1.0-a.0.z # development after a.o0
0.1.0-a.l1 # pre-release
0.1.0-a.l.z # development after a.l
0.1.0-a.2 # pre-release
0.1.0-a.2.z # development after a.2
0.1.0-b.1 # pre-release
0.1.0-b.1.z # development after b.1l

144 The build2 Build System Revision 0.18, July 2025

12 version Module

0.1.0 # release

0.1.1-b.0.z # development after b.0 (bugfix)
0.2.0-a.0.z # development after a.o0

0.1.1 # release (bugfix)

1.0.0 # release (jumped straight to 1.0.0)

As shown in the above example, there is nothing wrong with "jumping" to a further version (for
example, from alpha to beta, or from beta to release, or even from alpha to release). We cannot,
however, jump backwards (for example, from beta back to alpha). As a result, a sensible strategy
is to start with a . O since it can always be upgraded (but not downgraded) at a later stage.

When it comes to the version control systems, the recommended workflow is as follows: The
change to the final version should be the last commit in the (pre-)release. It is also a good idea to
tag this commit with the project version. A commit immediately after that should change the
version to a snapshot, "opening" the repository for development.

The project version without the snapshot part can be represented as a 64-bit decimal value
comparable as integers (for example, in preprocessor directives). The integer representation has
the following form:

AAAAABBBBBCCCCCDDDE

AAAAA — major
BBBBB — minor
CCCCC - patch
DDD - alpha / beta (DDD + 500)
E - final (0) / snapshot (1)

If the DDDE value is not zero, then it signifies a pre-release. In this case one is subtracted from
the AAAAABBBBBCCCCC value. An alpha number is stored in DDD as is while beta — incre-
mented by 500. If E is 1, then this is a snapshot after DDD.

For example:

AAAAABBBBBCCCCCDDDE
0.1.0 0000000001000000000
0.1.2 0000000001000020000
1.2.3 0000100002000030000
2.2.0-a.1 0000200001999990010
3.0.0-b.2 0000299999999995020
2.2.0-a.1l.z 0000200001999990011

A project that uses standard versioning can rely on the build2 version module to simplify
and automate version managements. The version module has two primary functions: eliminate
the need to change the version anywhere except in the project’s manifest file and automatically
extract and propagate the snapshot information (sequence number and id).

Revision 0.18, July 2025 The build2 Build System 145

12 version Module

The version module must be loaded in the project’s bootstrap.build. While being
loaded, it reads the project’s manifest and extracts its version (which must be in the standard
form).

Another function of the version module is to check the build2 version requirement that is
customarily specified in the manifest. This check is also the reason why we normally load the
version module in subprojects, such as tests/, which don’t have their own manifest file. In
this case the version module loads the amalgamating project’s manifest.

The extracted version is parsed and presented as the following build system variables (which can
be used in the buildfiles):

[string] wversion # +2-1.2.3-b.4.1234567.deadbeef+3
[string] version.project # 1.2.3-b.4.1234567.deadbeef
[uint64] version.project_number # 0000100002000025041

[string] version.project_id # 1.2.3-b.4.deadbeef

[bool] version.stub # false (true for O[+<revision>])
[uint64] version.epoch # 2

[uint64] version.major # 1

[uint64] version.minor # 2

[uint64] version.patch # 3

[bool] version.alpha # false

[bool] version.beta # true

[bool] version.pre_release # true

[string] version.pre_release_string # b.4

[uint64] version.pre_release_number # 4

[bool] version.snapshot # true

[uint64] version.snapshot_sn # 1234567

[string] version.snapshot_id # deadbeef

[string] version.snapshot_string # 1234567 .deadbeef

[bool] version.snapshot_committed # true

[uint64] version.revision # 3

As a convenience, the version module also extracts the summary and url manifest values
and sets them as the following build system variables (this additional information is used, for
example, when generating the pkg—config files):

[string] project.summary
[string] project.url

If the version is the latest snapshot (that is, it’s in the .z form), then the version module
extracts the snapshot information from the version control system used by the project. Currently
only git is supported with the following semantics.

146 The build2 Build System Revision 0.18, July 2025

12 version Module

If the project’s source directory (src_root) is clean (that is, it does not have any changed or
untracked files), then the HEAD commit date and id are used as the snapshot number and id,
respectively.

Otherwise (that is, the project is between commits), the HEAD commit date is incremented by one
second and is used as the snapshot number with no id. While we can work with such uncommit-
ted snapshots locally, we should not distribute or publish them since they are indistinguishable
from each other.

Finally, if the project does not have HEAD (that is, the project has no commits yet), the special
19700101000000 (UNIX epoch) commit date is used.

The use of git commit dates for snapshot ordering has its limitations: they have one second
resolution which means it is possible to create two commits with the same date (but not the same
commit id and thus snapshot id). We also need all the committers to have a reasonably accurate
clock. Note, however, that in case of a commit date clash/ordering issue, we still end up with
distinct versions (because of the commit id) — they are just not ordered correctly. As a result, we
feel that the risks are justified when the only alternative is manual version management (which is
always an option, nevertheless).

When we prepare a source distribution of a snapshot, the version module automatically adjusts
the package name to include the snapshot information as well as patches the manifest file in the
distribution with the snapshot number and id (that is, replacing . z in the version value with the
actual snapshot information). The result is a package that is specific to this commit.

Besides extracting the version information and making it available as individual components, the
version module also provides rules for installing the manifest file as well as automatically
generating version headers (or other similar version-based files).

By default the project’s manifest file is installed as documentation, just like other doc({}
targets (thus replacing the version file customarily shipped in the project root directory). The
manifest installation rule in the version module in addition patches the installed manifest file
with the actual snapshot number and id, just like during the preparation of distributions.

The version header rule is based on the module rule and can be used to preprocess a template
file with version information. While it is usually used to generate C/C++ version headers (thus
the name), it can really generate any kind of files.

The rule matches a file-based target that has the corresponding in prerequisite and also
depends on the project’s manifest file. As an example, let’s assume we want to auto-generate
a header called version.hxx for our 1ibhello library. To accomplish this we add the
version.hxx.in template as well as something along these lines to our buildfile:

Revision 0.18, July 2025 The build2 Build System 147

12 version Module

lib{hello}: {hxx cxx}{** —-version} hxx{version}

hxx{version}: in{version} $src_root/file{manifest}

The header rule is a line-based preprocessor that substitutes fragments enclosed between (and
including) a pair of dollar signs ($) with $$ being the escape sequence (see the module for
details). As an example, let’s assume our version.hxx.in contains the following lines:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION $libhello.version.project_number$ULL
#define LIBHELLO_VERSION_STR "$libhello.version.project$"

#endif

If our 1ibhellois at version 1. 2. 3, then the generated version.hxx will look like this:
#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION 100002000030000ULL
#define LIBHELLO_VERSION_STR "1.2.3"

#endif

The first component after the opening $ should be either the name of the project itself (like
libhello above) or a name of one of its dependencies as listed in the manifest. If it is the
project itself, then the rest can refer to one of the version. * variables that we discussed earlier
(in reality it can be any variable visible from the project’s root scope).

If the name refers to one of the dependencies (that is, projects listed with depends : in the mani-
fest), then the following special substitutions are recognized:

$<name>.version$ - textual version constraint
$<name>.condition (K<VERSION> [, <SNAPSHOT>])$ - numeric satisfaction condition
$<name>.check (K<VERSION> [, <SNAPSHOT>]) $ — numeric satisfaction check

Here VERSION is the version number macro and the optional SNAPSHOT is the snapshot number
macro. The snapshot is only required if you plan to include snapshot information in your depen-
dency constraints.

As an example, let’s assume our 1ibhello depends on 1ibprint which is reflected with the
following line in our manifest:

depends: libprint >= 2.3.4

We also assume that libprint provides its version information in the
libprint/version.hxx header and uses analogous-named macros. Here is how we can add
a version check to our version.hxx.in:

148 The build2 Build System Revision 0.18, July 2025

12 version Module

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION $libhello.version.project_number$ULL
#define LIBHELLO_VERSION_STR "$libhello.version.project$"

#include <libprint/version.hxx>
$libprint.check (LIBPRINT_VERSION)$

#endif

After the substitution our version.hxx header will look like this:
#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION 100002000030000ULL
#define LIBHELLO_VERSION_STR "1.2.3"

#include <libprint/version.hxx>

#ifdef LIBPRINT_VERSION

4if ! (LIBPRINT_VERSION >= 200003000040000ULL)

error incompatible libprint version, libprint >= 2.3.4 is required
endif

#endif

#endif

The version and condition substitutions are the building blocks of the check substitution.
For example, here is how we can implement a check with a customized error message:

#if ! ($libprint.condition (LIBPRINT_VERSION) $)
error bad libprint, need libprint $libprint.version$
#endif

The version module also treats one dependency in a special way: if you specify the required
version of the build system in your manifest, then the module will automatically check it for you.
For example, if we have the following line in our manifest:

depends: * build2 >= 0.5.0

And someone tries to build our project with build2 0. 4.0, then they will see an error like this:

build/bootstrap.build:3:1: error: incompatible build2 version
info: running 0.4.0
info: required 0.5.0

What version constraints should be used when depending on another project? We start with a
simple case where we depend on a release. Let’s say 1ibprint 2.3.0 added a feature that we
need in our libhello. If 1libprint follows the source/binary compatibility guidelines
discussed above, then any 2 .X.Y version should work provided X >= 3. And this how we can
specify it in the manifest:

Revision 0.18, July 2025 The build2 Build System 149

13 bin Module

depends: libprint 72.3.0

Let’s say we are now working on 1ibhello 2.0.0 and would like to start using features from
libprint 3.0.0. However, currently, only pre-releases of 3.0 .0 are available. If you would
like to add a dependency on a pre-release (most likely from your own pre-release), then the
recommendation is to only allow a specific version, essentially "expiring" the combination as
soon as newer versions become available. For example:

version: 2.0.0-b.1
depends: libprint == 3.0.0-b.2

Finally, let’s assume we are feeling adventurous and would like to test development snapshots of
libprint (most likely from our own snapshots). In this case the recommendation is to only
allow a snapshot range for a specific pre-release with the understanding and a warning that no
compatibility between snapshot versions is guaranteed. For example:

version: 2.0.0-b.1.z
depends: libprint [3.0.0-b.2.1 3.0.0-b.3)

13 bin Module

This chapter is a work in progress and is incomplete.

13.1 Binary Target Types

The following listing shows the hierarchy of the target types defined by the bin module while
the following sections describe each target type in detail (target{} and file{} are standard
target types defined by the build2 core; see for details).

target-————-———-———-——-
| |
|
| |
e file-——————————- . lib
| | | libul
| libue obje bmie hbmie def obj
liba 1libua obja bmia hbmia bmi
libs 1libus objs bmis hbmis hbmi

13.1.1 1ib{}, liba{}, 1ibs{}

The 1iba{} and libs{} target types represent static (archive) and shared libraries, respec-
tively.

150 The build2 Build System Revision 0.18, July 2025

13.1.2 libul{}, libue{}, libuaf}, libus{}

The 1ib{} target type is a group with the 1iba{} and/or 1ibs{} members. A rule that
encounters a 1ib{} prerequisite may pick a member appropriate for the target being built or it
may build all the members according to the bin.1lib variable. See [Library Exportation and |

for background.

The 1ib* {} file extensions are normally automatically assigned by the matching rules based on
the target platform.

13.1.21ibul{}, libue{}, 1libua{}, 1ibus({}

The 1ibu*{} target types represent utility libraries. Utility libraries are static libraries with
object files appropriate for linking an executable (libue{}), static library (l1ibua{}), or
shared library (1ibus{ }). Where possible, utility libraries are built in the "thin archive" mode.

The 1ibul{} target type is a group with the 1ibua{} and/or 1ibus{} members. A rule that
encounters a 1ibul { } prerequisite picks a member appropriate for the target being built.

The 1ibu*{} file extensions are normally automatically assigned by the matching rules based
on the target platform.

13.1.3 0cbj{},obje{},obja{},objs{}

The obj*{} target types represent object files appropriate for linking an executable (obje{}),
static library (obja{}), or shared library (objs{}).

In build2 we use distinct object files for the three types of binaries (executable, static library,
and shared library). The distinction between static and shared libraries is made to accommodate
build differences such as the need for position-independent code (-=£fPIC) in shared libraries.
While in most cases the same object file can be used for executables and static libraries, they are
kept separate for consistency and generality.

The obj{} target type is a group with the obje{}, and/or obja{}, and/or objs{} members.
A rule that encounters an obj{} prerequisite picks a member appropriate for the target being
built.

The obj*{} file extensions are normally automatically assigned by the matching rules based on
the target platform.

13.1.4bmi{},bmie{},bmia{},bmis{}
The bmi* {} target types represent binary module interfaces (BMI) for C++20 named modules

appropriate for linking an executable (bmie{}), static library (bmia{}), or shared library
(bmis{}).

Revision 0.18, July 2025 The build2 Build System 151

14 cc Module

The bmi { } target type is a group with the bmie{ }, and/or bmia{ }, and/or bmis{} members.
A rule that encounters an bmi { } prerequisite picks a member appropriate for the target being
built.

The bmi* {} file extensions are normally automatically assigned by the matching rules based on
the target platform.

13.1.5 hbmi{}, hbmie{}, hbmia{}, hbmis{}

The hbmi*{} target types represent binary module interfaces (BMI) for C++20 header units
appropriate for linking an executable (hbmie{ }), static library (hbmia{}), or shared library
(hbmis{}).

The hbmi {} target type is a group with the hbmie{}, and/or hbmia{}, and/or hbmis{}
members. A rule that encounters an hbmi {} prerequisite picks a member appropriate for the
target being built.

The hbmi* {} file extensions are normally automatically assigned by the matching rules based
on the target platform.

13.1.6 def {}

The def{} target type represents Windows module definition files and has the fixed default
extension .def.

14 cc Module

This chapter is a work in progress and is incomplete.

This chapter describes the cc build system module which provides the common compilation and
linking support for C-family languages.

14.1 C-Common Configuration Variables

config.c
config.cxx
cc.id

cc.target
cc.target.cpu
cc.target.vendor
cc.target.system
cc.target.version
cc.target.class

config.cc.poptions

152 The build2 Build System Revision 0.18, July 2025

cc.poptions

config.cc.coptions
cc.coptions

config.cc.loptions
cc.loptions

config.cc.aoptions
cc.aoptions

config.cc.libs
cc.libs

config.cc.internal.scope
cc.internal.scope

config.cc.reprocess
cc.reprocess

config.

config.
config.
config.
config.
config.

ccC

ccC.
ccC.
ccC.
ccC.
ccC.

.pkgconfig.

compiledb

compiledb.
compiledb.
compiledb.
compiledb.

sysroot

name
filter
filter.input
filter.output

14.2 C-Common Target Types

Note that the compiler mode options are "cross-hinted" between config.c and config.cxx
meaning that if we specify one but not the other, mode options, if any, will be added to the
absent. This may or may not be the desired behavior, for example:

Ok:

config.c="gcc -m32"

$ b config.cxx="g++ -m32"

Not OK:

config.c="clang -stdlib=libc++"
$ b config.cxx="clang++ -stdlib=libc++"

14.2 C-Common Target Types

The following listing shows the hierarchy of the target types defined by the cc module while the
following sections describe each target type in detail (£ile{} is a standard target type defined
by the build2 core; see for details). Every cc-based module (such as ¢ and cxx)
will have these common target types defined in addition to the language-specific ones.

——file—-.

h

pc

pca
pcs

Revision 0.18, July 2025

The build2 Build System 153

14.3 Compilation Internal Scope

While the h{} target type represents a C header file, there is hardly a C-family compilation
without a C header inclusion. As a result, this target types is defined by all cc-based modules.

For the description of the h { } target type refer to[c { }, h{ }|in the C module documentation.

14.2.1 pc{},pca{},pcs{}

The pc*{} target types represent pkg—config files. The pc{} target type represents the
common file and has the fixed default extension .pc. The pca{} and pcs{} target types repre-
sent the static and shared files and have the fixed default extensions .static.pc and
.shared. pc, respectively. See [[mportation of Installed Libraries|for background.

14.3 Compilation Internal Scope

While this section uses the cxx module and C++ compilation as an example, the same function-
ality is available for C compilation — simply replace cxx with c in the module and variable
names.

The cxx module has a notion of a project’s internal scope. During compilation of a project’s
C/C++ translation units a header search path (-I) exported by a library that is outside of the
internal scope is considered external and, if supported by the compiler, the corresponding —I
option is translated to an appropriate "external header search path" option (-isystem for
GCC/Clang, /external:I for MSVC 16.10 and later). In particular, this suppresses compiler
warnings in such external headers (/external:WO is automatically added unless a custom
/external :Wn is specified).

While the aim of this functionality is to control warnings in external libraries, the underlying
mechanisms currently provided by compilers have limitations and undesirable side effects. In
particular, —isystem paths are searched after —I so translating —I to —isystem alters the
search order. This should normally be harmless when using a development build of a library but
may result in a change of semantics for installed libraries. Also, marking the search path as
system has additional (to warning suppression) effects, see |[System Headers| in the GCC docu-
mentation for details. On the MSVC side, /external:WO currently does not suppress some
warnings (refer to the MSVC documentation for details).

Another issue is warnings in template instantiations. Each such warning could be either due to a
(potential) issue in the template itself or due to the template arguments we are instantiating it
with. By default, all such warnings are suppressed and there is currently no way to change this
with GCC/Clang —isystem. While MSVC provides /external:templates—, it cannot be
applied on the library by library basis, only globally for the entire compilation. See MSVC
/external:templates— documentation for more background on this issue.

154 The build2 Build System Revision 0.18, July 2025

https://gcc.gnu.org/onlinedocs/cpp/System-Headers.html

14.3 Compilation Internal Scope

In the future this functionality will be extended to side-building BMIs for external module inter-
faces and header units.

The internal scope can be specified by the project with the cxx.internal.scope variable
and overridden by the user with the config.cxx.internal.scope variable. Note that
cxx.internal.scope must be specified before loading the cxx module (cxx.config,
more precisely) and after which it contains the effective value (see below). For example:

root.build

cxx.std = latest
cxx.internal.scope = current

using cxx

Valid values for cxx.internal.scope are:

current —-- current root scope (where variable is assigned)
base —-— target’s base scope

root —-— target’s root scope

bundle -— target’s bundle amalgamation

strong -— target’s strong amalgamation

weak —-— target’s weak amalgamation

global —-— global scope (everything is internal)

Valid values for config.cxx.internal.scope are the same except for current.

Note also that there are [config.]cc.internal.scope variables that can be used to
specify the internal scope for all the cc-based modules.

The project’s effective internal scope is chosen based on the following priority list:

config.cxx.internal.scope
config.cc.internal.scope
effective scope from bundle amalgamation
cxx.ilnternal.scope

MY e

cc.internal.scope
In particular, item #3 allows an amalgamation that bundles a project to override its internal scope.

Ifno *.internal. scope is specified by the project, user, or bundle, then this functionality is
disabled and all libraries are treated as internal regardless of their location.

While it may seem natural to have this enabled by default, the limitations and side effects of the
underlying mechanisms as well as cases where it would be undesirable (such as in separate
*—tests projects, see below) all suggest that explicit opt-in is probably the correct choice.

Revision 0.18, July 2025 The build2 Build System 155

14.4 Automatic DLL Symbol Exporting

The recommended value for a typical project is current, meaning that only headers inside the
project will be considered internal. The tests subproject, if present, will inherit its value from
the project (which acts as a bundle amalgamation), unless it is being built out of source (for
example, to test an installed library).

A project can also whitelist specific libraries using the cxx.internal.libs variable. If a
library target name (that is, the name inside 1ib{ }) matches any of the wildcard patterns listed
in this variable, then the library is considered internal regardless of its location. For example
(notice that the pattern is quoted):

root.build

cxx.std = latest
cxx.internal.scope = current
cxx.internal.libs = foo ’"bar—-*’

using cxx

Note that this variable should also be set before loading the cxx module and there is the common
cc.internal.libs equivalent. However, there are no config. * versions nor the override
by the bundle amalgamation semantics.

Typically you would want to whitelist libraries that are developed together but reside in separate
build system projects. In particular, a separate *~tests project for a library should whitelist the
library being tested if the internal scope functionality is in use. Another reason to whitelist is to
catch warnings in instantiations of templates that belong to a library that is otherwise
warning-free (see the MSVC /external:templates— option for background).

Note also that if multiple libraries are installed into the same location (or otherwise share the
same header search paths, for example, as a family of libraries), then the whitelist may not be
effective.

14.4 Automatic DLL Symbol Exporting

The bin.def module (automatically loaded by the ¢ and cxx modules for the
*-win32-msvc targets) provides a rule for generating symbol-exporting .def files. This
allows automatically exporting all symbols for all the Windows targets/compilers using the
following arrangement (showing for cxx in this example):

lib{foo}: libul{foo}: {hxx cxx}{**}

libs{foo}: def{foo}: include = ($cxx.target.system == ’'win32-msvc’)
def{foo}: libul{foo}

if ($cxx.target.system == 'mingw32’)
cxx.loptions += -Wl,-—-export-all-symbols

156 The build2 Build System Revision 0.18, July 2025

14.5 Compiler Predefined Macro Extraction

That is, we use the . def file approach for MSVC (including when building with Clang) and the
built-in support (-—export—-all-symbols) for MinGW.

You will likely also want to add the generated .def file (or the blanket *.def) to your
.gitignore file.

Note that it is also possible to use the .def file approach for MinGW. In this case we need to
explicitly load the bin.def module (which should be done after loading ¢ or cxx) and can use
the following arrangement:

root.build
using cxx

if ($cxx.target.class == ’'windows’)
using bin.def

lib{foo}: libul{foo}: {hxx cxx}{**} ...

libs{foo}: def{foo}: include = ($cxx.target.class == ’'windows’)
def{foo}: libul{foo}

Note also that this only deals with exporting of the symbols from a DLL. In order to work, code
that uses such a DLL should be able to import the symbols without explicit
__declspec(dllimport) declarations. This works thanks to the symbol auto-importing
support in Windows linkers. Note, however, that auto-importing only works for functions and not
for global variables.

14.5 Compiler Predefined Macro Extraction

The cc-based modules provide the * .predefs submodule which can be loaded in order to
register a rule that extracts predefined compiler macros. Note that the * . predefs module must
be loaded after the respective main module and the rule will only match with an explicit rule hint.
Typical usage:

root.build

#

using c

using c.predefs

buildfile
#
[rule_hint=c.predefs] h{predefs}:

The predefs rule has two modes: the so-called "pure predefs", where we preprocess an empty
translation unit with the resulting set of macros consisting of only what is pre-defined by the
compiler, and "custom predefs" where we preprocess a custom input header with the resulting set
of macros including what is defined by such a header and headers that it includes.

Revision 0.18, July 2025 The build2 Build System 157

14.5 Compiler Predefined Macro Extraction

The mode is determined by the presence or absence of a prerequisite of a header type. For
example:

[rule_hint=c.predefs] h{predefs}: # Pure.
[rule_hint=c.predefs] h{predefs}: h{config} # Custom.

Note that the explicit rule hint is required in both modes.

If the custom input header is only used to extract the predefined macros during the build, then
you will want to make sure it does not get installed.

The build system module can be used to generate the custom input header for a
number of common checks.

The predefs rule can produce its output in three forms: a header file containing a number of
#define directive, a JSON file containing an object with each macro recorded as its member,
and a buildfile with each macro recorded as a variable assignment. For example:

/* config.h */
#define FOO 1
#define BAR 123ULL
#define BAZ OxFFFF
#undef BIZ

c.poptions += —-DFOX

c.predefs.poptions = true # Include *.poptions.
[rule_hint=c.predefs] h{predefs}: h{config}
[rule_hint=c.predefs] Jjson{predefs}: h{config}

[rule_hint=c.predefs] buildfile{predefs}: h{config}
{

c.predefs.macros = FOO BAR BAZ BIZ FOX
The resulting predefs.h header would have the following contents:
#define FOO 1
#define BAR 123ULL

#define BAZ Oxffff
#define FOX 1

The resulting predefs. json file would have the following contents:

{

"FOO": 1,
"BAR": 123,
"BAZ": 65535,
"FOX": 1,

158 The build2 Build System Revision 0.18, July 2025

https://github.com/build2/libbuild2-autoconf/

14.5 Compiler Predefined Macro Extraction

The resulting predefs.build file would have the following contents:

FOO = [uinte4] 1

BAR = [uint64] 123
BAZ = [uinte64] Oxffff
FOX = [uinte4] 1

BIZ = [null]

The buildfile output of the predefs rule is typically used with the update during load func-
tionality (see[update directive]) in order to communicate macro values to the buildfiles.

Note that macro values do not undergo recursive macro-expansion. Instead, we get the value as
defined, which could be another macro. This could be a problem for the JSON and buildfile
output since the extracted value may not be directly usable. The _ BYTE_ORDER___ macro
provides a good illustration of this problem:

#define _ ORDER_BIG_ENDIAN__ 4321
#define _ ORDER_LITTLE_ENDIAN _ 1234
#define _ BYTE_ORDER__ _ ORDER_LITTLE_ENDIAN

As a result, you may need to implement custom evaluation logic in your header in order to
communicate the actual value of a macro. For example:

#if _ BYTE_ORDER__ == __ ORDER_LITTLE_ENDIAN_
define BYTE_ORDER_LITTLE_ENDIAN true

#elif _ BYTE_ORDER___ == _ ORDER_BIG_ENDIAN_
define BYTE_ORDER_LITTLE_ENDIAN false
#else

error unexpected byte order

#endif

In the future the predefs rule may perform simple macro expansions and expression evalua-
tions automatically.

A number of variables control the behavior of the predefs rule:

[bool] * .predefs.poptions
[string] *.predefs.default
[string_map] *.predefs.macros

The *.predefs.poptions variable controls whether *.poptions are included on the
compiler command line, in which case any macro definitions they may contain will end up in the
output. It is false by default for pure predefs and is required if we are preprocessing a custom
header (since command line macros may affect its contents).

The *.predefs.default variable specifies the default macro value to use in the JSON and
buildfile output for macros that are not defined to any value (that is, just #define FO0O). If
not specified, then 1 is used (which is what macros specified on the command line as —DFOO end
up being defined to by the compilers).

Revision 0.18, July 2025 The build2 Build System 159

14.6 Importation of Installed Libraries

The *.predefs.macros variable specifies the macros to extract for the JSON and build-
file output. Additionally, optional mapping to member/variable name can be specified as the
second half of a pair for each macro. For example:

c.predefs.macros = FOO BAR __ SIZEOF_SIZE_T__@SIZEOF_SIZE_T

Note that for the buildfile output specifying *.predefs.macros is mandatory (since
undefined macros need to be explicitly set to null).

Finally note also that the MSVC compiler only supports the predefined macro extraction starting
from Visual Studio 2019 (16.0; cl.exe version 19.20). If support for earlier versions is
required, then you will need to provide a fallback implementation appropriate for your project.
For example:

[rule_hint=c.predefs] h{predefs}:

% update
if ($c.id == ’'msvc’ && \
($c.version.major < 19 || \
($c.version.major == 19 && $c.version.minor < 20)))

{{
diag c-predefs $>

cat <<EOF >$path ($>)
#define _WIN32
EOF

H}

Similarly, custom predefs extraction is only supported in Clang version 12 and later due to bugs
in earlier versions related to producing both macros and header dependency information into the
same stream.

14.6 Importation of Installed Libraries

As discussed in [Target Importation] searching for installed C/C++ libraries is seamlessly inte-
grated into the general target importation mechanism. This section provides more details on the
installed library search semantics and pkg-config integration. These details can be particu-
larly useful when dealing with libraries that were not built with build2 and which often use
idiosyncratic pkg—-config file names.

The cc-based modules use the common installed library search implementation with the follow-
ing semantics. To illustrate the finer points, we assume the following import:

import libs = libbar%$lib{Xfoo}

1. First, the ordered list of library search directories is obtained by combining two lists: the lists
of the compiler’s system library search directories (extracted, for example, with
-print-search-dirs GCC/Clang options) and the list of user library search directories

160 The build2 Build System Revision 0.18, July 2025

14.6 Importation of Installed Libraries

(specified, for example, with the —L options in * . loptions).

The key property of this combined list is that it matches the search semantics that would be
used by the compiler to find libraries specified with the —1 option during linking.

2. Given the list obtained in the previous step, a library binary (shared and/or static library) is
searched for in the correct order and using the target platform-appropriate library prefix and
extension (for example, 1ib prefix and the . so/. a extensions if targeting Linux).

For example (continuing with the above import and assuming Linux), each directory will be
checked for the presence of 1ibXfoo.so and 1ibXfoo.a (where the Xfoo stem is the
imported target name).

If only a shared or static binary is found in a given directory, no further directories are
checked for the missing variant. Instead, the missing variant is assumed to be unavailable.

If neither a shared nor static library is found in a given directory, then it is also checked for
the presence of the corresponding pkg—config file as in the following step. If such a file
is found, then the library is assumed to be binless (header-only, etc).

3. If a static and/or shared library is found (or if looking for a binless library), the correspond-
ing pkg-config subdirectory (normally just pkgconfig/) is searched for the library’s
.pc file.

More precisely, we first look for the .static.pc file for a static library and for the
.shared. pc file for a shared library falling back to the common . pc if they don’t exist.

It is often required to use different options for consuming static and shared libraries. While
there is the Libs.private and Cflags.private mechanism in pkg-config, its
semantics is to append options to Libs and Cflags rather than to provide alternative
options. And often the required semantics is to provide different options for static and shared
libraries, such as to provide a macro which indicates whether linking static or shared in order
to setup symbol exporting.

As aresult, in build2 we produce separate . pc files for static and shared libraries in addi-
tion to the "best effort" common . pc file for compatibility with other build systems. Simi-
larly, when consuming a library we first look for the . static.pc and . shared.pc files
falling back to the common . pc if they are not available.

To deal with idiosyncrasies in pkg—config file names, the following base names are tried
in order, where name is the imported target name (Xfoo in the above import), proj is the
imported project name (libbar in the above import), and ext is one of the
above-mentioned pkg-config extensions (static.pc, shared.pc, or pc). The
concrete name tried for the above import is shown in parenthesis as an example.

Revision 0.18, July 2025 The build2 Build System 161

14.6.1 Rewriting Installed Libraries System Root (sysroot)

libname.ext (1ibXfoo.pc)

name.ext (Xfoo.pc)

lowercase 1ibname.ext (1ibxfoo.pc)

lowercase name. ext (xfoo.pc)

proj.ext (libbar.pc; this test is omitted if not project-qualified)

MY e

In particular, the last try (for proj. ext) serves as an escape hatch for cases where the . pc file
name does not have anything to do with the names of library binaries. The canonical example of
this is z1ib which names its library binaries 1ibz.so/libz.a whileits .pc file— z1lib.pc.
To be able to import z11ib that was not built with build2, we have to use the following import:

import libs = zlib%lib{z}

Note also that these complex rules (which are unfortunately necessary to deal with the lack of any
consistency in .pc file naming) can sometimes produce surprising interactions. For example, it
may appear that a clearly incorrect import nevertheless appears to somehow work, as in the
following example:

import libs = zlib%lib{znonsense}

What happens here is that while no library binary is found, z1ib.pc is found and as a result the
library ends up being considered binless with the —1z (that is found in the Libs value of
z1lib.pc) treated as a prerequisite library, resolved using the above algorithm, and linked. In
other words, in this case we end up with a binless library 1ib{znonsense} that depends on
lib{z} instead of a single 1ib{z} library.

14.6.1 Rewriting Installed Libraries System Root (sysroot)

Sometimes the installed libraries are moved to a different location after the installation. This is
especially common in embedded development where the code is normally cross-compiled and the
libraries for the target platform are placed into a host directory, called system root or sysroot, that
doesn’t match where these libraries were originally installed to. For example, the libraries might
have been installed into /usr/ but on the host machine they may reside in
/opt/target/usr/. In this example, /opt /target/ is the sysroot.

While such relocations usually do not affect the library headers or binaries, they do break the
pkg-config’s . pc files which often contain —I and —L options with absolute paths. Continue
with the above example, a . pc file as originally installed may contain —I/usr/include and
-L/usr/1lib while now, that the libraries have been relocated to /opt/target/, they
somehow need to be adjusted to —~I/opt/target/usr/include and
-L/opt/target/usr/lib.

162 The build2 Build System Revision 0.18, July 2025

14.7 Compilation Database

While it is possible (and perhaps correct) to accomplish this by fixing the . pc files to match the
new location, it is not always possible or easy. As a result, build2 provides a mechanism for
automatically adjusting the system root in the —I and —-L options extracted from . pc files.

This functionality is roughly equivalent to that provided with the
PKG_CONFIG_SYSROOT_DIR environment variable by the pkg—config utility.

Specifically, the config.cc.pkgconfig.sysroot variable can be used to specify an alter-
native system root. When specified, all absolute paths in the —I and —L options that are not
already in this directory will be rewritten to start with this sysroot.

Note that this mechanism is a workaround rather than a proper solution since it is limited to the
—-I and -L options. In particular, it does not handle any other options that may contain absolute
paths nor pkg—config variables that may be queried.

As a result, it should only be used for dealing with issues in third-party .pc files that do not
handle relocation (for example, using the $ {pcfiledir} built-in pkg—config variable). In
particular, for build2-generated . pc files afrelocatable installation|should be used instead.

14.7 Compilation Database

The cc-based modules provide support for generating and maintaining the JSON Compilation |
which can be used by other tools (static analyzers, language servers, IDEs, etc) to

understand how a codebase is compiled. "Maintaining" in the previous sentence means that if

new source files get added to the project or old ones removed, or if any compilation options

change, then the corresponding entries in the compilation database will be automatically updated

when you update your project. This helps maintain the database in sync with the project state.

The generation of compilation databases and their configuration are controlled with a number of
config.cc.compiledb.* variables. The config.cc.compiledb variable provides a
simplified interface that enables the generation of one database per project with the resulting
database containing entries for all the source and object files. The rest of the variables provide a
more flexible interface that allows you to generate multiple databases in different locations as
well as filter the entries that end up in each database.

Let’s start with the simplified interface as provided by config.cc.compiledb. The value of
this configuration variable is a single name or a name and path pair in the name[@path]
form.

The name part is the compilation database name that can be used to refer to it in filters (see
below). If path is absent or is (syntactically) a directory, then name is also used to derive the
compilation database file by appending the . json extension to it.

Revision 0.18, July 2025 The build2 Build System 163

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

14.7 Compilation Database

If path is absent, then the compilation database is placed into the top-level amalgamation that
loads any cc-based module. Otherwise, the database is placed into the specified location.

The special — name is interpreted as an instruction to dump the database to stdout.

Let’s see some examples of using config.cc.compiledb to handle a few common scenar-
ios. Here we will use bdep (1) to create amalgamations (configurations) and configure (initial-
ize) one or more projects. We will assume we have hello and 1ibhello as if created like this:

$ bdep new -t exe hello
$ bdep new -t lib libhello

The most common scenario is likely having a compilation database per project:

$ cd libhello

$ bdep config create ../build-gcc Qgcc cc config.cxx=g++
$ bdep init @gcc config.cc.compiledb=libhello

$ cd ..

$ cd hello

$ bdep config add ../build-gcc @gcc

$ bdep init @gcc config.cc.compiledb=hello

$ cd ..

$ b hello/ libhello/

Or if you prefer to create/add configuration as part of init (notice the —— separator):

$ bdep init -C ../build-gcc @gcc cc config.cxx=g++ —— \
config.cc.compiledb=1libhello

$ bdep init -A ../build-gcc Q@gcc config.cc.compiledb=hello

After the update (the last command), we will have hello. json and libhello. json in
build-gcc/ which contain the compilation command lines for each project.

Only source files that are compiled end up being added to the compilation database.

To illustrate this point, let’s assume our hello project imports and links 1ibhello. And
instead of updating both as in the above example, we will first update only hello:

$ b hello/

In this case 1ibhello. json will still be generated but it will only contain a subset of the
expected entries — only those that were caused to be compiled by hel1o. The missing entries can
be added by updating 1ibhello:

164 The build2 Build System Revision 0.18, July 2025

14.7 Compilation Database

$ b libhello/

In the above setup it feels natural to call each database after the project and place them into the
output directory. However, some consumers, such as IDEs and LSP servers, may not handle this
setup well. Specifically, they may only recognize the canonical compile_commands. json
file as the compilation database, opening all other files as generic JSON. They may also assume
the directory where this file resides to be the project source directory root. To accommodate these
assumptions we can instead place each database into the project’s source directory and call it
compile_commands. json:

$ cd libhello
$ bdep init @gcc config.cc.compiledb=libhello@./compile_commands. json

$ cd hello
$ bdep init @gcc config.cc.compiledb=helloQ./compile_commands.json

To facilitate this use-case, config.cc.compiledb supports another shortcut: if we specify
just name and it contains a directory component, then it is interpreted as path rather than name.
In this case name is taken to be the name of the last directory component in path (which would
typically be a project or package name). And if path is a directory, then the database file name
is taken to be compile_commands. json. Or, in other words, the following:

config.cc.compiledb=.../<dir>/

Is equivalent to:

config.cc.compiledb=<dir>Q@.../<dir>/compile_commands. json

This shortcut allows us to simplify the above init commands to read:

$ cd libhello
$ bdep init @gcc config.cc.compiledb=./

$ cd hello
$ bdep init @gcc config.cc.compiledb=./

Note also that in this case it will be your responsibility to remove the database files if and when
necessary. bdep—new (1) adds compile_commands. jsonto .gitignore it generates.

If instead of having a separate database for each project we wanted to place all the entries into a
single database (and in the output directory), then the relevant commands would change as
follows:

$ bdep init @gcc config.cc.compiledb=compiledb

$ bdep init @gcc config.cc.compiledb=compiledb

Revision 0.18, July 2025 The build2 Build System 165

14.7 Compilation Database

This would give us a single build-gcc/compiledb. json that contains the compilation
command lines for both projects.

In the above example only hello and 1ibhello will end up in the database, but not any of
their dependencies. What if we wanted entries for everything in build-gcc/? In this case, we
should enable the compilation database for the entire configuration rather than for individual
projects:

$ bdep config create ../build-gcc @gcc cc \
config.cxx=g++ \
config.cc.compiledb=compiledb

$ bdep init @gcc

$ bdep config add ../build-gcc @gcc
$ bdep init @gcc

If multiple linked configurations are involved, then we would often want projects initialized in
different configurations share the compilation database. The representative scenario here is a tool,
such as a source code generator, which is initialized in the host configuration, and its runtime
library plus tests/examples, which are initialized in the target configuration. Let’s assume that in
our example hello is the tool and 1ibhello is the runtime library and both are part of the
same project. This is how we can arrange for them to share the compilation database:

$ bdep config create @host ../host-gcc —-type host cc config.cxx=g++
$ bdep config create Qtarget ../build-gcc cc config.cxx=g++

$ bdep init @host —-d hello config.cc.compiledb=hello@../build-gcc/
$ bdep init @target —-d libhello config.cc.compiledb=hello

$ bdep update @host @target

With this setup the hello. json database in build-gcc/ will contain entries for both
helloand libhello.

If instead of configuring and maintaining the compilation database in a file you want to dump it
somewhere once, the recommended approach is to write it to stdout. For example:

$ b —n hello/ libhello/ config.cc.compiledb=- >/tmp/compiledb.json

Note that writing to stdout forces recompilation of all the targets that would be updated in
order to make sure their entries end up in the database. If you don’t want the actual recompilation,
then you can use the dry run mode (—n option above).

If your projects are spread across multiple linked configurations and you would like to get compi-
lation command lines for all of them, then wuse the global override for
config.cc.compiledb:

166 The build2 Build System Revision 0.18, July 2025

14.7 Compilation Database

$ b "!config.cc.compiledb=-’

As mentioned earlier, the entries that will end up in such a database are determined by what gets
updated.

Let’s now turn to the rest of the config.cc.compiledb.* configuration variables that
provide a lower-level but more flexible interface. The following listing shows their synopsis:

config.cc.compiledb.name <name> [@<path>]...
config.cc.compiledb.filter [<name>@] <bool>...
config.cc.compiledb.filter.input = [<name>@]<target-type>...
config.cc.compiledb.filter.output = [<name>Q@]<target-type>...

The config.cc.compiledb.name variable specifies the name and location of one or more
compilation databases. The semantics of the name[@path] pair is the same as in
config.cc.compiledb discussed above, except that if path is absent, then the database is
placed into the project being configured rather than into the top-level amalgamation.

Also, unlike config.cc.compiledb, this variable does not automatically enable writing to
the specified databases. Instead, this is the job of config.cc.compiledb.filter. Split-
ting this logic into two steps allows us to configure the database name/location in one place, typi-
cally an outer amalgamation, and then enable writing to it in other places, typically specific
subprojects.

The config.cc.compiledb.filter. {input, output} variables allow us to filter the
entries that end up in the databases based on the input (c{}, cxx{}, etc) and output (cbja{},
objs{}, etc) target types.

Note that in all three . filter variables the values are examined in the reverse order and the
first entry that matches determines the outcome. Entries without name apply to all databases and
the target types are matched taking into account inheritance (so target { } will match any type)
and groups (so obj{} will match any obj[eas] {}). If no target type filter (input or output) is
specified, then no corresponding target filtering is performed.

The config.cc.compiledb=<name> semantics can be expressed as the following set of
lower-level variables:

config.cc.compiledb.name = <name>@../path/to/amalgamation/
config.cc.compiledb.filter += <name>@true
config.cc.compiledb.filter.input += <name>@target
config.cc.compiledb.filter.output += <name>Q@target

The last three assignments only apply if the corresponding variable is not set to a custom value
for this project.

Revision 0.18, July 2025 The build2 Build System 167

14.7 Compilation Database

Let’s look at a few examples of using these lower-level configuration variables. The common use
for the output target filtering is getting rid of obja{} or objs{} entries in libraries. Unless
configured otherwise, when we build a library we end up with both static and shared variants.
And this means that each source file for the library is compiled twice, once to produce obja{ }
that goes to the static library and once -- objs{}. And that, in turn, means that we will end up
with two compilation database entries for each such source file. If we don’t want that for some
reason (for instance, because the consumer of the database does not handle this well), then we can
filter one of them out. For example, below is how we can initialize 1ibhello to achieve this
(notice that we also include obje { } to keep object files for executables, such as tests):

$ bdep init @gcc \
config.cc.compiledb=1libhello \
config.cc.compiledb.filter.output='obje obijs’

As an example of the input target type filtering, below is how we can keep entries only for the C
and C++ source files, filtering out everything else (assembler, Objective-C/C++), for instance,
because the consumer of our database does not recognize them:

$ bdep init @gcc \
config.cc.compiledb=1libhello \
config.cc.compiledb.filter.input='c cxx’

As an example of a more advanced configuration, consider a compilation database for a project
that use C++ modules. To know how such a project is compiled we not only need to know how
its own source files are compiled, but also how to compile all the module interfaces that it
consumes, including from other projects, transitively. One way to set this up would be to enable
writing entries of the bmi { } output target type to any database in the amalgamation:

$ bdep config create ../build-gcc @gcc cc \
config.cxx=g++ \
config.cc.compiledb.filter=true \
config.cc.compiledb.filter.output=bmi \

$ bdep init @gcc config.cc.compiledb=libhello

$ bdep init @gcc config.cc.compiledb=hello

With this setup 1ibhello. json and hello. json will contain module interface entries from
all the dependencies.

When debugging complex compilation database setups it can be helpful to increase diagnostics
verbosity to level 6 in order to get a trace of filtering decisions (the relevant lines will contain the
compiledb keyword).

168 The build2 Build System Revision 0.18, July 2025

14.8 GCC Compiler Toolchain

14.8 GCC Compiler Toolchain

The GCC compiler id is gcc.

14.9 Clang Compiler Toolchain

The vanilla Clang compiler id is clang (including when targeting the MSVC runtime), Apple
Clang compiler id is clang—apple, and Clang’s c1 compatibility driver (clang-cl) id is
msvc—clang.

14.9.1 Clang Targeting MSVC

There are two common ways to obtain Clang on Windows: bundled with the MSVC installation
or as a separate installation. If you are using the separate installation, then the Clang compiler is
most likely already in the PATH environment variable. Otherwise, if you are using Clang that is
bundled with MSVC, the cc module will attempt various search strategies described below.
Note, however, that in both cases once the Clang compiler binary located, the mode (32 or 64-bit)
and the rest of the environment (locations of binary utilities as well as the system headers and
libraries) are obtained by querying Clang.

Normally, if Clang is invoked from one of the Visual Studio command prompts, then it will use
the corresponding Visual Studio version and environment (it is, however, still up to you to match
the mode with the —-m32/-m64 options, if necessary). Otherwise, Clang will try to locate the
latest version of Visual Studio and Platform SDK and use that (in this case it matches the envi-
ronment to the —-m32/-m64 options). Refer to Clang documentation for details.

If you specify the compiler as just config.c=clang or config.cxx=clang++ and it is
found in the PATH environment variable or if you specify it as an absolute path, then the cc
module will use that.

Otherwise, if you are building from one of the Visual Studio development command prompts, the
cc module will look for the corresponding bundled Clang ($VCIN-
STALLDIR%\Tools\Llvm\bin).

Finally, the cc module will attempt to locate the latest installed version of Visual Studio and look
for a bundled Clang in there.

The default mode (32 or 64-bit) depends on the Clang configuration and can be overridden with
the -m32/-m64 options. For example:

> b "config.cxx=clang++ -m64"

Revision 0.18, July 2025 The build2 Build System 169

14.9.1 Clang Targeting MSVC

The default MSVC runtime selected by the cc module is multi-threaded shared (the /MD option
in c1). Unfortunately, the Clang driver does not yet provide anything equivalent to the c1 /M*
options (see [Clang bug #33273) and selection of an alternative runtime has to be performed
manually:

> rem /MD - multi-threaded shared (default)

> rem

> b "config.cxx=clang++ -nostdlib -D_MT -D_DLL" *
config.cc.libs=/DEFAULTLIB:msvcrt

> rem /MDd — multi-threaded debug shared

rem

> b "config.cxx=clang++ -nostdlib -D_MT -D_DLL -D_DEBUG" *
config.cc.libs=/DEFAULTLIB:msvcrtd

\%

> rem /MT - multi-threaded static

> rem

> b "config.cxx=clang++ —-nostdlib -D_MT"
config.cc.libs=/DEFAULTLIB:libcmt

> rem /MTd — multi-threaded debug static

rem

b "config.cxx=clang++ -nostdlib -D_MT -D_DEBUG" *
config.cc.libs=/DEFAULTLIB:libcmtd

VvV Vv

By default the MSVC’s binary utilities (1ink and 1ib) are used when compiling with Clang. It
is, however, possible to use LLVM’s versions instead, for example:

A

> b config.cxx=clang++
config.bin.ld=11d-1link *
config.bin.ar=11lvm-1ib

In particular, one benefit of using 11vm—-11ib is support for thin archives which, if available, is
automatically enabled for utility libraries.

While there is basic support for Clang’s c1 compatibility driver (clang-cl), its use is not
recommended. This driver is a very thin wrapper over the standard Clang interface that does not
always recreate the c1’s semantics exactly. Specifically, its diagnostics in the /showIncludes
mode does not match that of c1 in the presence of missing headers. As a result, clang-cl’s
use, if any, should be limited to projects that do not have auto-generated headers.

If you need to link with other projects that use clang-c1, then the recommended approach is to
discover any additional cc1 options passed by clang-cl by comparing the —v output of a test
compilation with clang-cl and clang/clang++ and then passing them explicitly to
clang/clang++, potentially prefixed with —Xclang. For example:

b "config.cxx=clang++ —-Xclang —-fms-volatile ..."

170 The build2 Build System Revision 0.18, July 2025

https://bugs.llvm.org/show_bug.cgi?id=33273

14.10 MSVC Compiler Toolchain

Relevant additional options that are passed by clang-c1 at the time of this writing:

—fno-strict-aliasing
—fstack-protector-strong
—-Xclang —-fms-volatile
—ffunction-sections

14.10 MSVC Compiler Toolchain
The Microsoft VC (MSVC) compiler id is msvc.

There are several ways to specify the desired MSVC compiler and mode (32 or 64-bit) as well as
the corresponding environment (locations of binary utilities as well as the system headers and
libraries).

Unlike other compilers, MSVC compiler (c1) binaries are target-specific, that is, there are no
-m32/-m64 options nor something like the /MACHINE option available in 1ink.

If the compiler is specified as just c1 in config. {c, cxx} and it is found in the PATH envi-
ronment variable, then the cc module assumes the build is performed from one of the Visual
Studio development command prompts and expects the environment (the PATH, INCLUDE, and
LIB environment variables) to already be setup.

If, however, c1 is not found in PATH, then the cc module will attempt to locate the latest
installed version of Visual Studio and Platform SDK and use that in the 64-bit mode.

Finally, if the compiler is specified as an absolute path to c1, then the cc module will attempt to
locate the corresponding Visual Studio installation as well as the latest Platform SDK and use that
in the mode corresponding to the specified c1 executable. Note that to specify an absolute path to
c1 (which most likely contains spaces) we have to use two levels of quoting:

> b "config.cxx=’...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl’"

The latter two methods are only available for Visual Studio 15 (2017) and later and for earlier
versions the development command prompt must be used.

The default MSVC runtime selected by the cc module is multi-threaded shared (the /MD c1
option). An alternative runtime can be selected by passing one of the c1 /M* options, for
example:

> b "config.cxx=cl /MT"

Revision 0.18, July 2025 The build2 Build System 171

15 ¢ Module

15 ¢ Module

This chapter is a work in progress and is incomplete.

This chapter describes the ¢ build system module which provides the C compilation and linking
support. Most of its functionality, however, is provided by the module, a common implemen-
tation for the C-family languages.

15.1 C Configuration Variables

The following listing summarizes the ¢ module configuration variables as well as the correspond-
ing module-specific variables that are derived from their values. See also [C-Common Configura-|

tion Variables

config.c
c.path
c.mode

config.c.id
c.id
c.id.type
c.id.variant
c.class

config.c.version
c.version
c.version.major
c.version.minor
c.version.patch
c.version.build
config.c.target
c.target
.target.cpu
.target.vendor
.target.system
.target.version
.target.class

Q Qa0

config.c.std
c.std

config.c.poptions
c.poptions

config.c.coptions
c.coptions

config.c.loptions
c.loptions

config.c.aoptions

172 The build2 Build System Revision 0.18, July 2025

15.2 C Target Types

c.aoptions

config.c.libs
c.libs

config.c.internal.scope
c.internal.scope

15.2 C Target Types

The following listing shows the hierarchy of the target types defined by the ¢ module while the
following sections describe each target type in detail (£ile{} is a standard target type defined
by the build2 core; see for details). See also [C-Common Target Types| for target
types defined by all the cc-based modules.

——file—-.
| |
c m S
h

The m{} target type represents an Objective-C source file, see [Objective-C_Compilation| for
details.

The S{} target type represents an Assembler with C Preprocessor file, see [Assembler with C |
[Preprocessor Compilation| for details.

1521 c{},h{}

The c{} and h{} target types represent C source and header files. They have the default exten-
sions . c and . h, respectively, which can be customized with the extension variable.

15.3 Objective-C Compilation

The ¢ module provides the c. objc submodule which can be loaded in order to register the m{ }
target type and enable Objective-C compilation in the C compile rule. Note that c . ob jc must be
loaded after the ¢ module and while the m{ } target type is registered unconditionally, compila-
tion is only enabled if the C compiler supports Objective-C for the target platform. Typical usage:

root.build
#

using c
using c.objc

buildfile

#
lib{hello}: {h c}{*}
lib{hello}: m{*}: include = ($c.target.class == ’'macos’)

Revision 0.18, July 2025 The build2 Build System 173

15.4 Assembler with C Preprocessor Compilation

Note also that while there is support for linking Objective-C executables and libraries, this is
done using the C compiler driver and no attempt is made to automatically link any necessary
Objective-C runtime library (such as —1objc).

15.4 Assembler with C Preprocessor Compilation

The ¢ module provides the c.as-cpp submodule which can be loaded in order to register the
S{} target type and enable Assembler with C Preprocessor compilation in the C compile rule.
Note that c.as—cpp must be loaded after the ¢ module and while the S{} target type is regis-
tered unconditionally, compilation is only enabled if the C compiler supports Assembler with C
Preprocessor compilation. Typical usage:

root.build

#

using c

using c.as-cpp

buildfile
#
exe{hello}: {h c}{* -hello.c}

Use C implementation as a fallback if no assembler.

#
assembler = ($c.class == ’'gcc’ && S$Sc.target.cpu == ’'x86_64")
exe{hello}: S{hello}: include = S$assembler
exe{hello}: c{hello}: include = (!S$Sassembler)
/* hello.S
*/

#ifndef HELLO_RESULT

define HELLO_RESULT O
#endif

text

.global hello

hello:
/* L. %/
movqg S$HELLO_RESULT, %rax
ret

#ifdef _ ELF_
.section .note.GNU-stack, "", @progbits
#endif

The default file extension for the S{ } target type is . S (capital) but that can be customized using
the standard mechanisms. For example:

174 The build2 Build System Revision 0.18, July 2025

16 cxx Module

root.build

#

using c

using c.as-cpp

h{*}: extension = h
c{*}: extension = c
S{*}: extension = sx

Note that * . coptions are passed to the C compiler when compiling Assembler with C Prepro-
cessor files because compile options may cause additional preprocessor macros to be defined.
Plus, some of them (such as —g) are passed (potentially translated) to the underlying assembler.
To pass additional options when compiling Assembler files use c.poptions and
c.coptions. For example (continuing with the previous example):

if Sassembler

{
obj{hello}:

{
c.poptions += -DHELLO_RESULT=1
c.coptions += -Wa,--no-pad-sections
}
}

15.5 C Compiler Predefined Macro Extraction

The ¢ module provides the c.predefs submodule which can be loaded in order to register a
rule that generates a C header with predefined compiler macros. Note that the c.predefs
module must be loaded after the ¢ module and the rule will only match with an explicit rule hint.
Typical usage:

root.build

#

using c

using c.predefs

buildfile
#
[rule_hint=c.predefs] h{predefs}:

See |Compiler Predefined Macro Extraction| for details.

16 cxx Module

This chapter is a work in progress and is incomplete.

Revision 0.18, July 2025 The build2 Build System 175

16.1 C++ Configuration Variables

This chapter describes the cxx build system module which provides the C++ compilation and
linking support. Most of its functionality, however, is provided by the module, a common
implementation for the C-family languages.

16.1 C++ Configuration Variables

The following listing summarizes the cxx module configuration variables as well as the corre-
sponding module-specific variables that are derived from their values. See also
[Configuration Variables|

config.cxx
cxx.path
cxx.mode

config.cxx.id
cxx.id
cxx.id.type
cxx.id.variant
cxx.class

config.cxx.version
cxx.version
cxx.version.major
cxx.version.minor
cxx.version.patch
cxx.version.build

config.cxx.target
cxx.target
cxx.target.cpu
cxx.target.vendor
cxx.target.system
cxx.target.version
cxx.target.class

config.cxx.std
cxx.std

config.cxx.poptions
cxx.poptions

config.cxx.coptions
cxx.coptions

config.cxx.loptions
cxx.loptions

config.cxx.aoptions
cxx.aoptions

config.cxx.libs
cxx.libs

config.cxx.internal.scope

176 The build2 Build System Revision 0.18, July 2025

16.2 C++ Target Types

cxx.internal.scope

config.cxx.translate_include
cxxX.translate_include

16.2 C++ Target Types

The following listing shows the hierarchy of the target types defined by the cxx module while
the following sections describe each target type in detail (file{} is a standard target type
defined by the build2 core; see for details). See also [C-Common Target Types|
for target types defined by all the cc-based modules.

——file—-.
| |
CXX mm
hxx
ixx
txx
mxx

The mm{ } target type represents an Objective-C++ source file, see [Objective-C++ Compilation|
for details.

16.2.1 cxx{}, hxx{}, ixx{}, txx{}, mxx{}

The cxx{}, hxx{}, ixx{}, txx{}, and mxx{} target types represent C++ source, header,
inline, template, and module interface files. They have the default extensions .cxx, .hxx,
.ixx, .txx, and .mxx, respectively, which can be customized with the extension variable.
For example (normally done in root .build):

using cxx

cxx{*}: extension = cpp
hxx{*}: extension = hpp
mxx{*}: extension = cppm

16.3 C++ Modules Support

This section describes the build system support for C++ modules.

16.3.1 Modules Introduction

The goal of this section is to provide a practical introduction to C++ Modules and to establish key
concepts and terminology. You can skip directly to [Building Modules|if you are already familiar
with this topic.

Revision 0.18, July 2025 The build2 Build System 177

16.3.1 Modules Introduction

A pre-modules C++ program or library consists of one or more translation units which are
customarily referred to as C++ source files. Translation units are compiled to object files which
are then linked together to form a program or library.

Let’s also recap the difference between an external name and a symbol: External names refer to
language entities, for example classes, functions, and so on. The external qualifier means they are
visible across translation units.

Symbols are derived from external names for use inside object files. They are the cross-referenc-
ing mechanism for linking a program from multiple, separately-compiled translation units. Not all
external names end up becoming symbols and symbols are often decorated with additional infor-
mation, for example, a namespace. We often talk about a symbol having to be satisfied by linking
an object file or a library that provides it. Similarly, duplicate symbol issues may arise if more
than one object file or library provides the same symbol.

What is a C++ module? It is hard to give a single but intuitive answer to this question. So we will
try to answer it from three different perspectives: that of a module consumer, a module producer,
and a build system that tries to make those two play nice. But we can make one thing clear at the
outset: modules are a language-level not a preprocessor-level mechanism; it is import, not
#import.

One may also wonder why C++ modules, what are the benefits? Modules offer isolation, both
from preprocessor macros and other modules’ symbols. Unlike headers, modules require explicit
exportation of entities that will be visible to the consumers. In this sense they are a physical
design mechanism that forces us to think how we structure our code. Modules promise significant
build speedups since importing a module, unlike including a header, should be essentially free.
Modules are also the first step to not needing the preprocessor in most translation units. Finally,
modules have a chance of bringing to mainstream reliable and easy to setup distributed C++
compilation, since with modules build systems can make sure compilers on the local and remote
hosts are provided with identical inputs.

To refer to a module we use a module name, a sequence of dot-separated identifiers, for example
hello.core. While the specification does not assign any hierarchical semantics to this
sequence, it is customary to refer to hello.core as a submodule of hello. We discuss
submodules and provide the module naming guidelines below.

From a consumer’s perspective, a module is a collection of external names, called module inter-
face, that become visible once the module is imported:

import hello.core;

What exactly does visible mean? To quote the standard: An import-declaration makes exported
declarations [...] visible to name lookup in the current translation unit, in the same namespaces
and contexts [...]. [Note: The entities are not redeclared in the translation unit containing the

178 The build2 Build System Revision 0.18, July 2025

16.3.1 Modules Introduction

module import declaration. -- end note | One intuitive way to think about this visibility is as if
there were only a single translation unit for the entire program that contained all the modules as
well as all their consumers. In such a translation unit all the names would be visible to everyone
in exactly the same way and no entity would be redeclared.

This visibility semantics suggests that modules are not a name scoping mechanism and are
orthogonal to namespaces. Specifically, a module can export names from any number of names-
paces, including the global namespace. While the module name and its namespace names need
not be related, it usually makes sense to have a parallel naming scheme, as discussed below.
Finally, the import declaration does not imply any additional visibility for names declared
inside namespaces. Specifically, to access such names we must continue using the existing mech-
anisms, such as qualification or using declaration/directive. For example:

import hello.core; // Exports hello::say().
say ()i // Error.
hello::say (); // Ok.

using namespace hello;
say ()i // Ok.

Note also that from the consumer’s perspective a module does not provide any symbols, only
C++ entity names. If we use names from a module, then we may have to satisfy the correspond-
ing symbols using the usual mechanisms: link an object file or a library that provides them. In
this respect, modules are similar to headers and as with headers, module’s use is not limited to
libraries; they make perfect sense when structuring programs. Furthermore, a library may also
have private or implementation modules that are not meant to be imported by the library’s
consumers.

The producer perspective on modules is predictably more complex. In pre-modules C++ we only
had one kind of translation unit (or source file). With modules there are three kinds: module inter-
face unit, module implementation unit, and the original kind which we will call a non-module
translation unit.

There are two additional modular translation units: module interface partition and module imple-
mentation partition. While partitions are supported, they are not covered in this introduction. A
link to a complete example that uses both types of partitions will be given in the next section.

From the producer’s perspective, a module is a collection of module translation units: one inter-
face unit and zero or more implementation units. A simple module may consist of just the inter-
face unit that includes implementations of all its functions (not necessarily inline). A more
complex module may span multiple implementation units.

Revision 0.18, July 2025 The build2 Build System 179

16.3.1 Modules Introduction

A translation unit is a module interface unit if it contains an exporting module declaration:

export module hello;

A translation unit is a module implementation unit if it contains a non-exporting module declara-
tion:

module hello;

While module interface units may use the same file extension as normal source files, we recom-
mend that a different extension be used to distinguish them as such, similar to header files. While
the compiler vendors suggest various (and predictably different) extensions, our recommendation
is .mxx for the .hxx/.cxx source file naming and .mpp for .hpp/.cpp. And if you are
using some other naming scheme, then perhaps now is a good opportunity to switch to one of the
above. Continuing using the source file extension for module implementation units appears
reasonable and that’s what we recommend.

A modular translation unit (that is, either module interface or implementation) that does not start
with one of the above module declarations must then start with the module introducer:

module;

export module hello;

The fragment from the module introducer and until the module declaration is called the global
module fragment. Any name declared in the global module fragment belongs to the global
module, an implied module containing "old" or non-modular declarations that don’t belong to any
named module.

A module declaration (exporting or non-exporting) starts a module purview that extends until the
end of the module translation unit. Any name declared in a module’s purview belongs to the said
module. For example:

module; // Start of global module fragment.
#include <cassert> // Not in purview.

export module hello; // Start of purview.

import std; // In purview.

void say_hello (const std::string&); // In purview.

A name that belongs to a module is invisible to the module’s consumers unless it is exported. A
name can be declared exported only in a module interface unit, only in the module’s purview, and
there are several syntactic ways to accomplish this. We can start the declaration with the export

180 The build2 Build System Revision 0.18, July 2025

16.3.1 Modules Introduction

specifier, for example:
export module hello;
export enum class volume {quiet, normal, loud};

export void say_hello (const char*, volume);

Alternatively, we can enclose one or more declarations into an exported group, for example:
export module hello;

export

{

enum class volume {quiet, normal, loud};

void say_hello (const char*, wvolume);

Finally, if a namespace definition is declared exported, then every name in its body is exported,
for example:

export module hello;

export namespace hello

{

enum class volume {quiet, normal, loud};

void say_hello (const char*, wvolume);

namespace hello

{

void impl (const char*, volume); // Not exported.

Up until now we’ve only been talking about names belonging to a module. What about the corre-
sponding symbols? All the major C++ compilers have chosen to implement the so-called strong
ownership model, where for both exported and non-exported names, the corresponding symbols
are decorated with the module name. As a result, they cannot clash with symbols for identical
names from other named modules or the global module.

What about the preprocessor? Modules do not export preprocessor macros, only C++ names. A
macro defined in the module interface unit cannot affect the module’s consumers. And macros
defined by the module’s consumers cannot affect the module interface they are importing. In
other words, module producers and consumers are isolated from each other where the preproces-
sor is concerned. For example, consider this module interface:

Revision 0.18, July 2025 The build2 Build System 181

16.3.1 Modules Introduction

export module hello;

#ifndef SMALL

#define HELLO

export void say_hello (const char*);
#endif

And its consumer:

// module consumer

//
#define SMALL // No effect.
import hello;

#ifdef HELLO // Not defined.
fendif
This is not to say that the preprocessor cannot be used by either the module interface or its

consumer, it just that macros don’t "leak" through the module interface. One practical conse-
quence of this model is the insignificance of the importation order.

If a module imports another module in its purview, the imported module’s names are not made
automatically visible to the consumers of the importing module. This is unlike headers and can be
surprising. Consider this module interface as an example:

export module hello;
import std;

export std::string formal_hello (const std::string&);

And its consumer:
import hello;

int
main ()

{
std::string s (format_hello ("World"));

}

This example will result in a compile error and the diagnostics may confusingly indicate that
there is no member string in namespace std. But with the understanding of the difference
between import and #include the reason should be clear: while the module interface "sees"
std: :string (because it imported its module), we (the consumer) do not (since we did not).
So the fix is to explicitly import std:

182 The build2 Build System Revision 0.18, July 2025

16.3.1 Modules Introduction

import std;
import hello;

int
main ()

{
std::string s (format_hello ("World"));

A module, however, can choose to re-export a module it imports. In this case, all the names from
the imported module will also be visible to the importing module’s consumers. For example, with
this change to the module interface the first version of our consumer will compile without errors
(note that whether this is a good design choice is debatable, as discussed below):

export module hello;
export import std;

export std::string formal_hello (const std::string&);

One way to think of a re-export is as if an import of a module also "injects" all the imports the
said module re-exports, recursively. That’s essentially how most compilers implement it.

Module re-export is the mechanism for assembling bigger modules out of submodules. As an
example, let’s say we had the hello.core,hello.basic, and hello.extra modules. To
make life easier for users that want to import all of them we can create the hello module that
re-exports the three:

export module hello;

export

{
import hello.core;
import hello.basic;
import hello.extra;

Besides starting a module purview, a non-exporting module declaration in the implementation
unit makes (non-internal linkage) names declared or made visible (via import) in the module
purview of an interface unit also visible in the module purview of the implementation unit. In this
sense a non-exporting module declaration acts as a special import. The following example
illustrates this point:

module;
import hello.impl; // Not visible (exports impl()).
#include <string.h> // Not visible (declares strlen()).

export module hello.extra; // Start of module purview (interface).

Revision 0.18, July 2025 The build2 Build System 183

16.3.1 Modules Introduction

import hello.core; // Visible (exports core()).
void extra (); // Visible.
static void extra2 (); // Not visible (internal linkage).

And this is the implementation unit:

module hello.extra; // Start of module purview (implementation).
void
£ 0
{
impl (); // Error.
strlen (""); // Error.
core (); // Ok.
extra (); // Ok.
extra2 (); // Error.

}

In particular, this means that while the relative order of imports is not significant, the placement
of imports in the module interface unit relative to the module declaration can be.

The final perspective that we consider is that of the build system. From its point of view the
central piece of the module infrastructure is the binary module interface or BMI: a binary file that
is produced by compiling the module interface unit and that is required when compiling any
translation unit that imports this module as well as the module’s implementation units.

Then, in a nutshell, the main functionality of a build system when it comes to modules support is
figuring out the order in which all the translation units should be compiled and making sure that
every compilation process is able to find the binary module interfaces it needs.

Predictably, the details are more complex. Compiling a module interface unit produces two
outputs: the binary module interface and the object file. The latter contains object code for
non-inline functions, global variables, etc., that the interface unit may define. This object file has
to be linked when producing any binary (program or library) that uses this module.

Also, all the compilers currently implement module re-export as a shallow reference to the
re-exported module name which means that their binary interfaces must be discoverable as well,
recursively. In fact, currently, all the imports are handled like this, though a different implementa-
tion is at least plausible, if unlikely.

While the details vary between compilers, the contents of the binary module interface can range
from a stream of preprocessed tokens to something fairly close to object code. As a result, binary
interfaces can be sensitive to the compiler options and if the options used to produce the binary
interface (for example, when building a library) are sufficiently different compared to the ones
used when compiling the module consumers, the binary interface may be unusable. So while a
build system should strive to reuse existing binary interfaces, it should also be prepared to

184 The build2 Build System Revision 0.18, July 2025

16.3.2 Building Modules

compile its own versions "on the side".

This also suggests that binary module interfaces are not a distribution mechanism and should
probably not be installed. Instead, we should install and distribute module interface sources and
build systems should be prepared to compile them, again, on the side.

16.3.2 Building Modules

Compiler support for C++ modules is still experimental, incomplete, and often buggy. Also, in
build2, the presence of modules changes the C++ compilation model in ways that would intro-
duce unnecessary overheads for headers-only code. As a result, a project must explicitly enable
modules using the cxx.features.modules boolean variable. This is what the relevant
root .build fragment could look like for a modularized project:

cxx.std = latest
cxx.features.modules = true

using cxx

mxx{*}: extension = mxx
cxx{*}: extension = cxx

Note that you must explicitly enable modules in your project even if you are only importing other
modules, including standard library modules (std or std.compat).

To support C++ modules the cxx build system module defines several additional target types.
The mxx { } target is a module interface unit. As you can see from the above root .build frag-
ment, in this project we are using the .mxx extension for our module interface files. While you
can use the same extension as for cxx{} (source files), this is not recommended since some
functionality, such as wildcard patterns, will become unusable.

The bmi { } group and its bmie{},bmia{}, and bmis{} members are used to represent binary
module interfaces targets. We normally do not need to mention them explicitly in our build-
files except, perhaps, to specify additional, module interface-specific compile options.

To build a modularized executable or library we simply list the module interfaces as its prerequi-
sites, just as we do for source files. As an example, let’s build the hello program that we have
started in the introduction (you can find the complete project in the |cxx20-modules—exam-|
repository under hello-module). Specifically, we assume our project contains the
following files:

Revision 0.18, July 2025 The build2 Build System 185

https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std
https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std

16.3.2 Building Modules

// file: hello.mxx (module interface)
export module hello;
import std;
export namespace hello
{
void say_hello (const std::string_view& name);
// file: hello.cxx (module implementation)
module hello;
namespace hello

{

void say_hello (const std::string_viewé& n)

{
std::cout << "Hello, " << n << "!’ << std::endl;

// file: main.cxx
import hello;
int

main ()

{
hello::say_hello ("World");

To build a hel1lo executable from these files we can write the following buildfile:

exe{hello}: cxx{main} {mxx cxx}{hello}

Or, if you prefer to use wildcard patterns:

exe{hello}: {mxx cxx}{*}

Module partitions, both interface and implementation, are compiled to BMIs and as a result must
be listed as mxx { } prerequisites. See hello-partition in the [cxx20-modules—exam-]

repository for a complete example.

Alternatively, we can place the module into a library and then link the library to the executable
(see hello-library-module in the|cxx20-modules—examples|repository):

exe{hello}: cxx{main} lib{hello}
lib{hello}: {mxx cxx}{hello}

186 The build2 Build System Revision 0.18, July 2025

https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std
https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std
https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std

16.3.2 Building Modules

Note that a library consisting of only module interface units is by default always binful (see
[Library Exportation and Versioning| for background) since compiling a module interface always
results in an object file, even if the module interface does not contain any non-inline/template
functions or global variables. However, you can explicitly request for such a library to be treated
as binless:

lib{hello}: mxx{hello}
{

bin.binless = true

}

Note that if such a binless library has non-inline/template functions or global variables, then
whether it can used in all situations without causing duplicate symbols is platform-dependent.

As you might have surmised from this example, the modules support in build2 automatically
resolves imports to module interface units that are specified either as direct prerequisites or as
prerequisites of library prerequisites.

To perform this resolution without a significant overhead, the implementation delays the extrac-
tion of the actual module name from module interface units (since not all available module inter-
faces are necessarily imported by all the translation units). Instead, the implementation tries to
guess which interface unit implements each module being imported based on the interface file
path. Or, more precisely, a two-step resolution process is performed: first a best match between
the desired module name and the file path is sought and then the actual module name is extracted
and the correctness of the initial guess is verified.

The practical implication of this implementation detail is that our module interface files must
embed a portion of a module name, or, more precisely, a sufficient amount of "module name tail"
to unambiguously resolve all the modules used in a project. Note that this guesswork is only
performed for direct module interface prerequisites; for those that come from libraries the module
names are known and are therefore matched exactly. And the guesses are always verified before
the actual compilation, so misguesses cannot go unnoticed.

As an example, let’s assume our hello project had two modules: hello.core and
hello.extra. While we could call our interface files hello.core.mxx and
hello.extra.mxx, respectively, this doesn’t look particularly good and may be contrary to
the file naming scheme used in our project. To resolve this issue the match of module names to
file names is made "fuzzy": it is case-insensitive, it treats all separators (dots, dashes, under-
scores, etc) as equal, and it treats a case change as an imaginary separator. As a result, the follow-
ing naming schemes will all match the hello.core module name:

hello-core.mxx
hello_core.mxx
HelloCore.mxx

hello/core.mxx

Revision 0.18, July 2025 The build2 Build System 187

16.3.3 Module Symbols Exporting

We also don’t have to embed the full module name. In our case, for example, it would be most
natural to call the files core.mxx and extra.mxx since they are already in the project direc-
tory called hello/. This will work since our module names can still be guessed correctly and
unambiguously.

If a guess turns out to be incorrect, the implementation issues diagnostics and exits with an error
before attempting to build anything. To resolve this situation we can either adjust the interface
file names or we can specify the module name explicitly with the cxx .module_name variable.
The latter approach can be used with interface file names that have nothing in common with
module names, for example:

mxx{foobar}@./: cxx.module_name = hello

Note also that the standard library modules (std and std.compat) are treated specially and
are resolved in a compiler-specific manner.

When C++ modules are enabled and available, the build system makes sure the
__cpp_modules feature test macro is defined. However, if the compiler version being used
does not claim complete modules support, its value may not be 201907.

16.3.3 Module Symbols Exporting

When building a shared library, some platforms (notably Windows) require that we explicitly
export symbols that must be accessible to the library consumers. If you don’t need to support
such platforms, you can thank your lucky stars and skip this section.

When using headers, the traditional way of achieving this is via an "export macro" that is used to
mark exported APIs, for example:

LIBHELLO_EXPORT void say_hello (const stringé&);

This macro is then appropriately defined (often in a separate "export header") to export symbols
when building the shared library and to import them when building the library’s consumers (and
to nothing when either building or consuming the static library).

The introduction of modules changes this in a number of ways, at least as implemented by MSVC
and Clang. While we still have to explicitly mark exported symbols in our module interface unit,
there is no need (and, in fact, no way) to do the same when said module is imported. Instead, the
compiler automatically treats all such explicitly exported symbols (note: symbols, not names) as
imported.

While the automatic importing may look like the same mechanism as what’s used to support
[Automatic DLL. Symbol Exporting} it appears not to be since it also works for global variables,
not only functions. However, reportedly, it does appear to incur the same additional overhead as
auto-importing, at least for functions.

188 The build2 Build System Revision 0.18, July 2025

16.3.3 Module Symbols Exporting

One notable aspect of this new model is the locality of the export macro: it is only defined when
compiling the module interface unit and is not visible to the consumers of the module. This is
unlike headers where the macro has to have a unique per-library name (that LIBHELLO__ prefix)
because a header from one library can be included while building another library.

We can continue using the same export macro and header with modules and, in fact, that’s the
recommended approach if maintaining the dual, header/module arrangement for backwards
compatibility. However, for modules-only codebases, we have an opportunity to improve the situ-
ation in two ways: we can use a single, keyword-like macro instead of a library-specific one and
we can make the build system manage it for us thus getting rid of the export header.

To enable this functionality in build2 we set the cxx.features.symexport boolean vari-
able to t rue before loading the cxx module. For example:

cxx.std = latest
cxx.features.modules = true
cxx.features.symexport = true

using cxx

Once enabled, build2 automatically defines the __symexport macro to the appropriate value
depending on the platform and the type of library being built. As library authors, all we have to
do is use it in appropriate places in our module interface units, for example:

export module hello;
import std;

export ___symexport void say_hello (const std::stringé&);

You may be wondering why can’t a module export automatically mean a symbol export? While
you will normally want to export symbols of all your module-exported names, you may also need
to do so for some non-module-exported ones. For example:

export module foo;

__symexport void f_impl ();

export ___symexport inline void f ()
{

f_impl ();
}

Furthermore, symbol exporting is a murky area with many limitations and pitfalls (such as
auto-exporting of base classes). As a result, it would not be unreasonable to expect such an auto-
matic module exporting to only further muddy the matter.

Revision 0.18, July 2025 The build2 Build System 189

16.3.4 Modules Installation

16.3.4 Modules Installation

As discussed in the introduction, binary module interfaces are not a distribution mechanism and
installing module interface sources appears to be the preferred approach.

Module interface units are by default installed in the same location as headers (for example,
/usr/include). However, instead of relying on a header-like search mechanism (-I paths,
etc.), an explicit list of exported modules is provided for each library in its . pc (pkg-config)
file.

Specifically, the library’s . pc file contains the cxx .modules variable that lists all the exported
C++ modules in the <name>=<path> form with <name> being the module’s C++ name and
<path> — the module interface file’s absolute path. For example:

Name: libhello

Version: 1.0.0

Cflags:

Libs: -L/usr/lib -lhello

cxx.modules = hello.core=/usr/include/hello/core.mxx hello.extra=/usr/include/hello/extra.mxx

The : character in a module partition name is encoded as . .. For example, for hello:core we
would have:

cxx.modules = hello..core=/usr/...

Additional module properties are specified with variables in the cxx.module_<prop-
erty>.<name> form, for example:

cxx.module_symexport.hello.core = true
cxx.module_preprocessed.hello.core = all

Currently, two properties are defined. The symexport property with the boolean value signals
whether the module uses the ___symexport support discussed above.

The preprocessed property indicates the degree of preprocessing the module unit requires
and is used to optimize module compilation. Valid values are none (not preprocessed),
includes (no #include directives in the source), modules (as above plus no module decla-
rations depend on the preprocessor, for example, #ifdef, etc.), and all (the source is fully
preprocessed). Note that for all the source may still contain comments and line continuations.

16.3.5 Modules Design Guidelines

Modules are a physical design mechanism for structuring and organizing our code. Their explicit
exportation semantics combined with the way they are built make many aspects of creating and
consuming modules significantly different compared to headers. This section provides basic
guidelines for designing modules. We start with the overall considerations such as module granu-

190 The build2 Build System Revision 0.18, July 2025

16.3.5 Modules Design Guidelines

larity and partitioning into translation units then continue with the structure of typical module
interface and implementation units. The following section discusses practical approaches to
modularizing existing code.

Unlike headers, the cost of importing modules should be negligible. As a result, it may be tempt-
ing to create "mega-modules”, for example, one per library. After all, this is how the standard
library is modularized with its std and std.compat modules.

There is, however, a significant drawback to this choice: every time we make a change, all
consumers of such a mega-module will have to be recompiled, whether the change affects them
or not. And the bigger the module the higher the chance that any given change does not (semanti-
cally) affect a large portion of the module’s consumers. Note also that this is not an issue for the
standard library modules since they are not expected to change often.

Another, more subtle, issue with mega-modules (which does affect the standard library) is the
inability to re-export only specific interfaces, as will be discussed below.

The other extreme in choosing module granularity is a large number of "mini-modules". Their
main drawback is the tediousness of importation by the consumers.

The sensible approach is then to create modules of conceptually-related and commonly-used enti-
ties possibly complemented with aggregate modules for ease of importation. This also happens to
be generally good design.

As an example, let’s consider a JSON library that provides support for both parsing and serializa-
tion. Since it is common for applications to only use one of the functionalities, it makes sense to
provide the json.parser and json.serializer modules. Depending on the representa-
tion of JSON we use in our library, it will most likely have some shared types so it probably
makes sense to have the json.types module that is re-exported by the parser and serializer
modules. While it is not too tedious to import both json.parser and json.serializer if
both a needed, for convenience we could also provide the json module that re-exports the two.
Something along these lines:

// types.mxx
export module json.types;

export class Jjson

{

}i

Revision 0.18, July 2025 The build2 Build System 191

16.3.5 Modules Design Guidelines

// parser.mxx

export module json.parser;

export import json.types;

export Jjson parse (...);

// serializer.mxx

export module json.serializer;
export import json.types;

export ... serialize (const Jjson&);
// json.mxx

export module json;

export import json.types;
export import json.parser;
export import json.serializer;

Once we are past selecting an appropriate granularity for our modules, the next question is how to
partition them into translation units. A module can consist of just the interface unit and, as
discussed above, such a unit can contain anything an implementation unit can, including
non-inline function definitions. Some may then view this as an opportunity to get rid of the
header/source separation and have everything in a single file.

There are a number of drawbacks with this approach: Every time we change anything in the
module interface unit, all its consumers have to be recompiled. If we keep everything in a single
file, then every time we change the implementation we trigger recompilations that would have
been avoided had the implementation been factored out into a separate unit. Note that a build
system in cooperation with the compiler could theoretically avoid such unnecessary recompila-
tions in certain cases: if the compiler produces identical binary interface files when the module
interface is unchanged, then the build system could detect this and skip recompiling the module’s
consumers.

A related issue with single-file modules is the reduction in the build parallelization opportunities.
If the implementation is part of the interface unit, then the build system cannot start compiling the
module’s consumers until both the interface and the implementation are compiled. On the other
hand, had the implementation been split into a separate file, the build system could start compil-
ing the module’s consumers (as well as the implementation unit) as soon as the module interface
is compiled.

Another issues with combining the interface with the implementation is the readability of the
interface which could be significantly reduced if littered with implementation details. We could
keep the interface separate by moving the implementation to the bottom of the interface file but

192 The build2 Build System Revision 0.18, July 2025

16.3.5 Modules Design Guidelines

then we might as well move it into a separate file and avoid the unnecessary recompilations or
parallelization issues.

The sensible guideline is then to have a separate module implementation unit except perhaps for
modules with a simple implementation that is mostly inline/template. Note that more complex
modules may have several implementation units, however, based on our granularity guideline,
those should be rare.

Once we start writing our first real module the immediate question that normally comes up is
where to put #include directives and import declarations and in what order. To recap, a
module unit, both interface and implementation, is split into two parts: before the module declara-
tion, called the global module fragment, which obeys the usual or "old" translation unit rules and
after the module declaration which is the module purview. Inside the module purview all declara-
tions have their symbols invisible to any other module (including the global module). With this
understanding, consider the following module interface:

export module hello;

#include <string>

Do you see the problem? We have included <string> in the module purview which means all
its names (as well as all the names in any headers it might include, recursively) are now declared
as having the hello module linkage. The result of doing this can range from silent code blot to
strange-looking unresolved symbols.

The guideline this leads to should be clear: including a header in the module purview is almost
always a bad idea. There are, however, a few types of headers that may make sense to include in
the module purview. The first are headers that only define preprocessor macros, for example,
configuration or export headers. There are also cases where we do want the included declarations
to end up in the module purview. The most common example is inline/template function imple-
mentations that have been factored out into separate files for code organization reasons. As an
example, consider the following module interface that uses an export header (which presumably
sets up symbols exporting macros) as well as an inline file:

module;

#include <string>

export module hello;

#include <libhello/export.hxx>

export namespace hello

{
}

#include <libhello/hello.ixx>

Revision 0.18, July 2025 The build2 Build System 193

16.3.5 Modules Design Guidelines

A note on inline/template files: in header-based projects we could include additional headers in
those files, for example, if the included declarations are only needed in the implementation. For
the reasons just discussed, this does not work with modules and we have to move all the includes
into the interface file, into the global module fragment. On the other hand, with modules, it is safe
to use namespace-level using-directives (for example, using namespace std;) in
inline/template files (and, with care, even in the interface file).

What about imports, where should we import other modules? Again, to recap, unlike a header
inclusion, an import declaration only makes exported names visible without redeclaring them.
As result, in module implementation units, it doesn’t really matter where we place imports, in the
module purview or the global module fragment. There are, however, two differences when it
comes to module interface units: only imports in the purview are visible to implementation units
and we can only re-export an imported module from the purview.

The guideline is then for interface units to import in the module purview unless there is a good
reason not to make the import visible to the implementation units. And for implementation units
to always import in the purview for simplicity. For example:

module;

#include <cassert>

export module hello;

import std;

#include <libhello/export.hxx>

export namespace hello

{
}

#include <libhello/hello.ixx>

By putting all these guidelines together we can then create a module interface unit template:
// Module interface unit.

module; // Start of global module fragment.

<header includes>

export module <name>; // Start of module purview.

<module imports>

<special header includes> // Configuration, export, etc.

194 The build2 Build System Revision 0.18, July 2025

16.3.5 Modules Design Guidelines

<module interface>

<inline/template includes>

As well as the module implementation unit template:

// Module implementation unit.

module; // Start of global module fragment.
<header includes>

module <name>; // Start of module purview.

<extra module imports> // Only additional to interface.

<module implementation>

Let’s now discuss module naming. Module names are in a separate "name plane" and do not
collide with namespace, type, or function names. Also, as mentioned earlier, the standard does
not assign a hierarchical meaning to module names though it is customary to assume module
hello.core is a submodule of hello and, unless stated explicitly otherwise, importing the
latter also imports the former.

It is important to choose good names for public modules (that is, modules packaged into libraries
and used by a wide range of consumers) since changing them later can be costly. We have more
leeway with naming private modules (that is, the ones used by programs or internal to libraries)
though it’s worth coming up with a consistent naming scheme here as well.

The general guideline is to start names of public modules with the library’s namespace name
followed by a name describing the module’s functionality. In particular, if a module is dedicated
to a single class (or, more generally, has a single primary entity), then it makes sense to use that
name as the module name’s last component.

As a concrete example, consider 1ibbutl (the build2 utility library): All its components are
in the but 1 namespace so all its module names start with but1. One of its components is the
small_vector class template which resides in its own module called
butl.small_vector. Another component is a collection of string parsing utilities that are
grouped into the butl: :string_parser namespace with the corresponding module called
butl.string_parser.

When is it a good idea to re-export a module? The two straightforward cases are when we are
building an aggregate module out of submodules, for example, json out of json.parser and
json.serializer, or when one module extends or supersedes another, for example, as
json.parser extends json.types. It is also clear that there is no need to re-export a
module that we only use in the implementation. The case when we use a module in our interface
1s, however, a lot less clear cut.

Revision 0.18, July 2025 The build2 Build System 195

16.3.5 Modules Design Guidelines

But before considering the last case in more detail, let’s understand the issue with re-export. In
other words, why not simply re-export any module we import in our interface? In essence,
re-export implicitly injects another module import anywhere our module is imported. If we
re-export std then consumers of our module will also automatically "see" all the names exported
by std. They can then start using names from std without explicitly importing std and every-
thing will compile until one day they no longer need to import our module or we no longer need
to import std. In a sense, re-export becomes part of our interface and it is generally good design
to keep interfaces minimal.

And so, at the outset, the guideline is then to only re-export the minimum necessary.

Let’s now discuss a few concrete examples to get a sense of when re-export might or might not
be appropriate. Unfortunately, there does not seem to be a hard and fast rule and instead one has
to rely on their good sense of design.

To start, let’s consider a simple module that uses std: : string in its interface:
export module hello;

import std;

export namespace hello

{

std::string format_hello (const std::stringé&);
}

Should we re-export std in this case? Most likely not. If consumers of our module want to refer
to std: : string, then it is natural to expect them to explicitly import the necessary module. In
a sense, this is analogous to scoping: nobody expects to be able to use just string (without
std: :) because of using namespace hello;.

So it seems that a mere usage of a name in an interface does not generally warrant a re-export.
The fact that a consumer may not even use this part of our interface further supports this conclu-
sion.

Let’s now consider a more interesting case (inspired by real events):
export module small_vector;

import std;

template <typename T, std::size_t N>

export class small_vector: public std::vector<T, ...>

{

}i

196 The build2 Build System Revision 0.18, July 2025

16.3.6 Modularizing Existing Code

Here we have the small_vector container implemented in terms of std::vector by
providing a custom allocator and with most of the functions derived as is. Consider now this
innocent-looking consumer code:

import small_vector;
small_vector<int, 1> a, b;

if (a == b) // Error.

We don’t reference std: :vector directly so presumably we shouldn’t need to import its
module. However, the comparison won’t compile: our small_vector implementation re-uses
the comparison operators provided by std: : vector (via implicit to-base conversion) but they
aren’t visible.

There is a palpable difference between the two cases: the first merely uses std interface while
the second is based on and, in a sense, extends it which feels like a stronger relationship.
Re-exporting std (or, better yet, std.vector, if it were available) seems less unreasonable.

Note also that there is no re-export of headers nor header inclusion visibility in the implementa-
tion units. Specifically, in the previous example, if the standard library is not modularized and we
have to use it via headers, then the consumers of our small_vector will always have to
explicitly include <vector>. This suggest that modularizing a codebase that still consumes
substantial components (like the standard library) via headers can incur some development over-
head compared to the old, headers-only approach.

16.3.6 Modularizing Existing Code

The aim of this section is to provide practical guidelines to modularizing existing codebases.

Predictably, a well modularized (in the general sense) set of headers makes conversion to C++
modules easier. Inclusion cycles will be particularly hard to deal with (C++ modules do not allow
circular interface dependencies). Having a one-to-one header to module mapping will simplify
this task. As a result, it may make sense to spend some time cleaning and re-organizing your
headers prior to attempting modularization.

The recommended strategy for modularizing our own components is to identify and modularize
inter-dependent sets of headers one at a time starting from the lower-level components. This way
any newly modularized set will only depend on the already modularized ones. After converting
each set we can switch its consumers to using imports keeping our entire project buildable and
usable.

Revision 0.18, July 2025 The build2 Build System 197

16.4 Objective-C++ Compilation

While ideally we would want to be able to modularize just a single component at a time, this does
not seem to work in practice because we will have to continue consuming some of the compo-
nents as headers. Since such headers can only be imported out of the module purview, it becomes
hard to reason (both for us and often the compiler) what is imported/included and where. For
example, it’s not uncommon to end up importing the module in its implementation unit which is
not something that all the compilers can handle gracefully.

If our module needs to "export" macros then the recommended approach is to simply provide an
additional header that the consumer includes. While it might be tempting to also wrap the module
import into this header, some may prefer to explicitly import the module and include the header,
especially if the macros may not be needed by all consumers. This way we can also keep the
header macro-only which means it can be included freely, in or out of module purviews.

16.4 Objective-C++ Compilation

The cxx module provides the cxx . objcxx submodule which can be loaded in order to register
the mm{ } target type and enable Objective-C++ compilation in the C++ compile rule. Note that
cxx .objcxx must be loaded after the cxx module and while the mm { } target type is registered
unconditionally, compilation is only enabled if the C++ compiler supports Objective-C++ for the
target platform. Typical usage:

root.build

#

using cxx

using cxx.objcxx

buildfile

#
lib{hello}: {hxx cxx}{*}
lib{hello}: mm{*}: include = ($cxx.target.class == ’'macos’)

Note also that while there is support for linking Objective-C++ executables and libraries, this is
done using the C++ compiler driver and no attempt is made to automatically link any necessary
Objective-C runtime library (such as —1objc).

16.5 C++ Compiler Predefined Macro Extraction

The cxx module provides the cxx .predefs submodule which can be loaded in order to regis-
ter a rule that generates a C++ header with predefined compiler macros. Note that the
cxx.predefs module must be loaded after the cxx module and the rule will only match with
an explicit rule hint. Typical usage:

root.build

#

using cxx

using cxx.predefs

198 The build2 Build System Revision 0.18, July 2025

17 in Module

buildfile
#

[rule_hint=cxx.predefs] hxx{predefs}:

See |Compiler Predefined Macro Extraction| for details.

17 in Module

The in build system module provides support for .in (input) file preprocessing. Specifically,
the . in file can contain a number of substitutions — build system variable names enclosed with
the substitution symbol ($ by default) — which are replaced with the corresponding variable
values to produce the output file. For example:

build/root.build

using in

// config.hxx.in

#define TARGET "S$cxx.target$"
buildfile

hxx{config}: in{config}
The in module defines the in{ } target type and implements the in build system rule.

While we can specify the . in extension explicitly, it is not necessary because the in{} target
type implements target-dependent search by taking into account the target it is a prerequisite of.
In other words, the following dependency declarations produce the same result:

hxx{config}: in{config}

hxx{config.hxx}: in{config}
hxx{config.hxx}: in{config.hxx.in}

By default the in rule uses $ as the substitution symbol. This can be changed using the
in.symbol variable. For example:

// data.cxx.in

const char data[] = "Q@data@R";
buildfile

cxx{data}: in{data}

{

in.symbol = '@’
data = ’'Hello, World!’

Revision 0.18, July 2025 The build2 Build System 199

17 in Module

Note that the substitution symbol must be a single character.

The default substitution mode is strict. In this mode every substitution symbol is expected to start
a substitution with unresolved (to a variable value) names treated as errors. The double substitu-
tion symbol (for example, $$) serves as an escape sequence.

The substitution mode can be relaxed using the in.mode variable. Its valid values are strict
(default) and 1ax. In the lax mode a pair of substitution symbols is only treated as a substitution
if what’s between them looks like a build system variable name (that is, it doesn’t contain spaces,
etc). Everything else, including unterminated substitution symbols, is copied as is. Note also that
in this mode the double substitution symbol is not treated as an escape sequence.

The lax mode is mostly useful when trying to reuse existing . in files from other build systems,
such as autocontf. Note, however, that the lax mode is still stricter than autoconf’s seman-
tics which also leaves unresolved substitutions as is. For example:

buildfile

h{config}: in{config} # config.h.in

{
in.symbol = '@’
in.mode = lax

CMAKE_SYSTEM_NAME = $c.target.system
CMAKE_SYSTEM_PROCESSOR = $c.target.cpu
}

The in rule tracks changes to the input file as well as the substituted variable values and auto-
matically regenerates the output file if any were detected. Substituted variable values are looked
up starting from the target-specific variables. Typed variable values are converted to string using
the corresponding builtin.string () function overload before substitution.

While specifying substitution values as buildfile variables is usually natural, sometimes this
may not be possible or convenient. Specifically, we may have substitution names that cannot be
specified as buildfile variables, for example, because they start with an underscore (and are
thus reserved) or because they refer to one of the predefined variables. Also, we may need to have
different groups of substitution values for different cases, for example, for different platforms,
and it would be convenient to pass such groups around as a single value.

To support these requirements the substitution values can alternatively be specified as key-value
pairs in the in.substitutions variable. Note that entries in this substitution map take prece-
dence over the buildfile variables. For example:

/* config.h.in */

#define _GNU_SOURCE @_GNU_SOURCE®
#define _POSIX_SOURCE @_POSIX_SOURCE(@

200 The build2 Build System Revision 0.18, July 2025

18 bash Module

buildfile

h{config}: in{config}
{
in.symbol = '@’
in.mode = lax

in.substitutions = _GNU_SOURCE@O _POSIX_ SOURCE@1

In the above example, the @ characters in in.symbol and in.substitutions are unre-
lated.

Using an undefined variable in a substitution is an error. Using a null value in a substitution is
also an error unless the fallback value is specified with the in.null variable. For example:

buildfile
h{config}: in{config}
{

in.null = '’ # Substitute null values with empty string.

}

To specify a null value using the in.substitutions mechanism omit the value, for
example:

in.substitutions = _GNU_SOURCE

A number of other build system modules, for example, autoconf] [version} and [oash| are
based on the in module and provide extended functionality. The in preprocessing rule matches
any file{ }-based target that has the corresponding in{} prerequisite provided none of the
extended rules match.

18 bash Module

The bash build system module provides modularization support for bash scripts. It is based on
the build system module and extends its preprocessing rule with support for import substitu-
tions in the @import <module>@ form. During preprocessing, such imports are replaced with
suitable source builtin calls. For example:

build/root.build
using bash

hello/say-hello.bash
function say_hello ()

{
echo "Hello, $1!"

}

Revision 0.18, July 2025 The build2 Build System 201

https://github.com/build2/libbuild2-autoconf/

18 bash Module

#!/usr/bin/env bash

hello/hello.in
@import hello/say-hello@
say_hello 'World’

hello/buildfile

exe{hello}: in{hello} bash{say-hello}

By default the bash preprocessing rule uses the lax substitution mode and @ as the substitution
symbol but this can be overridden using the standard in module mechanisms.

In the above example, say-hello.bash is a module. By convention, bash modules have the
.bash extension and we use the bash{} target type (defined by the bash build system
module) to refer to them in buildfiles.

The say-hello.bash module is imported by the hello script with the
@import hello/say-hello@ substitution. The import path (hello/say-hello in our
case) is a path to the module file within the project. Its first component (hel1lo in our case) must
be both the project name and the top-level subdirectory within the project. The .bash module
extension can be omitted. The constraint placed on the first component of the import path is
required to implement importation of installed modules, as discussed below.

During preprocessing, the import substitution will be replaced with a source builtin call and the
import path resolved to one of the bash{} prerequisites from the script’s dependency declara-
tion. The actual module path used in source depends on whether the script is preprocessed for
installation. If it’s not (development build), then the absolute path to the module file is used.
Otherwise, a path relative to the sourcing script’s directory is derived. This allows installed
scripts and their modules to be moved around.

The derivation of the sourcing script’s directory works even if the script is executed via a
symbolic link from another directory. Implementing this, however, requires readlink (1) with
support for the —f option. One notable platform that does not provide such readlink (1) by
default is Mac OS. The script, however, can provide a suitable implementation as a function. See
the bash module tests for a sample implementation of such a function.

By default, bash modules are installed into a subdirectory of the bin/ installation directory
named as the project name plus the .bash extension. For instance, in the above example, the
script will be installed as bin/hello and the module as
bin/hello.bash/say-hello.bash with the script sourcing the module relative to the
bin/ directory. Note that currently it is assumed the script and all its modules are installed into
the same bin/ directory.

202 The build2 Build System Revision 0.18, July 2025

18 bash Module

Naturally, modules can import other modules and modules can be packaged into module libraries
and imported using the standard build system import mechanism. For example, we could factor
the say—hello.bash module into a separate 1ibhello project:

build/export.build
$Sout_root/
{
include libhello/
}
export $src_root/libhello/$import.target
libhello/say-hello.bash
function hello_say_hello ()

{
echo "Hello, $1!"

}

And then import it in a module of our hello project:
hello/hello-world.bash.in
@import libhello/say-helloQ@
function hello_world ()

{ hello_say_hello "World’

}

#!/usr/bin/env bash

hello/hello.in

@import hello/hello-world@
hello_world

hello/buildfile

import mods = libhello%bash{say-hello}

exe{hello}: in{hello} bash{hello-world}
bash{hello-world}: in{hello-world} $mods

The bash preprocessing rule also supports importation of installed modules by searching in the
PATH environment variable.

By convention, bash module libraries should use the 1ib name prefix, for example,
libhello. If there is also a native library (that is, one written in C/C++) that provides the same
functionality (or the bash library is a language binding for the said library), then it is customary
to add the .bash extension to the bash library name, for example, 1ibhello.bash. Note

Revision 0.18, July 2025 The build2 Build System 203

19 Appendix A — JSON Dump Format

that in this case the top-level subdirectory within the project is expected to be called without the
bash extension, for example, 1ibhello.

Modules can be private or public. Private modules are implementation details of a specific project
and are not expected to be imported from other projects. The
hello/hello-world.bash.in module above is an example of a private module. Public
modules are meant to be used by other projects and are normally packaged into libraries, like the
libhello/say—-hello.bash module above.

Public modules must take care to avoid name clashes. Since bash does not have a notion of
namespaces, the recommended way is to prefix all module functions (and global variables, if any)
with the library name (without the 1ib prefix), like in the 1ibhello/say-hello.bash
module above.

While using such decorated function names can be unwieldy, it is relatively easy to create wrap-
pers with shorter names and use those instead. For example:

@import libhello/say-hello@

function say_hello () { hello_say_hello "$@"; }

A module should normally also prevent itself from being sourced multiple times. The recom-
mended way to achieve this is to begin the module with a source guard. For example:

libhello/say-hello.bash

if ["Shello_say_hello"]; then
return 0

else
hello_say_hello=true

fi

function hello_say_hello ()

{
echo "Hello, $1!"

}

The bash preprocessing rule matches exe { } targets that have the corresponding in{} and one
or more bash{} prerequisites as well as bash{} targets that have the corresponding in{}
prerequisite (if you need to preprocess a script that does not depend on any modules, you can use
the in module’s rule).

19 Appendix A — JSON Dump Format

This appendix describes the machine-readable, JSON-based build system state dump format that
can be requested with the ——dump-format=json-v0.1 build system driver option (see
b (1) for details).

204 The build2 Build System Revision 0.18, July 2025

19 Appendix A — JSON Dump Format

The format is specified in terms of the serialized representation of C++ struct instances. See
JSON OUTPUT for details on the overall properties of this format and the semantics of the
struct serialization.

This format is currently unstable (thus the temporary —vO0 . 1 suffix) and may be changed in ways
other than as described in JSON OUTPUT. In case of such changes the format version will be
incremented to allow detecting incompatibilities but no support for older versions is guaranteed.

The build system state can be dumped after the load phase (——dump=1o0ad), once the build state
has been loaded, and/or after the match phase (-—dump=match), after rules have been matched
to targets to execute the desired action. The JSON format differs depending on after which phase
it is produced. After the load phase the format aims to describe the action-independent state,
essentially as specified in the buildfiles. While after the match phase it aims to describe the
state for executing the specified action, as determined by the rules that have been matched. The
former state would be more appropriate, for example, for an IDE that tries to use buildfiles
as project files. While the latter state could be used to determine the actual build graph for a
certain action, for example, in order to infer which executable targets are considered tests by the
test operation.

While it’s possible to dump the build state as a byproduct of executing an action (for example,
performing an update), it’s often desirable to only dump the build state and do it as quickly as
possible. For such cases the recommended option combinations are as follows (see the
—-load-only and ——match-only documentation for details):

$ b ——load-only —--dump=load —--dump-format=json-v0.1 .../dir/
$ b ——match-only ——-dump=match —--dump-format=json-v0.1l .../dir/
$ b ——match-only ——-dump=match —--dump-format=json-v0.1l .../dir/type{name}

Note that a match dump for a large project can produce a large amount of data, especially for the
update operation (tens and even hundreds of megabytes is not uncommon). To reduce this size
it is possible to limit the dump to specific scopes and/or targets with the ——dump-scope and
——dump-target options.

The complete dump (that is, not of a specific scope or target) is a tree of nested scope objects (see
[Output Directories and Scopes| for background). The scope object has the serialized representa-
tion of the following C++ struct scope. It is the same for both load and match dumps except
for the type of the target s member:

Revision 0.18, July 2025 The build2 Build System 205

19 Appendix A — JSON Dump Format

struct scope

{
string out_path;
optional<string> src_path;
vector<variable> variables; // Non-type/pattern scope variables.

vector<scope> scopes; // Immediate children.

vector<loaded_target|matched_target> targets;
bi

For example (parts of the output are omitted for brevity):

The actual output is produced unindented to reduce the size.

$ cd /tmp
$ bdep new hello
$ cd hello
$ bdep new -C @gcc cc
$ b ——-load-only ——-dump=load —--dump-format=json-v0.1
{
"out_path": "",
"variables": [...],
"scopes": [
{
"out_path": "/tmp/hello-gcc",
"variables": [...],
"scopes": [
{
"out_path": "hello",
"src_path": "/tmp/hello",
"variables": [...],
"scopes": [
{
"out_path": "hello",
"src_path": "/tmp/hello/hello",
"variables": [...],
"targets": [... 1]
}
]I
"targets": [... 1]
}
]I
"targets": [... 1]

The out_path member is relative to the parent scope. It is empty for the special global scope,
which is the root of the tree. The src_path member is absent if it is the same as out_path (in
source build or scope outside of project).

206 The build2 Build System Revision 0.18, July 2025

19 Appendix A — JSON Dump Format

For the match dump, targets that have not been matched for the specified action are omitted.

In the load dump, the target object has the serialized representation of the following C++
struct loaded_target:

struct loaded_target
{

string name; // Relative quoted/qualified name.
string display_name; // Relative display name.
string type; // Target type.

optional<string> group; // Absolute quoted/qualified group target.
vector<variable> variables; // Target variables.

vector<prerequisite> prerequisites;

}i

For example (continuing with the previous hello setup):

"out_path": "",
"scopes": [
{
"out_path": "/tmp/hello-gcc",
"scopes": [
{
"out_path": "hello",
"src_path": "/tmp/hello",
"scopes": [
{
"out_path": "hello",
"src_path": "/tmp/hello/hello",
"targets": [
{
"name": "exe{hello}",
"display_name": "exe{hello}",
"type": "exe",
"prerequisites": [
{
"name": "cxx{hello}",
"type": "cxx"
}I
{
"name": "testscript{testscript}",
"type": "testscript"

Revision 0.18, July 2025 The build2 Build System 207

19 Appendix A — JSON Dump Format

The target name member is the target name that is qualified with the extension (if applicable and
known) and, if required, is quoted so that it can be passed back to the build system driver on the
command line. The display_name member is unqualified and unquoted. Note that both the
target name and display_name members are normally relative to the containing scope (if

any).

The prerequisite object has the serialized representation of the following C++ struct
prerequisite:

struct prerequisite
{

string name; // Quoted/qualified name.

string type;

vector<variable> variables; // Prerequisite variables.
bi

The prerequisite name member is normally relative to the containing scope.

In the match dump, the target object has the serialized representation of the following C++
struct matched_target:

struct matched_target

{

string name;
string display_name;
string type;

optional<string> group;

optional<path> path; // Absent if not path target, not assigned.
vector<variable> variables;

optional<operation_state> outer_operation; // null if not matched.

operation_state inner_operation; // null if not matched.
}i

For example (outer scopes removed for brevity):

$ b ——match-only —--dump=match —--dump-format=json-v0.1
{

"out_path": "hello",
"src_path": "/tmp/hello/hello",
"targets": [
{
"name": "/tmp/hello/hello/cxx{hello.cxx}@./",
"display_name": "/tmp/hello/hello/cxx{hello}@./",
"type" : "exx",

208 The build2 Build System Revision 0.18, July 2025

19 Appendix A — JSON Dump Format

"path": "/tmp/hello/hello/hello.cxx",
"inner_operation": {
"rule": "build.file",
"state": "unchanged"
}
}I
{
"name": "obje{hello.o}",
"display_name": "obje{hello}",
"type": "obje",
"group": "/tmp/hello-gcc/hello/hello/obj{hello}",
"path": "/tmp/hello—-gcc/hello/hello/hello.o",
"inner_operation": {
"rule": "cxx.compile",
"prerequisite_targets": [
{
"name": "/tmp/hello/hello/cxx{hello.cxx}@./",
"type": "cxx"
}I
{
"name": "/usr/include/c++/12/h{iostream.}",
"type": "h"
}I
]
}
}I
{
"name": "exe{hello.}",
"display_name": "exe{hello}",
"type": "exe",
"path": "/tmp/hello—gcc/hello/hello/hello",
"inner_operation": {
"rule": "cxx.link",
"prerequisite_targets": [
{
"name": "/tmp/hello—gcc/hello/hello/obje{hello.o}",
"type": "obje"

The first four members in matched_target have the same semantics as in
loaded_target.

The outer_operation member is only present if the action has an outer operation. For
example, when performing update-for-test, test is the outer operation while update is
the inner operation.

Revision 0.18, July 2025 The build2 Build System 209

19 Appendix A — JSON Dump Format

The operation state object has the serialized representation of the following C++ struct oper-—
ation_state:

struct operation_state

{

string rule; // null if direct recipe match.
optional<string> state; // One of unchanged|changed|group.
vector<variable> variables; // Rule variables.

vector<prerequisite_target> prerequisite_targets;
bi

The rule member is the matched rule name. The state member is the target state, if known
after match. The prerequisite_targets array is a subset of prerequisites resolved to
targets that are in effect for this action. The matched rule may add additional targets, for example,
dynamically extracted additional dependencies, like

/usr/include/c++/12/h{iostream. } in the above listing.

The prerequisite target object has the serialized representation of the following C++ struct
prerequisite_target:

struct prerequisite_target

{
string name; // Absolute quoted/qualified target name.
string type;
bool adhoc;

bi

The variables array in the scope, target, prerequisite, and prerequisite target objects contains
scope, target, prerequisite, and rule variables, respectively.

The variable object has the serialized representation of the following C++ struct variable:

struct variable

{

string name;
optional<string> type;
json_value value; // null|boolean|number |string|object|array

bi
For example:

{

"out_path": "",
"variables": [
{
"name": "build.show_progress",
"type": "bool",
"value": true

by

210 The build2 Build System Revision 0.18, July 2025

19 Appendix A — JSON Dump Format

"name": "build.verbosity",
"type": "uinte4d",
"value": 1
}I
]I
"scopes": [
{
"out_path": "/tmp/hello-gcc",
"scopes": [
{
"out_path": "hello",
"src_path": "/tmp/hello",
"scopes": [
{
"out_path": "hello",
"src_path": "/tmp/hello/hello",
"variables": [
{
"name": "out_base",
"type": "dir_path",
"value": "/tmp/hello-gcc/hello/hello"
}I
{
"name": "src_base",
"type": "dir_path",
"value": "/tmp/hello/hello"
}I
{
"name": "cxx.poptions",
"type": "strings",
"value": [
"-I/tmp/hello-gcc/hello",
"-I/tmp/hello"
]
}I
{
"name": "libs",
"value": "/tmp/hello-gcc/libhello/libhello/lib{hello}"

The t ype member is absent if the variable value is untyped.

The value member contains the variable value in a suitable JSON representation. Specifically:

Revision 0.18, July 2025

The build2 Build System

211

19 Appendix A — JSON Dump Format

null values are represented as JSON null.

bool values are represented as JSON boolean.

int 64 and uint 64 values are represented as JSON number.

string, path, dir_path values are represented as JSON string.

Untyped simple name values are represented as JSON string.

Pairs of above values are represented as JSON objects with the first and second

members corresponding to the pair elements.

Untyped complex name values are serialized as target names and represented as JSON

string.

® Containers of above values are represented as JSON arrays corresponding to the container
elements.

® An empty value is represented as an empty JSON object if it’s a typed pair, as an empty

JSON array if it’s a typed container or is untyped, and as an empty string otherwise.

One expected use-case for the match dump is to determine the set of targets for which a given
action is applicable. For example, we may want to determine all the executables in a project that
can be tested with the test operation in order to present this list to the user in an IDE plugin or
some such. To further illuminate the problem, consider the following buildfile which
declares a number of executable targets, some are tests and some are not:

exe{hellol}: ... testscript # Test because of testscript prerequisite.
exe{hello2}: test = true # Test because of test=true.
exe{hello3}: ... testscript # Not a test because of test=false.

{

test = false

}

As can be seen, trying to infer this information is not straightforward and doing so manually by
examining prerequisites, variables, etc., while possible, will be complex and likely brittle.
Instead, the recommended approach is to use the match dump and base the decision on the
state target object member. Specifically, a rule which matched the target but determined that
nothing needs to be done for this target, returns the special noop recipe. The build2 core
recognizes this situation and sets such target’s state to unchanged during match. Here is what
the match dump will look like for the above three executables:

$ b -—match-only —--dump=match —--dump-format=json-v0.l test

{

"out_path": "hello",
"src_path": "/tmp/hello/hello",
"targets": [
{
"name": "exe{hellol.}",
"display_name": "exe{hellol}",
"type": "exe",
"path": "/tmp/hello-gcc/hello/hello/hellol",

212 The build2 Build System Revision 0.18, July 2025

19 Appendix A — JSON Dump Format

"inner_operation": {
"rule": "test"
}
}I
{
"name": "exe{hello2.}",
"display_name": "exe{hello2}",
"type": "exe",
"path": "/tmp/hello-gcc/hello/hello/hello2",
"inner_operation": {
"rule": "test"
}
}I
{
"name": "exe{hello3}",
"display_name": "exe{hello3}",
"type": "exe",
"inner_operation": {
"rule": "test",
"state": "unchanged"

Revision 0.18, July 2025 The build2 Build System 213

	Preface
	1 Introduction
	1.1 Hello, World
	1.2 Project Structure
	1.3 Output Directories and Scopes
	1.4 Operations
	1.4.1 Configuring
	1.4.2 Testing
	1.4.3 Installing
	1.4.4 Distributing

	1.5 Target Importation
	1.6 Library Exportation and Versioning
	1.7 Subprojects and Amalgamations
	1.8 Buildfile Language
	1.8.1 Expansion and Quoting
	1.8.2 Conditions (if-else)
	1.8.3 Pattern Matching (switch)
	1.8.4 Repetitions (for)

	1.9 Implementing Unit Testing
	1.10 Diagnostics and Debugging

	2 Project Configuration
	2.1 config Directive
	2.2 Configuration Report
	2.3 Configuration Propagation

	3 Targets and Target Types
	3.1 Target Types
	3.1.1 target{}
	3.1.2 alias{} and dir{}
	3.1.3 fsdir{}
	3.1.4 mtime_target{} and path_target{}
	3.1.5 group{}
	3.1.6 file{}
	3.1.7 doc{}, legal{}, and man{}
	3.1.8 exe{}
	3.1.9 json{}

	4 Variables
	5 Functions
	5.1 Builtin Functions
	5.1.1 $builtin.defined()
	5.1.2 $builtin.visibility()
	5.1.3 $builtin.type()
	5.1.4 $builtin.null()
	5.1.5 $builtin.empty()
	5.1.6 $builtin.first(), $builtin.second()
	5.1.7 $builtin.quote()
	5.1.8 $builtin.getenv()

	5.2 String Functions
	5.2.1 $string.icasecmp()
	5.2.2 $string.contains()
	5.2.3 $string.starts_with()
	5.2.4 $string.ends_with()
	5.2.5 $string.replace()
	5.2.6 $string.trim()
	5.2.7 $string.lcase(), $string.ucase()
	5.2.8 $string.size()
	5.2.9 $string.sort()
	5.2.10 $string.find()
	5.2.11 $string.find_index()
	5.2.12 $string.keys()

	5.3 Integer Functions
	5.3.1 $integer.string()
	5.3.2 $integer.integer_sequence()
	5.3.3 $integer.size()
	5.3.4 $integer.sort()
	5.3.5 $integer.find()
	5.3.6 $integer.find_index()

	5.4 Bool Functions
	5.4.1 $bool.string()

	5.5 Path Functions
	5.5.1 $path.string()
	5.5.2 $path.posix_string()
	5.5.3 $path.representation()
	5.5.4 $path.posix_representation()
	5.5.5 $path.absolute()
	5.5.6 $path.simple()
	5.5.7 $path.sub_path()
	5.5.8 $path.super_path()
	5.5.9 $path.directory()
	5.5.10 $path.root_directory()
	5.5.11 $path.leaf()
	5.5.12 $path.relative()
	5.5.13 $path.base()
	5.5.14 $path.extension()
	5.5.15 $path.complete()
	5.5.16 $path.canonicalize()
	5.5.17 $path.normalize(), $path.try_normalize()
	5.5.18 $path.actualize(), $path.try_actualize()
	5.5.19 $path.size()
	5.5.20 $path.sort()
	5.5.21 $path.find()
	5.5.22 $path.find_index()
	5.5.23 $path.match()

	5.6 Name Functions
	5.6.1 $name.name()
	5.6.2 $name.extension()
	5.6.3 $name.directory()
	5.6.4 $name.target_type()
	5.6.5 $name.project()
	5.6.6 $name.is_a()
	5.6.7 $name.filter(), $name.filter_out()
	5.6.8 $name.size()
	5.6.9 $name.sort()
	5.6.10 $name.find()
	5.6.11 $name.find_index()

	5.7 Target Functions
	5.7.1 $target.path()
	5.7.2 $target.process_path()

	5.8 Regex Functions
	5.8.1 $regex.match()
	5.8.2 $regex.find_match()
	5.8.3 $regex.filter_match(), $regex.filter_out_match()
	5.8.4 $regex.search()
	5.8.5 $regex.find_search()
	5.8.6 $regex.filter_search(), $regex.filter_out_search()
	5.8.7 $regex.replace()
	5.8.8 $regex.replace_lines()
	5.8.9 $regex.split()
	5.8.10 $regex.merge()
	5.8.11 $regex.apply()

	5.9 JSON Functions
	5.9.1 $json.value_type()
	5.9.2 $json.value_size()
	5.9.3 $json.member_name()
	5.9.4 $json.member_value()
	5.9.5 $json.object_names()
	5.9.6 $json.array_size()
	5.9.7 $json.array_find()
	5.9.8 $json.array_find_index()
	5.9.9 $json.load()
	5.9.10 $json.parse()
	5.9.11 $json.serialize()
	5.9.12 $json.size()
	5.9.13 $json.keys()

	5.10 Process Functions
	5.10.1 $process.run()
	5.10.2 $process.run_regex()

	5.11 Filesystem Functions
	5.11.1 $filesystem.file_exists()
	5.11.2 $filesystem.directory_exists()
	5.11.3 $filesystem.path_search()

	5.12 Project Name Functions
	5.12.1 $project_name.string()
	5.12.2 $project_name.base()
	5.12.3 $project_name.extension()
	5.12.4 $project_name.variable()

	5.13 Process Path Functions
	5.13.1 $process_path.recall()
	5.13.2 $process_path.effect()
	5.13.3 $process_path.name()
	5.13.4 $process_path.checksum()
	5.13.5 $process_path.env_checksum()

	5.14 Target Triplet Functions
	5.14.1 $target_triplet.string()
	5.14.2 $target_triplet.representation()

	6 Directives
	6.1 define
	6.2 include
	6.3 source
	6.4 update

	7 Attributes
	8 Name Patterns
	9 config Module
	9.1 Hermetic Build Configurations

	10 test Module
	11 install Module
	11.1 Relocatable Installation
	11.2 Installation Filtering

	12 version Module
	13 bin Module
	13.1 Binary Target Types
	13.1.1 lib{}, liba{}, libs{}
	13.1.2 libul{}, libue{}, libua{}, libus{}
	13.1.3 obj{}, obje{}, obja{}, objs{}
	13.1.4 bmi{}, bmie{}, bmia{}, bmis{}
	13.1.5 hbmi{}, hbmie{}, hbmia{}, hbmis{}
	13.1.6 def{}

	14 cc Module
	14.1 C-Common Configuration Variables
	14.2 C-Common Target Types
	14.2.1 pc{}, pca{}, pcs{}

	14.3 Compilation Internal Scope
	14.4 Automatic DLL Symbol Exporting
	14.5 Compiler Predefined Macro Extraction
	14.6 Importation of Installed Libraries
	14.6.1 Rewriting Installed Libraries System Root (sysroot)

	14.7 Compilation Database
	14.8 GCC Compiler Toolchain
	14.9 Clang Compiler Toolchain
	14.9.1 Clang Targeting MSVC

	14.10 MSVC Compiler Toolchain

	15 c Module
	15.1 C Configuration Variables
	15.2 C Target Types
	15.2.1 c{}, h{}

	15.3 Objective-C Compilation
	15.4 Assembler with C Preprocessor Compilation
	15.5 C Compiler Predefined Macro Extraction

	16 cxx Module
	16.1 C++ Configuration Variables
	16.2 C++ Target Types
	16.2.1 cxx{}, hxx{}, ixx{}, txx{}, mxx{}

	16.3 C++ Modules Support
	16.3.1 Modules Introduction
	16.3.2 Building Modules
	16.3.3 Module Symbols Exporting
	16.3.4 Modules Installation
	16.3.5 Modules Design Guidelines
	16.3.6 Modularizing Existing Code

	16.4 Objective-C++ Compilation
	16.5 C++ Compiler Predefined Macro Extraction

	17 in Module
	18 bash Module
	19 Appendix A š JSON Dump Format

