
The build2 Build System

Copyright © 2014-2025 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.18, July 2025

This revision of the document describes the build2 build system 0.18.x series.

Table of Contents

.................. 1Preface

................ 11 Introduction

............... 21.1 Hello, World

.............. 71.2 Project Structure

........... 151.3 Output Directories and Scopes

............... 261.4 Operations

............. 271.4.1 Configuring

.............. 301.4.2 Testing

.............. 351.4.3 Installing

............. 381.4.4 Distributing

............. 401.5 Target Importation

.......... 451.6 Library Exportation and Versioning

.......... 501.7 Subprojects and Amalgamations

............. 541.8 Buildfile Language

........... 561.8.1 Expansion and Quoting

........... 601.8.2 Conditions (if-else)

.......... 621.8.3 Pattern Matching (switch)

............ 651.8.4 Repetitions (for)

............ 651.9 Implementing Unit Testing

........... 681.10 Diagnostics and Debugging

.............. 732 Project Configuration

............. 762.1 config Directive

............. 822.2 Configuration Report

............ 842.3 Configuration Propagation

.............. 883 Targets and Target Types

............... 883.1 Target Types

............. 903.1.1 target{}

........... 903.1.2 alias{} and dir{}

.............. 913.1.3 fsdir{}

...... 913.1.4 mtime_target{} and path_target{}

.............. 913.1.5 group{}

.............. 923.1.6 file{}

......... 923.1.7 doc{}, legal{}, and man{}

.............. 933.1.8 exe{}

.............. 933.1.9 json{}

................. 934 Variables

................. 945 Functions

.............. 955.1 Builtin Functions

.......... 955.1.1 $builtin.defined()

......... 955.1.2 $builtin.visibility()

........... 955.1.3 $builtin.type()

........... 965.1.4 $builtin.null()

........... 965.1.5 $builtin.empty()

..... 965.1.6 $builtin.first(), $builtin.second()

iRevision 0.18, July 2025 The build2 Build System

Table of Contents

............ 965.1.7 $builtin.quote()

............ 965.1.8 $builtin.getenv()

............... 965.2 String Functions

............ 975.2.1 $string.icasecmp()

............ 975.2.2 $string.contains()

........... 975.2.3 $string.starts_with()

........... 975.2.4 $string.ends_with()

............ 985.2.5 $string.replace()

............. 985.2.6 $string.trim()

....... 985.2.7 $string.lcase(), $string.ucase()

............. 985.2.8 $string.size()

............. 995.2.9 $string.sort()

............. 995.2.10 $string.find()

........... 995.2.11 $string.find_index()

............. 995.2.12 $string.keys()

............... 995.3 Integer Functions

............ 995.3.1 $integer.string()

......... 1005.3.2 $integer.integer_sequence()

............. 1005.3.3 $integer.size()

............. 1005.3.4 $integer.sort()

............. 1005.3.5 $integer.find()

........... 1005.3.6 $integer.find_index()

................ 1005.4 Bool Functions

............. 1015.4.1 $bool.string()

................ 1015.5 Path Functions

............. 1015.5.1 $path.string()

........... 1015.5.2 $path.posix_string()

.......... 1015.5.3 $path.representation()

........ 1015.5.4 $path.posix_representation()

............ 1015.5.5 $path.absolute()

............. 1025.5.6 $path.simple()

............ 1025.5.7 $path.sub_path()

............ 1025.5.8 $path.super_path()

............ 1025.5.9 $path.directory()

.......... 1025.5.10 $path.root_directory()

............. 1035.5.11 $path.leaf()

............ 1035.5.12 $path.relative()

............. 1035.5.13 $path.base()

............ 1035.5.14 $path.extension()

............ 1035.5.15 $path.complete()

........... 1045.5.16 $path.canonicalize()

.... 1045.5.17 $path.normalize(), $path.try_normalize()

.... 1045.5.18 $path.actualize(), $path.try_actualize()

............. 1045.5.19 $path.size()

............. 1055.5.20 $path.sort()

............. 1055.5.21 $path.find()

Revision 0.18, July 2025ii The build2 Build System

Table of Contents

........... 1055.5.22 $path.find_index()

............. 1055.5.23 $path.match()

............... 1065.6 Name Functions

.............. 1065.6.1 $name.name()

............ 1065.6.2 $name.extension()

............ 1065.6.3 $name.directory()

........... 1065.6.4 $name.target_type()

............. 1065.6.5 $name.project()

.............. 1065.6.6 $name.is_a()

....... 1075.6.7 $name.filter(), $name.filter_out()

.............. 1075.6.8 $name.size()

.............. 1075.6.9 $name.sort()

............. 1075.6.10 $name.find()

........... 1075.6.11 $name.find_index()

............... 1075.7 Target Functions

............. 1075.7.1 $target.path()

.......... 1085.7.2 $target.process_path()

............... 1085.8 Regex Functions

............. 1085.8.1 $regex.match()

........... 1095.8.2 $regex.find_match()

.. 1095.8.3 $regex.filter_match(), $regex.filter_out_match()

............. 1095.8.4 $regex.search()

........... 1105.8.5 $regex.find_search()

.1105.8.6 $regex.filter_search(), $regex.filter_out_search()

............ 1105.8.7 $regex.replace()

.......... 1115.8.8 $regex.replace_lines()

............. 1115.8.9 $regex.split()

............. 1115.8.10 $regex.merge()

............. 1125.8.11 $regex.apply()

............... 1125.9 JSON Functions

............ 1135.9.1 $json.value_type()

............ 1135.9.2 $json.value_size()

........... 1135.9.3 $json.member_name()

........... 1135.9.4 $json.member_value()

........... 1135.9.5 $json.object_names()

............ 1135.9.6 $json.array_size()

............ 1145.9.7 $json.array_find()

.......... 1145.9.8 $json.array_find_index()

.............. 1145.9.9 $json.load()

............. 1145.9.10 $json.parse()

............ 1145.9.11 $json.serialize()

............. 1155.9.12 $json.size()

............. 1155.9.13 $json.keys()

............... 1155.10 Process Functions

............. 1155.10.1 $process.run()

........... 1155.10.2 $process.run_regex()

iiiRevision 0.18, July 2025 The build2 Build System

Table of Contents

.............. 1165.11 Filesystem Functions

......... 1165.11.1 $filesystem.file_exists()

....... 1165.11.2 $filesystem.directory_exists()

......... 1165.11.3 $filesystem.path_search()

............. 1165.12 Project Name Functions

.......... 1165.12.1 $project_name.string()

........... 1165.12.2 $project_name.base()

......... 1175.12.3 $project_name.extension()

......... 1175.12.4 $project_name.variable()

.............. 1175.13 Process Path Functions

.......... 1175.13.1 $process_path.recall()

.......... 1175.13.2 $process_path.effect()

........... 1175.13.3 $process_path.name()

......... 1185.13.4 $process_path.checksum()

........ 1185.13.5 $process_path.env_checksum()

............. 1185.14 Target Triplet Functions

......... 1185.14.1 $target_triplet.string()

....... 1185.14.2 $target_triplet.representation()

.................. 1186 Directives

................. 1186.1 define

................. 1186.2 include

................. 1196.3 source

................. 1196.4 update

.................. 1217 Attributes

................. 1218 Name Patterns

................. 1259 config Module

............ 1259.1 Hermetic Build Configurations

................. 12810 test Module

................ 12911 install Module

.............. 13111.1 Relocatable Installation

.............. 13211.2 Installation Filtering

................ 13312 version Module

................. 14013 bin Module

.............. 14013.1 Binary Target Types

........... 14113.1.1 lib{}, liba{}, libs{}

....... 14113.1.2 libul{}, libue{}, libua{}, libus{}

......... 14113.1.3 obj{}, obje{}, obja{}, objs{}

......... 14213.1.4 bmi{}, bmie{}, bmia{}, bmis{}

....... 14213.1.5 hbmi{}, hbmie{}, hbmia{}, hbmis{}

................ 14213.1.6 def{}

.................. 14214 cc Module

........... 14314.1 C-Common Configuration Variables

............. 14314.2 C-Common Target Types

............ 14414.2.1 pc{}, pca{}, pcs{}

............. 14414.3 Compilation Internal Scope

........... 14614.4 Automatic DLL Symbol Exporting

Revision 0.18, July 2025iv The build2 Build System

Table of Contents

.......... 14714.5 Compiler Predefined Macro Extraction

........... 15014.6 Importation of Installed Libraries

...... 15214.6.1 Rewriting Installed Libraries System Root (sysroot)

.............. 15314.7 Compilation Database

............. 15814.8 GCC Compiler Toolchain

............. 15814.9 Clang Compiler Toolchain

............ 15814.9.1 Clang Targeting MSVC

............ 16014.10 MSVC Compiler Toolchain

.................. 16115 c Module

............. 16115.1 C Configuration Variables

............... 16215.2 C Target Types

............... 16215.2.1 c{}, h{}

............. 16215.3 Objective-C Compilation

......... 16315.4 Assembler with C Preprocessor Compilation

.......... 16415.5 C Compiler Predefined Macro Extraction

................. 16416 cxx Module

............ 16516.1 C++ Configuration Variables

............... 16616.2 C++ Target Types

........ 16616.2.1 cxx{}, hxx{}, ixx{}, txx{}, mxx{}

.............. 16616.3 C++ Modules Support

............ 16616.3.1 Modules Introduction

............. 17316.3.2 Building Modules

........... 17616.3.3 Module Symbols Exporting

............. 17816.3.4 Modules Installation

........... 17816.3.5 Modules Design Guidelines

........... 18516.3.6 Modularizing Existing Code

............. 18516.4 Objective-C++ Compilation

......... 18616.5 C++ Compiler Predefined Macro Extraction

.................. 18617 in Module

................. 18918 bash Module

............ 19219 Appendix A – JSON Dump Format

vRevision 0.18, July 2025 The build2 Build System

Table of Contents

Preface

This document describes the build2 build system. For the build system driver command

line interface refer to the b(1) man pages. For other tools in the build2 toolchain (package

and project managers, etc) see the Documentation index.

1 Introduction

The build2 build system is a native, cross-platform build system with a terse, mostly declar­

ative description language, a conceptual model of build, and a uniform interface with consis­

tent behavior across platforms and compilers.

Those familiar with make will see many similarities, though mostly conceptual rather than

syntactic. This is not by accident since build2 borrows the fundamental DAG-based build

model from original make and many of its conceptual extensions from GNU make. We

believe, paraphrasing a famous quote, that those who do not understand make are condemned

to reinvent it, poorly. So our goal with build2 was to reinvent make well while handling the

demands and complexity of modern cross-platform software development.

Like make, build2 is an "honest" build system without magic or black boxes. You can

expect to understand what’s going on underneath and be able to customize most of its behav­

ior to suit your needs. This is not to say that it’s not an opinionated build system and if you

find yourself "fighting" some of its fundamental design choices, it would probably be wiser to

look for alternatives.

We believe the importance and complexity of the problem warranted the design of a new

purpose-built language and will hopefully justify the time it takes for you to master it. In the

end we hope build2 will make creating and maintaining build infrastructure for your

projects a pleasant task.

Also note that build2 is not specific to C/C++ or even to compiled languages; its build

model is general enough to handle any DAG-based operations. See the bash module for a

good example.

While the build system is part of a larger, well-integrated build toolchain that includes the

package and project dependency managers, it does not depend on them and its standalone

usage is the only subject of this manual.

We begin with a tutorial introduction that aims to show the essential elements of the build

system on real examples but without getting into too much detail. Specifically, we want to

quickly get to the point where we can build useful executable and library projects.

1Revision 0.18, July 2025 The build2 Build System

Preface

https://build2.org/doc.xhtml

1.1 Hello, World

Let’s start with the customary "Hello, World" example: a single source file from which we

would like to build an executable:

$ tree hello/
hello/
·-- hello.cxx

$ cat hello/hello.cxx

#include <iostream>

int main ()
{
 std::cout << "Hello, World!" << std::endl;
}

While this very basic program hardly resembles what most software projects look like today,

it is useful for introducing key build system concepts without getting overwhelmed. In this

spirit we will also use the build2 simple project structure, which, similarly, should only be

used for basic needs.

To turn our hello/ directory into a simple project all we need to do is add a buildfile:

$ tree hello/
hello/
|-- hello.cxx
·-- buildfile

$ cat hello/buildfile

using cxx

exe{hello}: cxx{hello.cxx}

Let’s start from the bottom: the second line is a dependency declaration. On the left hand side

of : we have a target, the hello executable, and on the right hand side – a prerequisite, the

hello.cxx source file. Those exe and cxx in exe{...} and cxx{...} are called

target types. In fact, for clarity, target type names are always mentioned with trailing {}, for

example, "the exe{} target type denotes an executable".

Notice that the dependency declaration does not specify how to build an executable from a

C++ source file – this is the job of a rule. When the build system needs to update a target, it

tries to match a suitable rule based on the types of the target and its prerequisites. The

build2 core has a number of predefined fundamental rules with the rest coming from build

system modules. For example, the cxx module defines a number of rules for compiling C++

source code as well as linking executables and libraries.

It should now be easy to guess what the first line of our buildfile does: it loads the cxx
module which defines the rules necessary to build our program (it also registers the cxx{}
target type).

Revision 0.18, July 20252 The build2 Build System

1.1 Hello, World

Let’s now try to build and run our program (b is the build system driver):

$ cd hello/ # Change to project root.

$ b
c++ cxx{hello} -> obje{hello}
ld exe{hello}

$ ls -1
buildfile
hello.cxx
hello
hello.d
hello.o
hello.o.d

$./hello
Hello, World!

Or, if we are on Windows and using Visual Studio:

> cd hello

> b
c++ cxx{hello} -> obje{hello}
ld exe{hello}

> dir /b
buildfile
hello.cxx
hello.exe
hello.exe.d
hello.exe.obj
hello.exe.obj.d

> .\hello.exe
Hello, World!

By default build2 uses the same C++ compiler it was built with and without passing any

extra options, such as debug or optimization, target architecture, etc. To change these defaults

we use configuration variables. For example, to specify a different C++ compiler we use

config.cxx:

$ b config.cxx=clang++

For Visual Studio, build2 by default will use the latest available version and build for the

x86_64 target (x64 in the Microsoft’s terminology). You can, however, override these

defaults by either running from a suitable Visual Studio development command prompt or by

specifying an absolute path to cl that you wish to use. For example (notice the use of inner

quotes):

> b "config.cxx=’...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl’"

See MSVC Compiler Toolchain for details.

3Revision 0.18, July 2025 The build2 Build System

1.1 Hello, World

Similarly, for additional compile options, such as debug information or optimization level,

there is config.cxx.coptions. For example:

$ b config.cxx=clang++ config.cxx.coptions=-g

These and other configuration variables will be discussed in more detail later. We will also

learn how to make our configuration persistent so that we don’t have to repeat such long

command lines on every build system invocation.

Similar to config.cxx, there is also config.c for specifying the C compiler. Note,

however, that if your project uses both C and C++, then you normally only need to specify

one of them – build2 will determine the other automatically.

Let’s discuss a few points about the build output. Firstly, to reduce the noise, the commands

being executed are by default shown abbreviated and with the same target type notation as we

used in the buildfile. For example:

c++ cxx{hello} -> obje{hello}
ld exe{hello}

If, however, you would like to see the actual command lines, you can pass -v (to see even

more, there is the -V as well as --verbose options; see b(1) for details). For example:

$ b -v
g++ -o hello.o -c hello.cxx
g++ -o hello hello.o

Most of the files produced by the build system should be self-explanatory: we have the object

file (hello.o, hello.obj) and executable (hello, hello.exe). For each of them we

also have the corresponding .d files which store the auxiliary dependency information, things

like compile options, header dependencies, etc.

To remove the build system output we use the clean operation (if no operation is specified,

the default is update):

$ b clean
rm exe{hello}
rm obje{hello}

$ ls -1
buildfile
hello.cxx

One of the main reasons behind the target type concept is the platform/compiler-specified

variances in file names as illustrated by the above listings. In our buildfile we refer to the

executable target as exe{hello}, not as hello.exe or hello$EXT. The actual file

extension, if any, will be determined based on the compiler’s target platform by the rule doing

the linking. In this sense, target types are a platform-independent replacement of file exten­

sions (though they do have other benefits, such as allowing non-file targets as well as being

hierarchical; see Target Types for details).

Revision 0.18, July 20254 The build2 Build System

1.1 Hello, World

Let’s revisit the dependency declaration line from our buildfile:

exe{hello}: cxx{hello.cxx}

In light of target types replacing file extensions this looks tautological: why do we need to

specify both the cxx{} target type and the .cxx file extension? In fact, we don’t have to if

we specify the default file extension for the cxx{} target type. Here is our updated build­
file in its entirety:

using cxx

cxx{*}: extension = cxx

exe{hello}: cxx{hello}

Let’s unpack the new line. What we have here is a target type/pattern-specific variable. It

only applies to targets of the cxx{} type whose names match the * wildcard pattern. The

extension variable name is reserved by the build2 core for specifying target type exten­

sions.

Let’s see how all these pieces fit together. When the build system needs to update

exe{hello}, it searches for a suitable rule. A rule from the cxx module matches since it

knows how to build a target of type exe{} from a prerequisite of type cxx{}. When the

matched rule is applied, it searches for a target for the cxx{hello} prerequisite. During this

search, the extension variable is looked up and its value is used to end up with the

hello.cxx file.

To resolve a rule match ambiguity or to override a default match build2 uses rule hints. For

example, if we wanted link a C executable using the C++ link rule:

[rule_hint=cxx] exe{hello}: c{hello}

Here is our new dependency declaration again:

exe{hello}: cxx{hello}

It has the canonical form: no extensions, only target types. Sometimes explicit extension spec­

ification is still necessary, for example, if your project uses multiple extensions for the same

file type. But if unnecessary, it should be omitted for brevity.

If you prefer the .cpp file extension and your source file is called hello.cpp, then the

only line in our buildfile that needs changing is the extension variable assignment:

cxx{*}: extension = cpp

Let’s say our hello program got complicated enough to warrant moving some functionality

into a separate source/header module (or a real C++ module). For example:

5Revision 0.18, July 2025 The build2 Build System

1.1 Hello, World

$ tree hello/
hello/
|-- hello.cxx
|-- utility.hxx
|-- utility.cxx
·-- buildfile

This is what our updated buildfile could look like:

using cxx

hxx{*}: extension = hxx
cxx{*}: extension = cxx

exe{hello}: cxx{hello} hxx{utility} cxx{utility}

Nothing really new here: we’ve specified the default extension for the hxx{} target type and

listed the new header and source files as prerequisites. If you have experience with other build

systems, then explicitly listing headers might seem strange to you. As will be discussed later,

in build2 we have to explicitly list all the prerequisites of a target that should end up in a

source distribution of our project.

You don’t have to list all headers that you include, only the ones belonging to your project.

Like all modern C/C++ build systems, build2 performs automatic header dependency

extraction.

In real projects with a substantial number of source files, repeating target types and names

will quickly become noisy. To tidy things up we can use name generation. Here are a few

examples of dependency declarations equivalent to the above:

exe{hello}: cxx{hello utility} hxx{utility}
exe{hello}: cxx{hello} {hxx cxx}{utility}

The last form is probably the best choice if your project contains a large number of

header/source pairs. Here is a more realistic example:

exe{hello}: { cxx}{hello} \
 {hxx }{forward types} \
 {hxx cxx}{format print utility}

Manually listing a prerequisite every time we add a new source file to our project is both

tedious and error prone. Instead, we can automate our dependency declarations with wildcard

name patterns. For example:

exe{hello}: {hxx cxx}{*}

Based on the previous discussion of default extensions, you can probably guess how this

works: for each target type the value of the extension variable is added to the pattern and

files matching the result become prerequisites. So, in our case, we will end up with files

matching the *.hxx and *.cxx wildcard patterns.

Revision 0.18, July 20256 The build2 Build System

1.1 Hello, World

In more complex projects it is often convenient to organize source code into subdirectories.

To handle such projects we can use the recursive wildcard:

exe{hello}: {hxx cxx}{**}

Using wildcards is somewhat controversial. Patterns definitely make development more pleas­

ant and less error prone: you don’t need to update your buildfile every time you add,

remove, or rename a source file and you won’t forget to explicitly list headers, a mistake that

is often only detected when trying to build a source distribution of a project. On the other

hand, there is the possibility of including stray source files into your build without noticing.

And, for more complex projects, name patterns can become fairly complex (see Name

Patterns for details). Note also that on modern hardware the performance of wildcard searches

hardly warrants a consideration.

In our experience, when combined with modern version control systems like git(1), stray

source files are rarely an issue and generally the benefits of wildcards outweigh their draw­

backs. But, in the end, whether to use them or not is a personal choice and, as shown above,

build2 supports both approaches.

And that’s about all there is to our hello example. To summarize, we’ve seen that to build a

simple project we need a single buildfile which itself doesn’t contain much more than a

dependency declaration for what we want to build. But we’ve also mentioned that simple

projects are only really meant for basics. So let’s convert our hello example to the standard

project structure which is what we will be using for most of our real development.

Simple projects have so many restrictions and limitations that they are hardly usable for

anything but, well, really simple projects.

Specifically, such projects cannot be imported by other projects nor can they use build system

modules that require bootstrapping. Notably, this includes the dist and config modules

(the test and install modules are loaded implicitly). And without the config module

there is no support for persistent configurations.

As a result, you should only use a simple project if you are happy to always build in the

source directory and with the default build configuration or willing to specify the output direc­

tory and/or custom configuration on every invocation. In other words, expect an experience

similar to a plain Makefile.

One notable example where simple projects are handy is a glue buildfile that "pulls"

together several other projects, usually for convenience of development. See Target Importa­

tion for details.

1.2 Project Structure

A build2 standard project has the following overall layout:

7Revision 0.18, July 2025 The build2 Build System

1.2 Project Structure

hello/
|-- build/
| |-- bootstrap.build
| ·-- root.build
|-- ...
·-- buildfile

Specifically, the project’s root directory should contain the build/ subdirectory as well as

the root buildfile. The build/ subdirectory contains project-wide build system infor­

mation.

The bdep-new(1) command is an easy way to create the standard layout executable

(-t exe) and library (-t lib) projects. To change the C++ file extensions to

.hpp/.cpp, pass -l c++,cpp. For example:

$ bdep new --no-init -l c++,cpp -t exe hello

It is also possible to use an alternative build file/directory naming scheme where every

instance of the word build is replaced with build2, for example:

hello/
|-- build2/
| |-- bootstrap.build2
| ·-- root.build2
|-- ...
·-- build2file

Note that the naming must be consistent within a project with all the filesystem entries either

following build or build2 scheme. In other words, we cannot call the directory build2/
while still using buildfile.

The alternative naming scheme is primarily useful when adding build2 support to an exist­

ing project along with other build systems. In this case, the fairly generic standard names

might already be in use. For example, it is customary to have build/ in .gitignore. Plus

more specific naming will make it easier to identify files and directories as belonging to the

build2 support. For new projects as well as for existing projects that are switching exclu­

sively to build2 the standard naming scheme is recommended.

To create a project with the alternative naming using bdep-new(1) pass the alt-naming
project type sub-option. For example:

$ bdep new -t exe,alt-naming ...

To support lazy loading of subprojects (discussed later), reading of the project’s build infor­

mation is split into two phases: bootstrapping and loading. During bootstrapping the project’s

build/bootstrap.build file is read. Then, when (and if) the project is loaded

completely, its build/root.build file is read followed by the buildfile (normally

from the project root but possibly from a subdirectory).

Revision 0.18, July 20258 The build2 Build System

1.2 Project Structure

The bootstrap.build file is required. Let’s see what it would look like for a typical

project using our hello as an example:

project = hello

using version
using config
using test
using install
using dist

The first non-comment line in bootstrap.build should be the assignment of the project

name to the project variable. After that, a typical bootstrap.build file loads a

number of build system modules. While most modules can be loaded during the project load

phase in root.build, certain modules have to be loaded early, while bootstrapping (for

example, because they define new operations).

Let’s examine briefly the modules loaded by our bootstrap.build: The version
module helps with managing our project versioning. With this module we only maintain the

version in a single place (the project’s manifest file) and it is automatically made available

in various convenient forms throughout our project (buildfiles, header files, etc). The

version module also automates versioning of snapshots between releases.

The manifest file is what makes our build system project a package. It contains all the

metadata that a user of a package might need to know: name, version, dependencies, etc., all

in one place. However, even if you don’t plan to package your project, it is a good idea to

create a basic manifest if only to take advantage of the version management offered by the

version module. So let’s go ahead and add it next to our root buildfile:

$ tree hello/
hello/
|-- build/
| ·-- ...
|-- ...
|-- buildfile
·-- manifest

$ cat hello/manifest
: 1
name: hello
version: 0.1.0
summary: hello C++ executable

The config module provides support for persistent configurations. While build configura­

tion is a large topic that we will be discussing in more detail later, in a nutshell build2
support for configuration is an integral part of the build system with the same mechanisms

available to the build system core, modules, and your projects. However, without config,

the configuration information is transient. That is, whatever configuration information was

automatically discovered or that you have supplied on the command line is discarded after

each build system invocation. With the config module, however, we can configure a project

to make the configuration persistent. We will see an example of this shortly.

9Revision 0.18, July 2025 The build2 Build System

1.2 Project Structure

Next up are the test, install, and dist modules. As their names suggest, they provide

support for testing, installation and preparation of source distributions. Specifically, the test
module defines the test operation, the install module defines the install and unin­
stall operations, and the dist module defines the dist (meta-)operation. Again, we will

try them out in a moment.

Moving on, the root.build file is optional though most projects will have it. This is the

place where we define project’s configuration variables (subject of Project Configuration),

establish project-wide settings, as well as load build system modules that provide support for

the languages/tools that we use. Here is what it could look like for our hello example:

cxx.std = latest

using cxx

hxx{*}: extension = hxx
cxx{*}: extension = cxx

As you can see, we’ve moved the loading of the cxx modules and setting of the default file

extensions from the root buildfile in our simple project to root.build when using the

standard layout. We’ve also set the cxx.std variable to tell the cxx module to select the

latest C++ standard available in any particular C++ compiler this project might be built with.

Selecting the C++ standard for our project is a messy issue. If we don’t specify the standard

explicitly with cxx.std, then the default standard in each compiler will be used, which,

currently, can range from C++98 to C++14. So unless you carefully write your code to work

with any standard, this is probably not a good idea.

Fixing the standard (for example, to c++11, c++14, etc) should work theoretically. In prac­

tice, however, compilers add support for new standards incrementally and many versions,

while perfectly usable, are not feature-complete. As a result, a better practical strategy is to

specify the set of minimum supported compiler versions rather than the C++ standard.

There is also the issue of using libraries that require a newer standard in old code. For

example, headers from a library that relies on C++14 features will not compile when included

in a project that is built as C++11. And, even if the headers compile (that is, C++14 features

are only used in the implementation), strictly speaking, there is no guarantee that codebases

compiled with different C++ standards are ABI compatible (in fact, some changes to the C++

language leave the implementations no choice but to break the ABI).

As result, our recommendation is to set the standard to latest and specify the minimum

supported compilers and versions in your project’s documentation (see package manifest

requires value for one possible place). Practically, this should allow you to include and

link any library, regardless of the C++ standard that it uses.

Let’s now take a look at the root buildfile:

Revision 0.18, July 202510 The build2 Build System

1.2 Project Structure

./: {*/ -build/}

In plain English, this buildfile declares that building this directory (and, since it’s the

root of our project, building this entire project) means building all its subdirectories excluding

build/. Let’s now try to understand how this is actually achieved.

We already know this is a dependency declaration, ./ is the target, and what’s after : are its

prerequisites, which seem to be generated with some kind of a name pattern (the wildcard

character in */ should be the giveaway). What’s unusual about this declaration, however, is

the lack of any target types plus that strange-looking ./.

Let’s start with the missing target types. In fact, the above buildfile can be rewritten as:

dir{.}: dir{* -build}

So the trailing slash (always forward, even on Windows) is a special shorthand notation for

dir{}. As we will see shortly, it fits naturally with other uses of directories in build­
files (for example, in scopes).

The dir{} target type is an alias (and, in fact, is derived from more general alias{}; see

Target Types for details). Building it means building all its prerequisites.

If you are familiar with make, then you can probably see the similarity with the ubiquitous

all pseudo-target. In build2 we instead use directory names as more natural aliases for the

"build everything in this directory" semantics.

Note also that dir{} is purely an alias and doesn’t have anything to do with the filesystem.

In particular, it does not create any directories. If you do want explicit directory creation

(which should be rarely needed), use the fsdir{} target type instead.

The ./ target is a special default target. If we run the build system without specifying the

target explicitly, then this target is built by default. Every buildfile has the ./ target. If

we don’t declare it explicitly, then its declaration is implied with the first target in the

buildfile as its prerequisite. Recall our buildfile from the simple hello project:

exe{hello}: cxx{hello}

It is equivalent to:

./: exe{hello}
exe{hello}: cxx{hello}

If, however, we had several targets in the same directory that we wanted built by default, then

we would need to explicitly list them as prerequisites of the default target. For example:

./: exe{hello}
exe{hello}: cxx{hello}

./: exe{goodby}
exe{goodby}: cxx{goodby}

11Revision 0.18, July 2025 The build2 Build System

1.2 Project Structure

While straightforward, this is somewhat inelegant in its repetitiveness. To tidy things up we

can use dependency declaration chains that allow us to chain together several target-prerequi­

site declarations in a single line. For example:

./: exe{hello}: cxx{hello}

./: exe{goodby}: cxx{goodby}

With dependency chains a prerequisite of the preceding target becomes a target itself for the

following prerequisites.

Let’s get back to our root buildfile:

./: {*/ -build/}

The last unexplained bit is the {*/ -build/} name pattern. All it does is exclude build/
from the subdirectories to build. See Name Patterns for details.

Let’s take a look at a slightly more realistic root buildfile:

./: {*/ -build/} doc{README.md LICENSE} manifest

Here we have the customary README.md and LICENSE files as well as the package mani­
fest. Listing them as prerequisites achieves two things: they will be installed if/when our

project is installed and, as mentioned earlier, they will be included into the project source

distribution.

The README.md and LICENSE files use the doc{} target type. We could have used the

generic file{} but using the more precise doc{} makes sure that they are installed into the

appropriate documentation directory. The manifest file doesn’t need an explicit target type

since it has a fixed name (manifest{manifest} is valid but redundant).

Standard project infrastructure in place, where should we put our source code? While we

could have everything in the root directory of our project, just like we did with the simple

layout, it is recommended to instead place the source code into a subdirectory named the same

as the project. For example:

hello/
|-- build/
| ·-- ...
|-- hello/
| |-- hello.cxx
| ·-- buildfile
|-- buildfile
|-- manifest
·-- README.md

There are several reasons for this layout: It implements the canonical inclusion scheme where

each header is prefixed with its project name. It also has a predictable name where users can

expect to find our project’s source code. Finally, this layout prevents clutter in the project’s

root directory which usually contains various other files. See Canonical Project Structure for

details.

Revision 0.18, July 202512 The build2 Build System

1.2 Project Structure

Note, however, that this layout is not mandatory and build2 is flexible enough to support

various arrangements used in today’s C and C++ projects. Furthermore, the bdep-new(1)

command provides a number of customization options and chances are you will be able to

create your preferred layout automatically. See SOURCE LAYOUT for more information and

examples.

Note also that while we can name our header and source files however we like (but, again, see

Canonical Project Structure for some sensible guidelines), C++ module interface files need to

embed a sufficient amount of the module name suffix in their names to unambiguously

resolve all the modules within a project. See Building Modules for details.

The source subdirectory buildfile is identical to that of the simple project minus the parts

moved to root.build:

exe{hello}: {hxx cxx}{**}

Let’s now build our project and see where the build system output ends up in this new layout:

$ cd hello/ # Change to project root.
$ b
c++ hello/cxx{hello} -> hello/obje{hello}
ld hello/exe{hello}

$ tree ./
./
|-- build/
| ·-- ...
|-- hello/
| |-- hello.cxx
| |-- hello
| |-- hello.d
| |-- hello.o
| |-- hello.o.d
| ·-- buildfile
|-- buildfile
·-- manifest

$ hello/hello
Hello, World!

If we don’t specify a target to build (as in the example above), then build2 will build the

current directory or, more precisely, the default target in the buildfile in the current direc­

tory. We can also build a directory other than the current, for example:

$ b hello/

Note that the trailing slash is required. In fact, hello/ in the above command line is a target

and is equivalent to dir{hello}, just like in the buildfiles.

Or we can build a specific target:

13Revision 0.18, July 2025 The build2 Build System

1.2 Project Structure

$ b hello/exe{hello}

Naturally, nothing prevents us from building multiple targets or even projects in the same

build system invocation. For example, if we had the libhello project next to our hello/,

then we could build both at once:

$ ls -1
hello/
libhello/

$ b hello/ libhello/

Speaking of libraries, let’s see what the standard project structure looks like for one, using

libhello created by bdep-new(1) as an example:

$ bdep new --no-init -l c++ -t lib libhello

$ tree libhello/
libhello/
|-- build/
| |-- bootstrap.build
| |-- root.build
| ·-- export.build
|-- libhello/
| |-- hello.hxx
| |-- hello.cxx
| |-- export.hxx
| |-- version.hxx.in
| ·-- buildfile
|-- tests/
| ·-- ...
|-- buildfile
|-- manifest
·-- README.md

The overall layout (build/, libhello/ source subdirectory) as well as the contents of the

root files (bootstrap.build, root.build, root buildfile) are exactly the same.

There is, however, the new file export.build in build/, the new subdirectory tests/,

and the contents of the project’s source subdirectory libhello/ look quite a bit different.

We will examine all of these differences in the coming sections, as we learn more about the

build system.

Again, this layout is not mandatory and bdep-new(1) can create a number of alternative

library structures. For example, if you prefer the include/src split, try:

$ bdep new --no-init -l c++ -t lib,split libhello

See SOURCE LAYOUT for more examples.

The standard project structure is not type (executable, library, etc) or even language specific.

In fact, the same project can contain multiple executables and/or libraries (for example, both

hello and libhello). However, if you plan to package your projects, it is a good idea to

keep them as separate build system projects (they can still reside in the same version control

repository, though).

Revision 0.18, July 202514 The build2 Build System

1.2 Project Structure

Speaking of projects, this term is unfortunately overloaded to mean two different things at

different levels of software organization. At the bottom we have build system projects which,

if packaged, become packages. And at the top, related packages are often grouped into what is

also commonly referred to as projects. At this point both usages are probably too well estab­

lished to look for alternatives.

And this completes the conversion of our simple hello project to the standard structure.

Earlier, when examining bootstrap.build, we mentioned that modules loaded in this

file usually provide additional operations. So we still need to discuss what exactly the term

build system operation means and see how to use operations that are provided by the modules

we have loaded. But before we do that, let’s see how we can build our projects out of source

tree and learn about another cornerstone build2 concept: scopes.

1.3 Output Directories and Scopes

Two common requirements placed on modern build systems are the ability to build projects

out of the source directory tree (referred to as just out of source vs in source) as well as isola­

tion of buildfiles from each other when it comes to target and variable names. In

build2 these mechanisms are closely-related, integral parts of the build system.

This tight integration has advantages, like being always available and working well with other

build system mechanisms, as well as disadvantages, like the inability to implement a

completely different out of source arrangement and/or isolation model. In the end, if you find

yourself "fighting" this aspect of build2, it will likely be easier to use a different build

system than subvert it.

Let’s start with an example of an out of source build for our hello project. To recap, this is

what we have:

$ ls -1
hello/

$ tree hello/
hello/
|-- build/
| ·-- ...
|-- hello/
| ·-- ...
|-- buildfile
·-- manifest

To start, let’s build it in the hello-out/ directory next to the project:

$ b hello/@hello-out/
mkdir fsdir{hello-out/}
mkdir hello-out/fsdir{hello/}
c++ hello/hello/cxx{hello} -> hello-out/hello/obje{hello}
ld hello-out/hello/exe{hello}

$ ls -1
hello/
hello-out/

15Revision 0.18, July 2025 The build2 Build System

1.3 Output Directories and Scopes

$ tree hello-out/
hello-out/
·-- hello/
 |-- hello
 |-- hello.d
 |-- hello.o
 ·-- hello.o.d

This definitely requires some explaining. Let’s start from the bottom, with the hello-out/
layout. It is parallel to the source directory. This mirrored side-by-side listing (of the relevant

parts) should illustrate this clearly:

hello/ ~~> hello-out/
·-- hello/ ~~> ·-- hello/
 ·-- hello.cxx ~~> ·-- hello.o

In fact, if we copy the contents of hello-out/ over to hello/, we will end up with

exactly the same result as in the in source build. And this is not accidental: an in source build

is just a special case of an out of source build where the out directory is the same as src.

In build2 this parallel structure of the out and src directories is a cornerstone design deci­

sion and is non-negotiable, so to speak. In particular, out cannot be inside src. And while we

can stash the build system output (object files, executables, etc) into (potentially different)

subdirectories, this is not recommended. As will be shown later, build2 offers better mecha­

nisms to achieve the same benefits (like reduced clutter, ability to run executables) but

without the drawbacks (like name clashes).

Let’s now examine how we invoked the build system to achieve this out of source build.

Specifically, if we were building in source, our command line would have been:

$ b hello/

but for the out of source build, we have:

$ b hello/@hello-out/

In fact, that strange-looking construct, hello/@hello-out/ is just a more elaborate target

specification that explicitly spells out the target’s src and out directories. Let’s add an explicit

target type to make it clearer:

$ b hello/@hello-out/dir{.}

What we have on the right of @ is the target in the out directory and on the left – its src direc­

tory. In plain English, this command line says "build me the default target from hello/ in

the hello-out/ directory".

As an example, if instead we wanted to build only the hello executable out of source, then

the invocation would have looked like this:

Revision 0.18, July 202516 The build2 Build System

1.3 Output Directories and Scopes

$ b hello/hello/@hello-out/hello/exe{hello}

We could have also specified out for an in source build, but that’s redundant:

$ b hello/@hello/

There is another example of this elaborate target specification that can be seen in the build

diagnostics, for instance, when installing headers of a library (the install operation is

discussed in the next section):

$ b install: libhello/@libhello-out/
...
install libhello/libhello/hxx{hello}@libhello-out/libhello/ ->
 /usr/local/include/

Notice, however, that now the target (hxx{hello}) is on the left of @, that is, in the src

directory. It does, however, make sense if you think about it: our hello.hxx is a source

file, in a sense that it is not built and it resides in the project’s source directory. This is in

contrast, for example, to the exe{hello} target which is the output of the build system and

goes to the out directory. So in build2 targets can be either in src or in out (there can also be

out of any project targets, for example, installed files).

The elaborate target specification can also be used in buildfiles. We haven’t encountered

any so far because targets mentioned without explicit src/out default to out and, naturally,

most of the targets we mention in buildfiles are things we want built. One situation

where you may encounter an src target mentioned explicitly is when specifying its installabil­

ity (discussed in the next section). For example, if our project includes the customary

INSTALL file, it probably doesn’t make sense to install it. However, since it is a source file,

we have to use the elaborate target specification when disabling its installation:

doc{INSTALL}@./: install = false

Note also that only targets and not prerequisites have this notion of src/out directories. In a

sense, prerequisites are relative to the target they are prerequisites of and are resolved to

targets in a manner that is specific to their target types. For file{}-based prerequisites the

corresponding target in out is first looked up and, if found, used. Otherwise, an existing file in

src is searched for and, if found, the corresponding target (now in src) is used. In particular,

this semantics gives preference to generated code over static.

More precisely, a prerequisite is relative to the scope (discussed below) in which the depen­

dency is declared and not to the target that it is a prerequisite of. However, in most practical

cases, this means the same thing.

And this pretty much covers out of source builds. Let’s summarize the key points we have

established so far: Every build has two parallel directory trees, src and out, with the in source

build being just a special case where they are the same. Targets in a project can be either in

the src or out directory though most of the time targets we mention in our buildfiles will

be in out, which is the default. Prerequisites are relative to targets they are prerequisites of and

file{}-based prerequisites are first searched for as declared targets in out and then as exist­

ing files in src.

17Revision 0.18, July 2025 The build2 Build System

1.3 Output Directories and Scopes

Note also that we can have as many out of source builds as we want and we can place them

anywhere we want (but not inside src), say, on a RAM-backed disk/filesystem. As an

example, let’s build our hello project with two different compilers:

$ b hello/@hello-gcc/ config.cxx=g++
$ b hello/@hello-clang/ config.cxx=clang++

In the next section we will see how to permanently configure our out of source builds so that

we don’t have to keep repeating these long command lines.

While technically you can have both in source and out of source builds at the same time, this

is not recommended. While it may work for basic projects, as soon as you start using gener­

ated source code (which is fairly common in build2), it becomes difficult to predict where

the compiler will pick generated headers. There is support for remapping mis-picked headers

but this may not always work with older C/C++ compilers. Plus, as we will see in the next

section, build2 supports forwarded configurations which provide most of the benefits of an

in source build but without the drawbacks.

Let’s now turn to buildfile isolation. It is a common, well-established practice to orga­

nize complex software projects in directory hierarchies. One of the benefits of this organiza­

tion is isolation: we can use the same, short file names in different subdirectories. In build2
the project’s directory tree is used as a basis for its scope hierarchy. In a sense, scopes are like

C++ namespaces that automatically track the project’s filesystem structure and use directories

as their names. The following listing illustrates the parallel directory and scope hierarchies for

our hello project. The build/ subdirectory is special and does not have a corresponding

scope.

hello/ hello/
| {
·-- hello/ hello/
 | {
 ·--
 }
 }

Every buildfile is loaded in its corresponding scope, variables set in a buildfile are

set in this scope and relative targets mentioned in a buildfile are relative to this scope’s

directory. Let’s "load" the buildfile contents from our hello project to the above

listing:

hello/ hello/
| {
|-- buildfile ./: {*/ -build/}
|
·-- hello/ hello/
 | {
 ·-- buildfile exe{hello}: {hxx cxx}{**}
 }
 }

Revision 0.18, July 202518 The build2 Build System

1.3 Output Directories and Scopes

In fact, to be absolutely precise, we should also add the contents of bootstrap.build and

root.build to the project’s root scope (module loading is omitted for brevity):

hello/ hello/
| {
|-- build/
| |-- bootstrap.build project = hello
| |
| ·-- root.build cxx.std = latest
| hxx{*}: extension = hxx
| cxx{*}: extension = cxx
|
|-- buildfile ./: {*/ -build/}
|
·-- hello/ hello/
 | {
 ·-- buildfile exe{hello}: {hxx cxx}{**}
 }
 }

The above scope structure is very similar to what you will see (besides a lot of other things) if

you build with --dump match. With this option the build system driver dumps the build

state after matching rules to targets (see Diagnostics and Debugging for more information).

Here is an abbreviated output of building our hello with --dump (assuming an in source

build in /tmp/hello):

$ b --dump match

/
{
 [target_triplet] build.host = x86_64-linux-gnu
 [string] build.host.class = linux
 [string] build.host.cpu = x86_64
 [string] build.host.system = linux-gnu

 /tmp/hello/
 {

 [dir_path] src_root = /tmp/hello/
 [dir_path] out_root = /tmp/hello/

 [dir_path] src_base = /tmp/hello/
 [dir_path] out_base = /tmp/hello/

 [project_name] project = hello
 [string] project.summary = hello executable
 [string] project.url = https://example.org/hello

 [string] version = 1.2.3
 [uint64] version.major = 1
 [uint64] version.minor = 2
 [uint64] version.patch = 3

 [string] cxx.std = latest

 [string] cxx.id = gcc
 [string] cxx.version = 8.1.0
 [uint64] cxx.version.major = 8
 [uint64] cxx.version.minor = 1

19Revision 0.18, July 2025 The build2 Build System

1.3 Output Directories and Scopes

 [uint64] cxx.version.patch = 0

 [target_triplet] cxx.target = x86_64-w64-mingw32
 [string] cxx.target.class = windows
 [string] cxx.target.cpu = x86_64
 [string] cxx.target.system = mingw32

 hxx{*}: [string] extension = hxx
 cxx{*}: [string] extension = cxx

 hello/
 {
 [dir_path] src_base = /tmp/hello/hello/
 [dir_path] out_base = /tmp/hello/hello/

 dir{./}: exe{hello}
 exe{hello.}: cxx{hello.cxx}
 }

 dir{./}: dir{hello/} manifest{manifest}
 }
}

This is probably quite a bit more information than what you’ve expected to see so let’s

explain a couple of things. Firstly, it appears there is another scope outer to our project’s root.

In fact, build2 extends scoping outside of projects with the root of the filesystem (denoted

by the special /) being the global scope. This extension becomes useful when we try to build

multiple unrelated projects or import one project into another. In this model all projects are

part of a single scope hierarchy with the global scope at its root.

The global scope is read-only and contains a number of pre-defined build-wide variables such

as the build system version, host platform (shown in the above listing), etc.

Next, inside the global scope, we see our project’s root scope (/tmp/hello/). Besides the

variables that we have set ourselves (like project), it also contains a number of variables

set by the build system core (for example, out_base, src_root, etc) as well by build

system modules (for example, project.* and version.* variables set by the version
module and cxx.* variables set by the cxx module).

The scope for our project’s source directory (hello/) should look familiar. We again have a

few special variables (out_base, src_base). Notice also that the name patterns in prereq­

uisites have been expanded to the actual files.

As you can probably guess from their names, the src_* and out_* variables track the asso­

ciation between scopes and src/out directories. They are maintained automatically by the build

system core with the src/out_base pair set on each scope within the project and an addi­

tional src/out_root pair set on the project’s root scope so that we can get the project’s

root directories from anywhere in the project. Note that directory paths in these variables are

always absolute and normalized.

Revision 0.18, July 202520 The build2 Build System

1.3 Output Directories and Scopes

In the above example the corresponding src/out variable pairs have the same values because

we were building in source. As an example, this is what the association will look like for an

out of source build:

hello/ ~~> hello-out/ <~~ hello-out/
| { |
| src_root = .../hello/ |
| out_root = .../hello-out/ |
| |
| src_base = .../hello/ |
| out_base = .../hello-out/ |
| |
·-- hello/ ~~> hello/ <~~ ·-- hello/
 {
 src_base = .../hello/hello/
 out_base = .../hello-out/hello/
 }
 }

Now that we have some scopes and variables to play with, it’s a good time to introduce vari­

able expansion. To get the value stored in a variable we use $ followed by the variable’s

name. The variable is first looked up in the current scope (that is, the scope in which the

expansion was encountered) and, if not found, in the outer scopes all the way to the global

scope.

To be precise, this is for the default variable visibility. Variables, however, can have more

limited visibilities, such as project, scope, target, or prerequisite.

To illustrate the lookup semantics, let’s add the following line to each buildfile in our

hello project:

$ cd hello/ # Change to project root.

$ cat buildfile
...
info "src_base: $src_base"

$ cat hello/buildfile
...
info "src_base: $src_base"

And then build it:

$ b
buildfile:3:1: info: src_base: /tmp/hello/
hello/buildfile:8:1: info: src_base: /tmp/hello/hello/

In this case src_base is defined in each of the two scopes and we get their respective

values. If, however, we change the above line to print src_root instead of src_base, we

will get the same value from the root scope:

buildfile:3:1: info: src_root: /tmp/hello/
hello/buildfile:8:1: info: src_root: /tmp/hello/

21Revision 0.18, July 2025 The build2 Build System

1.3 Output Directories and Scopes

In this section we’ve only scratched the surface when it comes to variables. In particular, vari­

ables and variable values in build2 are optionally typed (those [string], [uint64]
we’ve seen in the build state dump). And in certain contexts the lookup semantics actually

starts from the target, not from the scope (target-specific variables; there are also prerequi­

site-specific). These and other variable-related topics will be covered in subsequent sections.

One typical place to find src/out_root expansions is in the include search path options.

For example, the source subdirectory buildfile generated by bdep-new(1) for an

executable project actually looks like this (poptions stands for preprocessor options):

exe{hello}: {hxx cxx}{**}

cxx.poptions =+ "-I$out_root" "-I$src_root"

The strange-looking =+ line is a prepend variable assignment. It adds the value on the right

hand side to the beginning of the existing value. So, in the above example, the two header

search paths will be added before any of the existing preprocessor options (and thus will be

considered first).

There are also the append assignment, +=, which adds the value on the right hand side to the

end of the existing value, as well as, of course, the normal or replace assignment, =, which

replaces the existing value with the right hand side. One way to remember where the existing

and new values end up in the =+ and += results is to imagine the new value taking the posi­

tion of = and the existing value – of +.

The above buildfile allows us to include our headers using the project’s name as a prefix,

inline with the Canonical Project Structure guidelines. For example, if we added the

utility.hxx header to our hello project, we would include it like this:

#include <iostream>

#include <hello/utility.hxx>

int main ()
{
...
}

Besides poptions, there are also coptions (compile options), loptions (link options),

aoptions (archive options) and libs (extra libraries to link). If you are familiar with

make, these are roughly equivalent to CPPFLAGS, CFLAGS/CXXFLAGS, LDFLAGS,

ARFLAGS, and LIBS/LDLIBS, respectively. Here they are again in the tabular form:

*.poptions preprocess CPPFLAGS
*.coptions compile CFLAGS/CXXFLAGS
*.loptions link LDFLAGS
*.aoptions archive ARFLAGS
*.libs extra libraries LIBS/LDLIBS

Revision 0.18, July 202522 The build2 Build System

1.3 Output Directories and Scopes

More specifically, there are three sets of these variables: cc.* (stands for C-common) which

applies to all C-like languages as well as c.* and cxx.* which only apply during the C and

C++ compilation, respectively. We can use these variables in our buildfiles to adjust the

compiler/linker behavior. For example:

if ($cc.class == ’gcc’)
{
 cc.coptions += -fno-strict-aliasing # C and C++
 cxx.coptions += -fno-exceptions # only C++
}

if ($c.target.class != ’windows’)
 c.libs += -ldl # only C

Additionally, as we will see in Configuring, there are also the config.cc.*,

config.c.*, and config.cxx.* sets which are used by the users of our projects to

provide external configuration. The initial values of the cc.*, c.*, and cxx.* variables are

taken from the corresponding config.*.* values.

And, as we will learn in Library Exportation, there are also the cc.export.*,

c.export.*, and cxx.export.* sets that are used to specify options that should be

exported to the users of our library.

If we adjust the cc.*, c.*, and cxx.* variables at the scope level, as in the above frag­

ment, then the changes will apply when building every target in this scope (as well as in the

nested scopes, if any). Usually this is what we want but sometimes we may need to pass addi­

tional options only when compiling certain source files or linking certain libraries or executa­

bles. For that we use the target-specific variable assignment. For example:

exe{hello}: {hxx cxx}{**}

obj{utility}: cxx.poptions += -DNDEBUG
exe{hello}: cxx.loptions += -static

Note that we set these variables on targets which they affect. In particular, those with a back­

ground in other build systems may, for example, erroneously expect that setting poptions
on a library target will affect compilation of its prerequisites. For example, the following does

not work:

exe{hello}: cxx.poptions += -DNDEBUG

The recommended way to achieve this behavior in build2 is to organize your targets into

subdirectories, in which case we can just set the variables on the scope. And if this is impossi­

ble or undesirable, then we can use target type/pattern-specific variables (if there is a common

pattern) or simply list the affected targets explicitly. For example:

obj{*.test}: cxx.poptions += -DDEFINE_MAIN
obj{main utility}: cxx.poptions += -DNDEBUG

23Revision 0.18, July 2025 The build2 Build System

1.3 Output Directories and Scopes

The first line covers compilation of source files that have the .test second-level extension

(see Implementing Unit Testing for background) while the second simply lists the targets

explicitly.

It is also possible to specify different options when producing different types of object files

(obje{} – executable, obja{} – static library, or objs{} – shared library) or when

linking different libraries (liba{} – static library or libs{} – shared library). See Library

Exportation and Versioning for an example.

As mentioned above, each buildfile in a project is loaded into its corresponding scope.

As a result, we rarely need to open scopes explicitly. In the few cases that we do, we use the

following syntax:

<directory>/
{
 ...
}

If the scope directory is relative, then it is assumed to be relative to the current scope. As an

exercise for understanding, let’s reimplement our hello project as a single buildfile.

That is, we move the contents of the source subdirectory buildfile into the root build­
file:

$ tree hello/
hello/
|-- build/
| ·-- ...
|-- hello/
| ·-- hello.cxx
·-- buildfile

$ cat hello/buildfile

./: hello/

hello/
{
 ./: exe{hello}: {hxx cxx}{**}
}

While this single buildfile setup is not recommended for new projects, it can be useful

for non-intrusive conversion of existing projects to build2. One approach is to place the

unmodified original project into a subdirectory (potentially automating this with a mechanism

such as git(1) submodules) then adding the build/ subdirectory and the root build­
file which explicitly opens scopes to define the build over the upstream project’s subdirec­

tory structure.

Seeing this merged buildfile may make you wonder what exactly caused the loading of

the source subdirectory buildfile in our normal setup. In other words, when we build our

hello from the project root, who loads hello/buildfile and why?

Revision 0.18, July 202524 The build2 Build System

1.3 Output Directories and Scopes

Actually, in the earlier days of build2, we had to explicitly load buildfiles that define

targets we depend on with the include directive. In fact, we still can (and have to if we are

depending on targets other than directories). For example:

./: hello/

include hello/buildfile

We can also omit buildfile for brevity and have just:

include hello/

This explicit inclusion, however, quickly becomes tiresome as the number of directories

grows. It also makes using wildcard patterns for subdirectory prerequisites a lot less appeal­

ing.

To overcome this the dir{} target type implements an interesting prerequisite to target reso­

lution semantics: if there is no existing target with this name, a buildfile that (presum­

ably) defines this target is automatically loaded from the corresponding directory. In fact, this

mechanism goes a step further and, if the buildfile does not exist, then it assumes one

with the following contents was implied:

./: */

That is, it simply builds all the subdirectories. This is especially handy when organizing

related tests into directory hierarchies.

As mentioned above, this automatic inclusion is only triggered if the target we depend on is

dir{} and we still have to explicitly include the necessary buildfiles for other targets.

One common example is a project consisting of a library and an executable that links it, each

residing in a separate directory next to each other (as noted earlier, this is not recommended

for projects that you plan to package). For example:

hello/
|-- build/
| ·-- ...
|-- hello/
| |-- main.cxx
| ·-- buildfile
|-- libhello/
| |-- hello.hxx
| |-- hello.cxx
| ·-- buildfile
·-- buildfile

In this case the executable buildfile would look along these lines:

include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

25Revision 0.18, July 2025 The build2 Build System

1.3 Output Directories and Scopes

Note also that buildfile inclusion should only be used for accessing targets within the

same project. For cross-project references we use Target Importation.

1.4 Operations

Modern build systems have to perform operations other than just building: cleaning the build

output, running tests, installing/uninstalling the build results, preparing source distributions,

and so on. And, if the build system has integrated configuration support, configuring the

project would naturally belong to this list as well.

If you are familiar with make, you should recognize the parallel with the common clean

test, install, and dist, "operation" pseudo-targets.

In build2 we have the concept of a build system operation performed on a target. The two

pre-defined operations are update and clean with other operations provided by build

system modules.

Operations to be performed and targets to perform them on are specified on the command

line. As discussed earlier, update is the default operation and ./ in the current directory is

the default target if no operation and/or target is specified explicitly. And, similar to targets,

we can specify multiple operations (not necessarily on the same target) in a single build

system invocation. The list of operations to perform and targets to perform them on is called a

build specification or buildspec for short (see b(1) for details). Here are a few examples:

$ cd hello # Change to project root.

$ b # Update current directory.
$ b ./ # Same as above.
$ b update # Same as above.
$ b update: ./ # Same as above.

$ b clean update # Rebuild.

$ b clean: hello/ # Clean specific target.
$ b update: hello/exe{hello} # Update specific target

$ b update: libhello/ tests/ # Update two targets.

If you are running build2 from PowerShell, then you will need to use quoting when updat­

ing specific targets, for example:

$ b update: ’hello/exe{hello}’

Let’s revisit build/bootstrap.build from our hello project:

project = hello

using version
using config
using test
using install
using dist

Revision 0.18, July 202526 The build2 Build System

1.4 Operations

Other than version, all the modules we load define new operations. Let’s examine each of

them starting with config.

1.4.1 Configuring

As mentioned briefly earlier, the config module provides support for persisting configura­

tions by having us configure our projects. At first it may feel natural to call configure an

operation. There is, however, a conceptual problem: we don’t really configure a target. And,

perhaps after some meditation, it should become clear that what we are really doing is config­

uring operations on targets. For example, configuring updating a C++ project might involve

detecting and saving information about the C++ compiler while configuring installing it may

require specifying the installation directory.

In other words, configure is an operation on operation on targets – a meta-operation. And

so in build2 we have the concept of a build system meta-operation. If not specified explic­

itly (as part of the buildspec), the default is perform, which is to simply perform the opera­

tion.

Back to config, this module provides two meta-operations: configure which saves the

configuration of a project into the build/config.build file as well as disfigure
which removes it.

While the common meaning of the word disfigure is somewhat different to what we make it

mean in this context, we still prefer it over the commonly suggested alternative (deconfigure)

for the symmetry of their Latin con- ("together") and dis- ("apart") prefixes.

Let’s say for the in source build of our hello project we want to use Clang and enable

debug information. Without persistence we would have to repeat this configuration on every

build system invocation:

$ cd hello/ # Change to project root.

$ b config.cxx=clang++ config.cxx.coptions=-g

Instead, we can configure our project with this information once and from then on invoke the

build system without any arguments:

$ b configure config.cxx=clang++ config.cxx.coptions=-g

$ tree ./
./
|-- build/
| |-- ...
| ·-- config.build
·-- ...

$ b
$ b clean
$ b
...

27Revision 0.18, July 2025 The build2 Build System

1.4.1 Configuring

To remove the persistent configuration we use the disfigure meta-operation:

$ b disfigure

Let’s again configure our project and take a look at config.build:

$ b configure config.cxx=clang++ config.cxx.coptions=-g

$ cat build/config.build

config.cxx = clang++
config.cxx.poptions = [null]
config.cxx.coptions = -g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]
...

As you can see, it’s just a buildfile with a bunch of variable assignments. In particular, this

means you can tweak your build configuration by modifying this file with your favorite

editor. Or, alternatively, you can adjust the configuration by reconfiguring the project:

$ b configure config.cxx=g++

$ cat build/config.build

config.cxx = g++
config.cxx.poptions = [null]
config.cxx.coptions = -g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]
...

Any variable value specified on the command line overrides those specified in the build­
files. As a result, config.cxx was updated while the value of

config.cxx.coptions was preserved.

To revert a configuration variable to its default value, list its name in the special

config.config.disfigure variable. For example:

$ b configure config.config.disfigure=config.cxx

Command line variable overrides are also handy to adjust the configuration for a single build

system invocation. For example, let’s say we want to quickly check that our project builds

with optimization but without permanently changing the configuration:

$ b config.cxx.coptions=-O3 # Rebuild with -O3.
$ b # Rebuild with -g.

Besides the various *.?options variables, we can also specify the "compiler mode"

options as part of the compiler executable in config.c and config.cxx. Such options

cannot be modified by buildfiles and they will appear last on the command lines. For

example:

Revision 0.18, July 202528 The build2 Build System

1.4.1 Configuring

$ b configure config.cxx="g++ -m32"

The compiler mode options are also the correct place to specify system-like header (-I) and

library (-L, /LIBPATH) search paths. Where by system-like we mean common installation

directories like /usr/include or /usr/local/lib which may contain older versions

of the libraries we are trying to build and/or use. By specifying these paths as part of the mode

options (as opposed to config.*.poptions and config.*.loptions) we make sure

they will be considered last, similar to the compiler’s build-in search paths. For example:

$ b configure config.cxx="g++ -L/opt/install"

If we would like to prevent subsequent changes to the environment from affecting our build

configuration, we can make it hermetic (see Hermetic Build Configurations for details):

$ b configure config.config.hermetic=true ...

One prominent use of hermetic configurations is to preserve the build environment of the

Visual Studio development command prompt. That is, hermetically configuring our project in

a suitable Visual Studio command prompt makes us free to build it from any other prompt or

shell, IDE, etc.

We can also configure out of source builds of our projects. In this case, besides

config.build, configure also saves the location of the source directory so that we

don’t have to repeat that either. Remember, this is how we used to build our hello out of

source:

$ b hello/@hello-gcc/ config.cxx=g++
$ b hello/@hello-clang/ config.cxx=clang++

And now we can do:

$ b configure: hello/@hello-gcc/ config.cxx=g++
$ b configure: hello/@hello-clang/ config.cxx=clang++

$ hello-clang/
hello-clang/
·-- build/
 |-- bootstrap/
 | ·-- src-root.build
 ·-- config.build

$ b hello-gcc/
$ b hello-clang/
$ b hello-gcc/ hello-clang/

One major benefit of an in source build is the ability to run executables as well as examine

build and test output (test results, generated source code, documentation, etc) without leaving

the source directory. Unfortunately, we cannot have multiple in source builds and as was

discussed earlier, mixing in and out of source builds is not recommended.

29Revision 0.18, July 2025 The build2 Build System

1.4.1 Configuring

To overcome this limitation build2 has a notion of forwarded configurations. As the name

suggests, we can configure a project’s source directory to forward to one of its out of source

builds. Once done, whenever we run the build system from the source directory, it will auto­

matically build in the corresponded forwarded output directory. Additionally, it will backlink

(using symlinks or another suitable mechanism) certain "interesting" targets (exe{}, doc{})

to the source directory for easy access. As an example, let’s configure our hello/ source

directory to forward to the hello-gcc/ build:

$ b configure: hello/@hello-gcc/,forward

$ cd hello/ # Change to project root.
$ b
c++ hello/cxx{hello} -> ../hello-gcc/hello/obje{hello}
ld ../hello-gcc/hello/exe{hello}
ln ../hello-gcc/hello/exe{hello} -> hello/

Notice the last line in the above listing: it indicates that exe{hello} from the out directory

was backlinked in our project’s source subdirectory:

$ tree ./
./
|-- build/
| |-- bootstrap/
| | ·-- out-root.build
| ·-- ...
|-- hello/
| |-- ...
| ·-- hello -> ../../hello-gcc/hello/hello*
·-- ...

$./hello/hello
Hello World!

By default only exe{} and doc{} targets are backlinked. This, however, can be customized

with the backlink target-specific variable.

1.4.2 Testing

The next module we load in bootstrap.build is test which defines the test opera­

tion. As the name suggests, this module provides support for running tests.

There are two types of tests that we can run with the test module: simple and scripted.

A simple test is just an executable target with the test target-specific variable set to true.

For example:

exe{hello}: test = true

A simple test is executed once and in its most basic form (typical for unit testing) doesn’t take

any inputs nor produce any output, indicating success via the zero exit status. If we test our

hello project with the above addition to the buildfile, then we will see the following

output:

Revision 0.18, July 202530 The build2 Build System

1.4.2 Testing

$ b test
test hello/exe{hello}
Hello, World!

While the test passes (since it exited with zero status), we probably don’t want to see that

Hello, World! every time we run it (this can, however, be quite useful when running

examples). More importantly, we don’t really test its functionality and if tomorrow our

hello starts swearing rather than greeting, the test will still pass.

Besides checking its exit status we can also supply some basic information to a simple test

(more common for integration testing). Specifically, we can pass command line options

(test.options) and arguments (test.arguments) as well as input (test.stdin,

used to supply test’s stdin) and output (test.stdout, used to compare to test’s

stdout).

Let’s see how we can use this to fix our hello test by making sure our program prints the

expected greeting. First, we need to add a file that will contain the expected output, let’s call it

test.out:

$ ls -1 hello/
hello.cxx
test.out
buildfile

$ cat hello/test.out
Hello, World!

Next, we arrange for it to be compared to our test’s stdout. Here is the new

hello/buildfile:

exe{hello}: {hxx cxx}{**}
exe{hello}: file{test.out}: test.stdout = true

The last line looks new. What we have here is a prerequisite-specific variable assignment. By

setting test.stdout for the file{test.out} prerequisite of target exe{hello} we

mark it as expected stdout output of this target (theoretically, we could have marked it as

test.input for another target). Notice also that we no longer need the test
target-specific variable; it’s unnecessary if one of the other test.* variables is specified.

Now, if we run our test, we won’t see any output:

$ b test
test hello/exe{hello}

And if we try to change the greeting in hello.cxx but not in test.out, our test will fail

printing the diff(1) comparison of the expected and actual output:

31Revision 0.18, July 2025 The build2 Build System

1.4.2 Testing

$ b test
c++ hello/cxx{hello} -> hello/obje{hello}
ld hello/exe{hello}
test hello/exe{hello}
--- test.out
+++ -
@@ -1 +1 @@
-Hello, World!
+Hi, World!
error: test hello/exe{hello} failed

Notice another interesting thing: we have modified hello.cxx to change the greeting and

our test executable was automatically rebuilt before testing. This happened because the test

operation performs update as its pre-operation on all the targets to be tested.

Let’s make our hello program more flexible by accepting the name to greet on the

command line:

#include <iostream>

int main (int argc, char* argv[])
{
 if (argc < 2)
 {
 std::cerr << "error: missing name" << std::endl;
 return 1;
 }

 std::cout << "Hello, " << argv[1] << ’!’ << std::endl;
}

We can exercise its successful execution path with a simple test fairly easily:

exe{hello}: test.arguments = ’World’
exe{hello}: file{test.out}: test.stdout = true

What if we also wanted to test its error handling? Since simple tests are single-run, this won’t

be easy. Even if we could overcome this, having expected output for each test in a separate

file will quickly become untidy. And this is where script-based tests come in. Testscript is

build2’s portable language for running tests. It vaguely resembles Bash and is optimized for

concise test implementation and fast, parallel execution.

Just to give you an idea (see Testscript Introduction for a proper introduction), here is what

testing our hello program with Testscript would look like:

$ ls -1 hello/
hello.cxx
testscript
buildfile

$ cat hello/buildfile

exe{hello}: {hxx cxx}{**} testscript

Revision 0.18, July 202532 The build2 Build System

1.4.2 Testing

And this is the contents of hello/testscript:

: basics
:
$* ’World’ >’Hello, World!’

: missing-name
:
$* 2>>EOE != 0
error: missing name
EOE

A couple of key points: The test.out file is gone with all the test inputs and expected

outputs incorporated into testscript. To test an executable with Testscript, all we have to

do is list the corresponding testscript file as its prerequisite (and which, being a fixed

name, doesn’t need an explicit target type, similar to manifest).

To see Testscript in action, let’s say we’ve made our program more forgiving by falling back

to a default name if one wasn’t specified:

#include <iostream>

int main (int argc, char* argv[])
{
 const char* n (argc > 1 ? argv[1] : "World");
 std::cout << "Hello, " << n << ’!’ << std::endl;
}

If we forget to adjust the missing-name test, then this is what we could expect to see when

running the tests:

$ b test
c++ hello/cxx{hello} -> hello/obje{hello}
ld hello/exe{hello}
test hello/exe{hello} + hello/testscript{testscript}
hello/testscript:7:1: error: hello/hello exit code 0 == 0
 info: stdout: hello/test-hello/missing-name/stdout

Testscript-based integration testing is the default setup for executable (-t exe) projects

created by bdep-new(1). Here is the recap of the overall layout:

hello/
|-- build/
| ·-- ...
|-- hello/
| |-- hello.cxx
| |-- testscript
| ·-- buildfile
|-- buildfile
·-- manifest

For libraries (-t lib), however, the integration testing setup is a bit different. Here are the

relevant parts of the layout:

33Revision 0.18, July 2025 The build2 Build System

1.4.2 Testing

libhello/
|-- build/
| ·-- ...
|-- libhello/
| |-- hello.hxx
| |-- hello.cxx
| |-- export.hxx
| |-- version.hxx.in
| ·-- buildfile
|-- tests/
| |-- build/
| | |-- bootstrap.build
| | ·-- root.build
| |-- basics/
| | |-- driver.cxx
| | ·-- buildfile
| ·-- buildfile
|-- buildfile
·-- manifest

Specifically, there is no testscript in libhello/, the project’s source subdirectory.

Instead, we have the tests/ subdirectory which itself looks like a project: it contains the

build/ subdirectory with all the familiar files, etc. In fact, tests is a subproject of our

libhello project.

While we will be examining tests in greater detail later, in a nutshell, the reason it is a

subproject is to be able to test an installed version of our library. By default, when tests is

built as part of its parent project (called amalgamation), the locally built libhello library

will be automatically imported. However, we can also configure a build of tests out of its

amalgamation, in which case we can import an installed version of libhello. We will learn

how to do all that as well as the underlying concepts (subproject/amalgamation, import, etc)

in the coming sections.

Inside tests/ we have the basics/ subdirectory which contains a simple test for our

library’s API. By default it doesn’t use Testscript but if you want to, you can. You can also

rename basics/ to something more meaningful and add more tests next to it. For example,

if we were creating an XML parsing and serialization library, then our tests/ could have

the following layout:

tests/
|-- build/
| ·-- ...
|-- parser/
| ·-- ...
|-- serializer/
| ·-- ...
·-- buildfile

Nothing prevents us from having the tests/ subdirectory for executable projects. And it can

be just a subdirectory or a subproject, the same as for libraries. Making it a subproject makes

sense if your program has complex installation, for example, if its execution requires configu­

ration and/or data files that need to be found, etc. For simple programs, however, testing the

executable before installing it is usually sufficient.

Revision 0.18, July 202534 The build2 Build System

1.4.2 Testing

For a general discussion of functional/integration and unit testing refer to the Tests section in

the toolchain introduction. For details on the unit test support implementation see Implement­

ing Unit Testing.

1.4.3 Installing

The install module defines the install and uninstall operations. As the name

suggests, this module provides support for project installation.

Installation in build2 is modeled after UNIX-like operation systems though the installation

directory layout is highly customizable. While build2 projects can import build2 libraries

directly, installation is often a way to "export" them in a form usable by other build systems.

The root installation directory is specified with the config.install.root configuration

variable. Let’s install our hello program into /tmp/install:

$ cd hello/ # Change to project root.

$ b install config.install.root=/tmp/install/

And see what we’ve got (executables are marked with *):

$ tree /tmp/install/

/tmp/install/
|-- bin/
| ·-- *hello
·-- share/
 ·-- doc/
 ·-- hello/
 ·-- manifest

Similar to the test operation, install performs update as a pre-operation for targets

that it installs.

We can also configure our project with the desired config.install.* values so that we

don’t have to repeat them on every install/uninstall. For example:

$ b configure config.install.root=/tmp/install/
$ b install
$ b uninstall

Now let’s try the same for libhello (symbolic link targets are shown with -> and actual

static/shared library names may differ on your operating system):

$ rm -r /tmp/install

$ cd libhello/ # Change to project root.

$ b install config.install.root=/tmp/install/

$ tree /tmp/install/

/tmp/install/

35Revision 0.18, July 2025 The build2 Build System

1.4.3 Installing

|-- include/
| ·-- libhello/
| |-- hello.hxx
| |-- export.hxx
| ·-- version.hxx
|-- lib/
| |-- pkgconfig/
| | |-- libhello.pc
| | |-- libhello.shared.pc
| | ·-- libhello.static.pc
| |-- libhello.a
| |-- libhello.so -> libhello-0.1.so
| ·-- libhello-0.1.so
·-- share/
 ·-- doc/
 ·-- libhello/
 ·-- manifest

As you can see, the library headers go into the customary include/ subdirectory while

static and shared libraries (and their pkg-config(1) files) – into lib/. Using this instal­

lation we should be able to import this library from other build systems or even use it in a

manual build:

$ g++ -I/tmp/install/include -L/tmp/install/lib greet.cxx -lhello

If we want to install into a system-wide location like /usr or /usr/local, then we most

likely will need to specify the sudo(1) program:

$ b config.install.root=/usr/local/ config.install.sudo=sudo

In build2 only actual install/uninstall commands are executed with sudo(1). And while

on the topic of sensible implementations, uninstall can be generally trusted to work reli­

ably.

The default installability of a target as well as where it is installed is determined by its target

type. For example, exe{} is by default installed into bin/, doc{} – into

share/doc/<project>/, and file{} is not installed.

We can, however, override these defaults with the install target-specific variable. Its value

should be either special false indicating that the target should not be installed or the direc­

tory to install the target to. As an example, here is what the root buildfile from our

libhello project looks like:

./: {*/ -build/} manifest

tests/: install = false

The first line we have already seen and the purpose of the second line should now be clear: it

makes sure we don’t try to install anything in the tests/ subdirectory.

If the value of the install variable is not false, then it is normally a relative path with

the first path component being one of these names:

Revision 0.18, July 202536 The build2 Build System

1.4.3 Installing

name default override
---- ------- --------
root config.install.root

data_root root/ config.install.data_root
exec_root root/ config.install.exec_root

bin exec_root/bin/ config.install.bin
sbin exec_root/sbin/ config.install.sbin
lib exec_root/lib/ config.install.lib
libexec exec_root/libexec/<project>/ config.install.libexec
pkgconfig lib/pkgconfig/ config.install.pkgconfig

etc data_root/etc/ config.install.etc
include data_root/include/ config.install.include
include_arch include/ config.install.include_arch
share data_root/share/ config.install.share
data share/<project>/ config.install.data
buildfile share/build2/export/<project>/ config.install.buildfile

doc share/doc/<project>/ config.install.doc
legal doc/ config.install.legal
man share/man/ config.install.man
man<N> man/man<N>/ config.install.man<N>

Let’s see what’s going on here: The default install directory tree is derived from the

config.install.root value but the location of each node in this tree can be overridden

by the user that installs our project using the corresponding config.install.* variables

(see the install module documentation for details on their meaning). In our build­
files, in turn, we use the node names instead of actual directories. As an example, here is a

buildfile fragment from the source subdirectory of our libhello project:

hxx{*}:
{
 install = include/libhello/
 install.subdirs = true
}

Here we set the installation location for headers to be the libhello/ subdirectory of the

include installation location. Assuming config.install.root is /usr/, the

install module will perform the following steps to resolve this relative path to the actual,

absolute installation directory:

include/libhello/
data_root/include/libhello/
root/include/libhello/
/usr/include/libhello/

In the above buildfile fragment we also see the use of the install.subdirs vari­

able. Setting it to true instructs the install module to recreate subdirectories starting

from this point in the project’s directory hierarchy. For example, if our libhello/ source

subdirectory had the details/ subdirectory with the utility.hxx header, then this

header would have been installed as

.../include/libhello/details/utility.hxx.

37Revision 0.18, July 2025 The build2 Build System

1.4.3 Installing

By default the generated pkg-config files will contain install.include and

install.lib directories as header (-I) and library (-L) search paths, respectively.

However, these can be customized with the {c,cxx}.pkgconfig.{include,lib}

variables. For example, sometimes we may need to install headers into a subdirectory of the

include directory but include them without this subdirectory:

Install headers into hello/libhello/ subdirectory of, say,
/usr/include/ but include them as <libhello/*>.
#
hxx{*}:
{
 install = include/hello/libhello/
 install.subdirs = true
}

lib{hello}: cxx.pkgconfig.include = include/hello/

1.4.4 Distributing

The last module that we load in our bootstrap.build is dist which provides support

for the preparation of source distributions and defines the dist meta-operation. Similar to

configure, dist is a meta-operation rather than an operation because, conceptually, we

are preparing a distribution for performing operations (like update, test) on targets rather

than targets themselves.

The preparation of a correct distribution requires that all the necessary project files (sources,

documentation, etc) be listed as prerequisites in the project’s buildfiles.

You may wonder why not just use the export support offered by many version control

systems? The main reason is that in most real-world projects version control repositories

contain a lot more than what needs to be distributed. In fact, it is not uncommon to host multi­

ple build system projects/packages in a single repository. As a result, with this approach we

seem to inevitably end up maintaining an exclusion list, which feels backwards: why specify

all the things we don’t want in a new list instead of making sure the already existing list of

things that we do want is complete? Also, once we have the complete list, it can be put to

good use by other tools, such as editors, IDEs, etc.

The preparation of a distribution also requires an out of source build. This allows the dist
module to distinguish between source and output targets. By default, targets found in src are

included into the distribution while those in out are excluded. However, we can customize this

with the dist target-specific variable.

As an example, let’s prepare a distribution of our hello project using the out of source build

configured in hello-out/. We use config.dist.root to specify the directory to write

the distribution to:

$ b dist: hello-out/ config.dist.root=/tmp/dist

$ ls -1 /tmp/dist
hello-0.1.0/

Revision 0.18, July 202538 The build2 Build System

1.4.4 Distributing

$ tree /tmp/dist/hello-0.1.0/
/tmp/dist/hello-0.1.0/
|-- build/
| |-- bootstrap.build
| ·-- root.build
|-- hello/
| |-- hello.cxx
| |-- testscript
| ·-- buildfile
|-- buildfile
·-- manifest

As we can see, the distribution directory includes the project version (from the version

variable which, in our case, is extracted from manifest by the version module). Inside

the distribution directory we have our project’s source files (but, for example, without any

.gitignore files that we may have had in hello/).

We can also ask the dist module to package the distribution directory into one or more

archives and generate their checksum files for us. For example:

$ b dist: hello-out/ \
 config.dist.root=/tmp/dist \
 config.dist.archives="tar.gz zip" \
 config.dist.checksums=sha256

$ ls -1 /tmp/dist
hello-0.1.0/
hello-0.1.0.tar.gz
hello-0.1.0.tar.gz.sha256
hello-0.1.0.zip
hello-0.1.0.zip.sha256

We can also configure our project with the desired config.dist.* values so we don’t

have to repeat them every time. For example:

$ b configure: hello-out/ config.dist.root=/tmp/dist ...
$ b dist

Let’s now take a look at an example of customizing what gets distributed. Most of the time

you will be using this mechanism to include certain targets from out. Here is a fragment from

the libhello source subdirectory buildfile:

hxx{version}: in{version} $src_root/manifest

Our library provides the version.hxx header that the users can include to obtain its

version. This header is generated by the version module from the version.hxx.in
template. In essence, the version module takes the version value from our manifest,

splits it into various components (major, minor, patch, etc) and then preprocesses the in{}
file substituting these values (see the version module documentation for details). The end

result is an automatically maintained version header.

Usually there is no need to include this header into the distribution since it will be automati­

cally generated if and when necessary. However, we can if we need to. For example, we could

be porting an existing project and its users could be expecting the version header to be

39Revision 0.18, July 2025 The build2 Build System

1.4.4 Distributing

shipped as part of the archive. Here is how we can achieve this:

hxx{version}: in{version} $src_root/manifest
{
 dist = true
 clean = ($src_root != $out_root)
}

Because this header is an output target, we have to explicitly request its distribution with

dist=true. Notice that we have also disabled its cleaning for the in source build so that the

clean operation results in a state identical to distributed.

1.5 Target Importation

Recall that if we need to depend on a target defined in another buildfile within our

project, then we simply include the said buildfile and reference the target. For example,

if our hello included both an executable and a library in separate subdirectories next to each

other:

hello/
|-- build/
| ·-- ...
|-- hello/
| |-- ...
| ·-- buildfile
·-- libhello/
 |-- ...
 ·-- buildfile

Then our executable buildfile could look like this:

include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

What if instead libhello were a separate project? The inclusion approach would no longer

work for two reasons: we don’t know the path to libhello (after all, it’s an independent

project and can reside anywhere) and we can’t assume the path to the lib{hello} target

within libhello (the project directory layout can change).

To depend on a target from a separate project we use importation instead of inclusion. This

mechanism is also used to depend on targets that are not part of any project, for example,

installed libraries.

The importing project’s side is pretty simple. This is what the above buildfile will look

like if libhello were a separate project:

import libs = libhello%lib{hello}

exe{hello}: {hxx cxx}{**} $libs

Revision 0.18, July 202540 The build2 Build System

1.5 Target Importation

The import directive is a kind of variable assignment that resolves a project-qualified rela­

tive target (libhello%lib{hello}) to an unqualified absolute target and stores it in the

variable (libs in our case). We can then expand the variable ($libs), normally in the

dependency declaration, to get the imported target.

If we needed to import several libraries, then we simply repeat the import directive, usually

accumulating the result in the same variable, for example:

import libs = libformat%lib{format}
import libs += libprint%lib{print}
import libs += libhello%lib{hello}

exe{hello}: {hxx cxx}{**} $libs

Let’s now try to build our hello project that uses imported libhello:

$ b hello/
error: unable to import target libhello%lib{hello}
 info: use config.import.libhello command line variable to specify
 its project out_root

While that didn’t work out well, it does make sense: the build system cannot know the loca­

tion of libhello or which of its builds we want to use. Though it does helpfully suggest

that we use config.import.libhello to specify its out directory (out_root). Let’s

point it to libhello source directory to use its in source build

(out_root == src_root):

$ b hello/ config.import.libhello=libhello/
c++ libhello/libhello/cxx{hello} -> libhello/libhello/objs{hello}
ld libhello/libhello/libs{hello}
c++ hello/hello/cxx{hello} -> hello/hello/obje{hello}
ld hello/hello/exe{hello}

And it works. Naturally, the importation mechanism works the same for out of source builds

and we can persist the config.import.* variables in the project’s configuration. As an

example, let’s configure Clang builds of the two projects out of source:

$ b configure: libhello/@libhello-clang/ config.cxx=clang++
$ b configure: hello/@hello-clang/ config.cxx=clang++ \
 config.import.libhello=libhello-clang/

$ b hello-clang/
c++ libhello/libhello/cxx{hello} -> libhello-clang/libhello/objs{hello}
ld libhello-clang/libhello/libs{hello}
c++ hello/hello/cxx{hello} -> hello-clang/hello/obje{hello}
ld hello-clang/hello/exe{hello}

If the corresponding config.import.* variable is not specified, import searches for a

project in a couple of other places. First, it looks in the list of subprojects starting from the

importing project itself and then continuing with its outer amalgamations and their subprojects

(see Subprojects and Amalgamations for details on this subject).

41Revision 0.18, July 2025 The build2 Build System

1.5 Target Importation

We’ve actually seen an example of this search step in action: the tests subproject in

libhello. The test imports libhello which is automatically found as an amalgamation

containing this subproject.

To skip searching in subprojects/amalgamations and proceed directly to the rule-specific

search (described below), specify the config.import.* variable with an empty value.

For example:

$ b configure: ... config.import.libhello=

If the project being imported cannot be located using any of these methods, then import
falls back to the rule-specific search. That is, a rule that matches the target may provide

support for importing certain target types based on rule-specific knowledge. Support for

importing installed libraries by the C++ link rule is a good example of this. Internally, the

cxx module extracts the compiler’s library search paths (that is, paths that would be used to

resolve -lfoo) and then the link rule uses them to search for installed libraries. This allows

us to use the same import directive regardless of whether we import a library from a sepa­

rate build, from a subproject, or from an installation directory.

Importation of an installed library will work even if it is not a build2 project. Besides

finding the library itself, the link rule will also try to locate its pkg-config(1) file and, if

present, extract additional compile/link flags from it (see Importation of Installed Libraries for

details). The link rule also automatically produces pkg-config(1) files for libraries that it

installs.

A common problem with importing and using third-party C/C++ libraries is compiler warn­

ings. Specifically, we are likely to include their headers into our project’s source files which

means we may see warnings in such headers (which we cannot always fix) mixed with warn­

ings in our code (which we should normally be able to fix). See Compilation Internal Scope

for a mechanism to deal with this problem.

Let’s now examine the exporting side of the importation mechanism. While a project doesn’t

need to do anything special to be found by import, it does need to handle locating the

exported target (or targets; there could be several) within the project as well as loading their

buildfiles. And this is the job of an export stub, the build/export.build file that

you might have noticed in the libhello project:

libhello
|-- build/
| ·-- export.build
·-- ...

Let’s take a look inside:

$out_root/
{
 include libhello/
}

export $out_root/libhello/$import.target

Revision 0.18, July 202542 The build2 Build System

1.5 Target Importation

An export stub is a special kind of buildfile that bridges from the importing project into

exporting. It is loaded in a special temporary scope outside of any project, in a "no man’s

land" so to speak. The only variables set on the temporary scope are src_root and

out_root of the project being imported as well as import.target containing the name

of the target being imported (without project qualification; that is, lib{hello} in our

example).

Typically, an export stub will open the scope of the exporting project, load the buildfile
that defines the target being exported and finally "return" the absolute target name to the

importing project using the export directive. And this is exactly what the export stub in our

libhello does.

We now have all the pieces of the importation puzzle in place and you can probably see how

they all fit together. To summarize, when the build system sees the import directive, it looks

for a project with the specified name. If found, it creates a temporary scope, sets the

src/out_root variables to point to the project and import.target – to the target

name specified in the import directive. And then it load the project’s export stub in this

scope. Inside the export stub we switch to the project’s root scope, load its buildfile and

then use the export directive to return the exported target. Once the export stub is

processed, the build system obtains the exported target and assigns it to the variable specified

in the import directive.

Our export stub is quite "loose" in that it allows importing any target defined in the project’s

source subdirectory buildfile. While we found it to be a good balance between strictness

and flexibility, if you would like to "tighten" your export stubs, you can. For example:

if ($import.target == lib{hello})
 export $out_root/libhello/$import.target

If no export directive is executed in an export stub then the build system assumes that the

target is not exported by the project and issues appropriate diagnostics.

Let’s revisit the executable buildfile with which we started this section. Recall that it is

for an executable that depends on a library which resides in the same project:

include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

If lib{hello} is exported by this project, then instead of manually including its build­
file we can use project-local importation:

import lib = lib{hello}

exe{hello}: {hxx cxx}{**} $lib

The main advantage of project-local importation over inclusion is the ability to move things

around without having to adjust locations in multiple places (the only place we need to do it is

the export stub). This advantage becomes noticeable in more complex projects with a large

number of components.

43Revision 0.18, July 2025 The build2 Build System

1.5 Target Importation

An import is project-local if the target being imported has no project name. Note that the

target must still be exported in the project’s export stub. In other words, project-local importa­

tion use the same mechanism as the normal import.

Another special type of importation is ad hoc importation. It is triggered if the target being

imported has no project name and is either absolute or is a relative directory (in which case it

is interpreted as relative to the importing scope). Semantically this is similar a normal import

but with the location of the project being imported hard-coded into the buildfile. While

this would be a bad idea in most case, sometimes we may want to create a special glue

buildfile that "pulls" together several projects, usually for convenience of development.

One typical case that calls for such a glue buildfile is a multi-package project. For

example, we may have a hello project (in a more general sense, as in a version control

repository) that contains the libhello library and hello executable packages (which are

independent build system projects):

hello/
|-- .git/
|-- hello/
| |-- build/
| | ·-- ...
| |-- hello/
| | ·-- ...
| |-- buildfile
| ·-- manifest
·-- libhello/
 |-- build/
 | ·-- ...
 |-- libhello/
 | ·-- ...
 |-- buildfile
 ·-- manifest

Notice that the root of this repository is not a build system project and we cannot, for

example, just run the build system driver without any arguments to update all the packages.

Instead we have to list them explicitly:

$ b hello/ libhello/

And that’s inconvenient. To overcome this shortcoming we can turn the repository root into a

simple build system project by adding a glue buildfile that imports (using ad hoc impor­

tation) and builds all the packages:

import pkgs = */

./: $pkgs

Unlike other import types, ad hoc importation does not rely (or require) an export stub.

Instead, it directly loads a buildfile that could plausibly declare the target being imported.

Revision 0.18, July 202544 The build2 Build System

1.5 Target Importation

In the unlikely event of a project-local importation of a directory target, it will have to be

spelled with an explicit dir{} target type, for example:

import d = dir{tests/}

1.6 Library Exportation and Versioning

By now we have examined and explained every line of every buildfile in our hello
executable project. There are, however, still a few lines to be covered in the source subdirec­

tory buildfile in libhello. Here it is in its entirety:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.

lib{hello}: {hxx ixx txx cxx}{** -version} hxx{version} \
 $impl_libs $intf_libs

hxx{version}: in{version} $src_root/manifest

Build options.
#
cxx.poptions =+ "-I$out_root" "-I$src_root"

obja{*}: cxx.poptions += -DLIBHELLO_STATIC_BUILD
objs{*}: cxx.poptions += -DLIBHELLO_SHARED_BUILD

Export options.
#
lib{hello}:
{
 cxx.export.poptions = "-I$out_root" "-I$src_root"
 cxx.export.libs = $intf_libs
}

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.
#
if $version.pre_release
 lib{hello}: bin.lib.version = "-$version.project_id"
else
 lib{hello}: bin.lib.version = "-$version.major.$version.minor"

Install into the libhello/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/libhello/
 install.subdirs = true
}

45Revision 0.18, July 2025 The build2 Build System

1.6 Library Exportation and Versioning

Let’s start with all those cxx.export.* variables. It turns out that merely exporting a

library target is not enough for the importers of the library to be able to use it. They also need

to know where to find its headers, which other libraries to link, etc. This information is carried

in a set of target-specific cxx.export.* variables that parallel the cxx.* set and that

together with the library’s prerequisites constitute the library metadata protocol. Every time a

source file that depends on a library is compiled or a binary is linked, this information is auto­

matically extracted by the compile and link rules from the library dependency chain, recur­

sively. And when the library is installed, this information is carried over to its

pkg-config(1) file.

Similar to the c.* and cc.* sets discussed earlier, there are also c.export.* and

cc.export.* sets.

Note, however, that there is no *.export.coptions since a library imposing compilation

options on its consumers is bad practice (too coarse-grained, does not compose, etc). Instead,

the recommended approach is to specify in the library documentation that it expects its

consumers to use a certain compilation option. And if your library is unusable without export­

ing a compilation option and you are sure benefits outweigh the drawbacks, then you can

specify it as part of *.export.poptions (it is still a good idea to prominently document

this).

Here are the parts relevant to the library metadata protocol in the above buildfile:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.

lib{hello}: ... $impl_libs $intf_libs

lib{hello}:
{
 cxx.export.poptions = "-I$out_root" "-I$src_root"
 cxx.export.libs = $intf_libs
}

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

As a first step we classify all our library dependencies into interface dependencies and imple­

mentation dependencies. A library is an interface dependency if it is referenced from our

interface, for example, by including (importing) one of its headers (modules) from one of our

(public) headers (modules) or if one of its functions is called from our inline or template func­

tions. Otherwise, it is an implementation dependency.

To illustrate the distinction between interface and implementation dependencies, let’s say

we’ve reimplemented our libhello to use libformat to format the greeting and

libprint to print it. Here is our new header (hello.hxx):

#include <libformat/format.hxx>

namespace hello
{
 void

Revision 0.18, July 202546 The build2 Build System

1.6 Library Exportation and Versioning

 say_hello_formatted (std::ostream&, const std::string& hello);

 inline void
 say_hello (std::ostream& o, const std::string& name)
 {
 say_hello_formatted (o, format::format_hello ("Hello", name));
 }
}

And this is the new source file (hello.cxx):

#include <libprint/print.hxx>

namespace hello
{
 void
 say_hello_formatted (ostream& o, const string& h)
 {
 print::print_hello (o, h);
 }
}

In this case, libformat is our interface dependency since we both include its header in our

interface and call it from one of our inline functions. In contrast, libprint is only included

and used in the source file and so we can safely treat it as an implementation dependency. The

corresponding import directives in our buildfile will therefore look like this:

import intf_libs = libformat%lib{format}
import impl_libs = libprint%lib{print}

The preprocessor options (poptions) of an interface dependency must be made available to

our library’s users. The library itself should also be explicitly linked whenever our library is

linked. All this is achieved by listing the interface dependencies in the cxx.export.libs

variable:

lib{hello}:
{
 cxx.export.libs = $intf_libs
}

More precisely, the interface dependency should be explicitly linked if a user of our library

may end up with a direct call to the dependency in one of their object files. Not linking such a

library is called underlinking while linking a library unnecessarily (which can happen because

we’ve included its header but are not actually calling any of its non-inline/template functions)

is called overlinking. Underlinking is an error on some platforms while overlinking may slow

down the process startup and/or waste its memory.

Note also that this only applies to shared libraries. In case of static libraries, both interface and

implementation dependencies are always linked, recursively. Specifically, when linking a

shared library, only libraries specified in its *.export.libs are linked. While when

linking a static library, all its library prerequisites as well as those specified in *.libs are

linked. Note that *.export.libs is not used when linking a static library since it is natu­

rally assumed that all such libraries are also specified as library prerequisites or in *.libs.

47Revision 0.18, July 2025 The build2 Build System

1.6 Library Exportation and Versioning

The remaining lines in the library metadata fragment are:

lib{hello}:
{
 cxx.export.poptions = "-I$out_root" "-I$src_root"
}

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

The first line makes sure the users of our library can locate its headers by exporting the rele­

vant -I options. The last two lines define the library type macros that are relied upon by the

export.hxx header to properly setup symbol exporting.

The liba{} and libs{} target types correspond to the static and shared libraries, respec­

tively. And lib{} is actually a target group that can contain one, the other, or both as its

members.

Specifically, when we build a lib{} target, which members will be built is determined by

the config.bin.lib variable with the static, shared, and both (default) possible

values. So to only build a shared library we can run:

$ b config.bin.lib=shared

When it comes to linking lib{} prerequisites, which member is picked is controlled by the

config.bin.{exe,liba,libs}.lib variables for the executable, static library, and

shared library targets, respectively. Each contains a list of shared and static values that

determine the linking preferences. For example, to build both shared and static libraries but to

link executable to static libraries we can run:

$ b config.bin.lib=both config.bin.exe.lib=static

See the bin module documentation for more information.

Note also that we don’t need to change anything in the above buildfile if our library is

header-only. In build2 this is handled dynamically and automatically based on the absence

of source file prerequisites. In fact, the same library can be header-only on some platforms or

in some configuration and "source-ful" in others.

In build2 a header-only library (or a module interface-only library) is not a different kind of

library compared to static/shared libraries but is rather a binary-less, or binless for short, static

or shared library. So, theoretically, it is possible to have a library that has a binless static and a

binary-ful (binful) shared variants. Note also that binless libraries can depend on binful

libraries and are fully supported where the pkg-config(1) functionality is concerned.

One counter-intuitive aspect of having a binless library that depends on a system binful

library, for example, -lm, is that you still have to specify the system library in both

*.export.libs and *.libs because the latter is used when linking the static variant of

the binless library. For example:

Revision 0.18, July 202548 The build2 Build System

1.6 Library Exportation and Versioning

cxx.libs = -lm
lib{hello}: cxx.export.libs = -lm

If you are creating a new library with bdep-new(1) and are certain that it will always be

binless and in all configurations, then you can produce a simplified buildfile by specify­

ing the binless option, for example:

$ bdep new -l c++ -t lib,binless libheader-only

Let’s now turn to the second subject of this section and the last unexplained bit in our

buildfile: shared library versioning. Here is the relevant fragment:

if $version.pre_release
 lib{hello}: bin.lib.version = "-$version.project_id"
else
 lib{hello}: bin.lib.version = "-$version.major.$version.minor"

Shared library versioning is a murky, platform-specific area. Instead of trying to come up with

a unified versioning scheme that few are likely to comprehend (similar to autoconf),

build2 provides a platform-independent versioning scheme as well as the ability to specify

platform-specific versions in a native format.

The library version is specified with the bin.lib.version target-specific variable. Its

value should be a sequence of @-pairs with the left hand side (key) being the platform name

and the right hand side (value) being the version. An empty key (in which case @ can be

omitted) signifies the platform-independent version (see the bin module documentation for

the exact semantics). For example:

lib{hello}: bin.lib.version = -1.2 linux@3

While the interface for platform-specific versions is defined, their support is currently only

implemented on Linux.

A platform-independent version is embedded as a suffix into the library name (and into its

soname on relevant platforms) while platform-specific versions are handled according to the

platform. Continuing with the above example, these would be the resulting shared library

names on select platforms:

libhello.so.3 # Linux
libhello-1.2.dll # Windows
libhello-1.2.dylib # Mac OS

With this background we can now explain what’s going in our buildfile:

if $version.pre_release
 lib{hello}: bin.lib.version = "-$version.project_id"
else
 lib{hello}: bin.lib.version = "-$version.major.$version.minor"

Here we only use platform-independent library versioning. For releases we embed both major

and minor version components assuming that patch releases are binary compatible. For

pre-releases, however, we use the complete version to make sure it cannot be used in place of

49Revision 0.18, July 2025 The build2 Build System

1.6 Library Exportation and Versioning

another pre-release or the final version.

The version.project_id variable contains the project’s (as opposed to package’s),

shortest "version id". See the version module documentation for details.

1.7 Subprojects and Amalgamations

In build2 projects can contain other projects, recursively. In this arrangement the outer

project is called an amalgamation and the inner – subprojects. In contrast to importation

where we merely reference a project somewhere else, amalgamation is physical containment.

It can be strong where the src directory of a subproject is within the amalgamating project or

weak where only the out directory is contained.

There are several distinct use cases for amalgamations. We’ve already discussed the tests/

subproject in libhello. To recap: traditionally, it is made a subproject rather than a subdi­

rectory to support building it as a standalone project in order to test library installations.

As discussed in Target Importation, subprojects and amalgamations (as well as their subpro­

jects, recursively) are automatically considered when resolving imports. As a result, amalga­

mation can be used to bundle dependencies to produce an external dependency-free distribu­

tion. For example, if our hello project imports libhello, then we could copy the

libhello project into hello, for example:

$ tree hello/
hello/
|-- build/
| ·-- ...
|-- hello/
| |-- hello.cxx
| ·-- ...
|-- libhello/
| |-- build/
| | ·-- ...
| |-- libhello/
| | |-- hello.hxx
| | |-- hello.cxx
| | ·-- ...
| |-- tests/
| | ·-- ...
| ·-- buildfile
·-- buildfile

$ b hello/
c++ hello/libhello/libhello/cxx{hello} ->
 hello/libhello/libhello/objs{hello}
ld hello/libhello/libhello/libs{hello}
c++ hello/hello/cxx{hello} -> hello/hello/obje{hello}
ld hello/hello/exe{hello}

Note, however, that while project bundling can be useful in certain cases, it does not scale as a

general dependency management solution. For that, independent packaging and proper depen­

dency management are the appropriate mechanisms.

Revision 0.18, July 202550 The build2 Build System

1.7 Subprojects and Amalgamations

By default build2 looks for subprojects only in the root directory of a project. That is, every

root subdirectory is examined to see if it itself is a project root. If you need to place a subpro­

ject somewhere else in your project’s directory hierarchy, then you will need to specify its

location (and of all other subprojects) explicitly with the subprojects variable in boot­
strap.build. For example, if above we placed libhello into the extras/ subdirec­

tory of hello, then our bootstrap.build would need to start like this:

project = hello
subprojects = extras/libhello/
...

Note also that while importation of specific targets from subprojects is always performed,

whether they are loaded and built as part of the overall project build is controlled using the

standard subdirectories inclusion and dependency mechanisms. Continuing with the above

example, if we adjust the root buildfile in hello to exclude the extras/ subdirectory

from the build:

./: {*/ -build/ -extras/}

Then while we can still import libhello from any buildfile in our project, the entire

libhello (for example, its tests) will never be built as part of the hello build.

Similar to subprojects we can also explicitly specify the project’s amalgamation with the

amalgamation variable (again, in bootstrap.build). This is rarely necessary except

if you want to prevent the project from being amalgamated, in which case you should set it to

the empty value.

If either of these variables is not explicitly set, then they will contain the automatically discov­

ered values.

Besides affecting importation, another central property of amalgamation is configuration

inheritance. As an example, let’s configure the above bundled hello project in its src direc­

tory:

$ b configure: hello/ config.cxx=clang++ config.cxx.coptions=-g

$ tree
hello/
|-- build/
| |-- config.build
| ·-- ...
|-- libhello/
| |-- build/
| | |-- config.build
| | ·-- ...
| ·-- ...
·-- ...

As you can see, we now have the config.build files in both projects’ build/ subdirec­

tories. If we examine the amalgamation’s config.build, we will see the familiar picture:

51Revision 0.18, July 2025 The build2 Build System

1.7 Subprojects and Amalgamations

$ cat hello/build/config.build

config.cxx = clang++
config.cxx.poptions = [null]
config.cxx.coptions = -g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]

...

The subproject’s config.build, however, is pretty much empty:

$ cat hello/libhello/build/config.build

Base configuration inherited from ../

As the comment suggests, the base configuration is inherited from the outer project. We can,

however, override some values if we need to. For example (note that we are re-configuring

the libhello subproject):

$ b configure: hello/libhello/ config.cxx.coptions=-O2

$ cat hello/libhello/build/config.build

Base configuration inherited from ../

config.cxx.coptions = -O2

This configuration inheritance combined with import resolution is behind the most common

use of amalgamations in build2 – shared build configurations. Let’s say we are developing

multiple projects, for example, hello and libhello that it imports:

$ ls -1
hello/
libhello/

And we want to build them with several compilers, let’s say GCC and Clang. As we have

already seen in Configuring, we can configure several out of source builds for each compiler,

for example:

$ b configure: libhello/@libhello-gcc/ config.cxx=g++
$ b configure: libhello/@libhello-clang/ config.cxx=clang++

$ b configure: hello/@hello-gcc/ \
 config.cxx=g++ \
 config.import.libhello=libhello-gcc/
$ b configure: hello/@hello-clang/ \
 config.cxx=clang++ \
 config.import.libhello=libhello-clang/

$ ls -l
hello/
hello-gcc/
hello-clang/
libhello/
libhello-gcc/
libhello-clang/

Revision 0.18, July 202552 The build2 Build System

1.7 Subprojects and Amalgamations

Needless to say, this is a lot of repetitive typing. Another problem is future changes to the

configurations. If, for example, we need to adjust compile options in the GCC configuration,

then we will have to (remember to) do it in both places.

You can probably sense where this is going: why not create two shared build configurations

(that is, amalgamations), one for GCC and one for Clang, within each of which we build both

of our projects (as their subprojects)? This is how we can do that:

$ b create: build-gcc/,cc config.cxx=g++
$ b create: build-clang/,cc config.cxx=clang++

$ b configure: libhello/@build-gcc/libhello/
$ b configure: hello/@build-gcc/hello/

$ b configure: libhello/@build-clang/libhello/
$ b configure: hello/@build-clang/hello/

$ ls -l
hello/
libhello/
build-gcc/
build-clang/

Let’s explain what’s going on here. First, we create two build configurations using the

create meta-operation. These are real build2 projects just tailored for housing other

projects as subprojects. In create, after the directory name, we specify the list of modules to

load in the project’s root.build. In our case we specify cc which is a common module for

C-based languages (see b(1) for details on create and its parameters).

When creating build configurations it is a good idea to get into the habit of using the cc
module instead of c or cxx since with more complex dependency chains we may not know

whether every project we build only uses C or C++. In fact, it is not uncommon for a C++

project to have C implementation details and even the other way around (yes, really, there are

C libraries with C++ implementations).

Once the configurations are ready we simply configure our libhello and hello as

subprojects in each of them. Note that now we neither need to specify config.cxx, because

it will be inherited from the amalgamation, nor config.import.*, because the import

will be automatically resolved to a subproject.

Now, to build a specific project in a particular configuration we simply build the correspond­

ing subdirectory. We can also build the entire build configuration if we want to. For example:

$ b build-gcc/hello/

$ b build-clang/

In case you’ve already looked into bpkg(1) and/or bdep(1), their build configurations are

actually these same amalgamations (created underneath with the create meta-operation)

and their packages are just subprojects. And with this understanding you are free to interact

with them directly using the build system interface.

53Revision 0.18, July 2025 The build2 Build System

1.7 Subprojects and Amalgamations

1.8 Buildfile Language

By now we should have a good overall sense of what writing buildfiles feels like. In this

section we will examine the language in slightly more detail and with more precision.

Buildfile is primarily a declarative language with support for variables, pure functions, repeti­

tion (for-loop), conditional inclusion/exclusion (if-else), and pattern matching

(switch). At the lexical level, buildfiles are UTF-8 encoded text restricted to the

Unicode graphic characters, tabs (\t), carriage returns (\r), and line feeds (\n).

Buildfile is a line-oriented language. That is, every construct ends at the end of the line unless

escaped with line continuation (trailing \). For example:

exe{hello}: {hxx cxx}{**} \
 $libs

Some lines may start a block if followed by { on the next line. Such a block ends with a

closing } on a separate line. Some types of blocks can nest. For example:

if ($cxx.target.class == ’windows’)
{
 if ($cxx.target.system == ’ming32’)
 {
 ...
 }
}

A comment starts with # and everything from this character and until the end of the line is

ignored. A multi-line comment starts with #\ on a separate line and ends with the same char­

acter sequence, again on a separate line. For example:

Single line comment.

info ’Hello, World!’ # Trailing comment.

#\
Multi-
line
comment.
#\

The three primary Buildfile constructs are dependency declaration, directive, and variable

assignment. We’ve already used all three but let’s see another example:

include ../libhello/ # Directive.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello} # Dependency.

cxx.poptions += -DNDEBUG # Variable.

There is also the scope opening (we’ve seen one in export.build) as well as

target-specific and prerequisite-specific variable assignment blocks. The latter two are used to

assign several entity-specific variables at once. For example:

Revision 0.18, July 202554 The build2 Build System

1.8 Buildfile Language

details/ # Scope.
{
 hxx{*}: install = false
}

lib{hello}: # Target-specific.
{
 cxx.export.poptions = "-I$src_root"
 cxx.export.libs = $intf_libs
}

exe{test}: file{test.roundtrip}: # Prerequisite-specific.
{
 test.stdin = true
 test.stdout = true
}

Variable assignment blocks can be combined with dependency declarations, for example:

h{config}: in{config}
{
 in.symbol = ’@’
 in.mode = lax

 SYSTEM_NAME = $c.target.system
 SYSTEM_PROCESSOR = $c.target.cpu
}

In case of a dependency chain, if the chain ends with a colon (:), then the block applies to the

last set of prerequisites. Otherwise, it applies to the last set of targets. For example:

./: exe{test}: cxx{main}
{
 test = true # Applies to the exe{test} target.
}

./: exe{test}: libue{test}:
{
 bin.whole = false # Applies to the libue{test} prerequisite.
}

All prerequisite-specific variables must be assigned at once as part of the dependency declara­

tion since repeating the same dependency again duplicates the prerequisite rather than refer­

ences the already existing one.

There is also the target type/pattern-specific variable assignment block, for example:

exe{*.test}:
{
 test = true
 install = false
}

See Variables for a more detailed discussion of variables.

55Revision 0.18, July 2025 The build2 Build System

1.8 Buildfile Language

Each buildfile is processed linearly with directives executed and variables expanded as

they are encountered. However, certain variables, for example cxx.poptions, are also

expanded by rules during execution in which case they will "see" the final value set in the

buildfile.

Unlike GNU make(1), which has deferred (=) and immediate (:=) variable assignments, all

assignments in build2 are immediate. For example:

x = x
y = $x
x = X
info $y # Prints ’x’, not ’X’.

1.8.1 Expansion and Quoting

While we’ve discussed variable expansion and lookup earlier, to recap, to get the variable’s

value we use $ followed by its name. The variable name is first looked up in the current scope

(that is, the scope in which the expansion was encountered) and, if not found, in the outer

scopes, recursively.

There are two other kinds of expansions: function calls and evaluation contexts, or eval

contexts for short. Let’s start with the latter since function calls are built on top of eval

contexts.

An eval context is essentially a fragment of a line with additional interpretations of certain

characters to support value comparison, logical operators, and a few other constructs. Eval

contexts begin with (, end with), and can nest. Here are a few examples:

info ($src_root != $out_root) # Prints true or false.
info ($src_root == $out_root ? ’in’ : ’out’) # Prints in or out.

macos = ($cxx.target.class == ’macos’) # Assigns true or false.
linux = ($cxx.target.class == ’linux’) # Assigns true or false.

if ($macos || $linux) # Also eval context.
 ...

Below is the eval context grammar that shows supported operators and their precedence.

eval: ’(’ (eval-comma | eval-qual)? ’)’
eval-comma: eval-ternary (’,’ eval-ternary)*
eval-ternary: eval-or (’?’ eval-ternary ’:’ eval-ternary)?
eval-or: eval-and (’||’ eval-and)*
eval-and: eval-comp (’&&’ eval-comp)*
eval-comp: eval-value ((’==’|’!=’|’<’|’>’|’<=’|’>=’) eval-value)*
eval-value: value-attributes? (<value> | eval | ’!’ eval-value)
eval-qual: <name> ’:’ <name>

value-attributes: ’[’ <key-value-pairs> ’]’

Note that ?: (ternary operator) and ! (logical not) are right-associative. Unlike C++, all the

comparison operators have the same precedence. A qualified name cannot be combined with

any other operator (including ternary) unless enclosed in parentheses. The eval option in the

Revision 0.18, July 202556 The build2 Build System

1.8.1 Expansion and Quoting

eval-value production shall contain a single value only (no commas).

Additionally, the ‘ (backtick) and | (bitwise or) tokens are reserved for future support of

arithmetic evaluation contexts and evaluation pipelines, respectively.

A function call starts with $ followed by its name and an eval context listing its arguments.

Note that there is no space between the name and (. For example:

x =
y = Y

info $empty($x) # true
info $empty($y) # false

if $regex.match($y, ’[A-Z]’)
 ...

p = $src_base/foo.txt

info $path.leaf($src_base) # foo.txt
info $path.directory($src_base) # $src_base
info $path.base($path.leaf($src_base)) # foo

Note that the majority of functions in build2 are pure in a sense that they do not alter the

build state in any way (see Functions for details).

Functions in build2 are currently defined either by the build system core or build system

modules and are implemented in C++. In the future it will be possible to define custom func­

tions in buildfiles (also in C++).

Variable and function names follow the C identifier rules. We can also group variables into

namespaces and functions into families by combining multiple identifiers with .. These rules

are used to determine the end of the variable name in expansions. If, however, a name is

recognized as being longer than desired, then we can use the eval context to explicitly specify

its boundaries. For example:

base = foo
name = $(base).txt

What is the structure of a variable value? Consider this assignment:

x = foo bar

The value of x could be a string, a list of two strings, or something else entirely. In build2
the fundamental, untyped value is a list of names. A value can be typed to something else later

but it always starts as a list of names. So in the above example we have a list of two names,

foo and bar, the same as in this example (notice the extra spaces):

x = foo bar

57Revision 0.18, July 2025 The build2 Build System

1.8.1 Expansion and Quoting

The motivation behind going with a list of names instead of a string or a list of strings is that

at its core we are dealing with targets and their prerequisites and it would be natural to make

the representation of their names (that is, the way we refer to them) the default. Consider the

following two examples; it would be natural for them to mean the same thing:

exe{hello}: {hxx cxx}{**}

prereqs = {hxx cxx}{**}
exe{hello}: $prereqs

Note also that the name semantics was carefully tuned to be reversible to its syntactic repre­

sentation for common non-name values, such as paths, command line options, etc., that are

usually found in buildfiles.

To get to individual elements of a list, an expansion can be followed by a subscript. Note that

subscripts are only recognize inside evaluation contexts and there should be no space between

the expansion and [. For example:

x = foo bar

info ($x[0]) # foo
info ($regex.split(’foo bar’, ’ ’, ’’)[1]) # bar

Names are split into a list at whitespace boundaries with certain other characters treated as

syntax rather than as part of the value. Here are a few examples:

x = $y # expansion
x = (a == b) # eval context
x = {foo bar} # name generation
x = [null] # attributes
x = name@value # pairs
x = # start of a comment

The complete set of syntax characters is $(){}@#"’ plus space and tab, as well as [], but

only in certain contexts (see Attributes for details). If instead we need these characters to

appear literally as part of the value, then we either have to escape or quote them.

Additionally, *?[will be treated as wildcards in name patterns (see Name Patterns for

details). Note that this treatment can only be inhibited with quoting and not escaping.

While name patterns are recognized inside evaluation contexts, in certain cases the ?[charac­

ters are treated as part of the ternary operator and value subscript, respectively. In such case,

to be treat as wildcards rather than as syntax, these characters have to be escaped, for

example:

x = (foo.\?xx)
y = ($foo\[123].txt)

To escape a special character, we prefix it with a backslash (\; to specify a literal backslash,

double it). For example:

Revision 0.18, July 202558 The build2 Build System

1.8.1 Expansion and Quoting

x = \$
y = C:\\Program\ Files

Similar to UNIX shells, build2 supports single (’’) and double ("") quoting with roughly

the same semantics. Specifically, expansions (variable, function call, and eval context) and

escaping are performed inside double-quoted strings but not in single-quoted. Note also that

quoted strings can span multiple lines with newlines treated literally (unless escaped in

double-quoted strings). For example:

x = "(a != b)" # true
y = ’(a != b)’ # (a != b)

x = "C:\\Program Files"
y = ’C:\Program Files’

t = ’line one
line two
line three’

Since quote characters are also part of the syntax, if you need to specify them literally in the

value, then they will either have to be escaped or quoted. For example:

cxx.poptions += -DOUTPUT=’"debug"’
cxx.poptions += -DTARGET=\"$cxx.target\"

An expansion can be one of two kinds: spliced or concatenated. In a spliced expansion the

variable, function, or eval context is separated from other text with whitespaces. In this case,

as the name suggests, the resulting list of names is spliced into the value. For example:

x = ’foo fox’
y = bar $x baz # Three names: ’bar’ ’foo fox’ ’baz’.

This is an important difference compared to the semantics of UNIX shells where the result of

expansion is re-parsed. In particular, this is the reason why you won’t see quoted expansions

in buildfiles as often as in (well-written) shell scripts.

In a concatenated expansion the variable, function, or eval context are combined with unsepa­

rated text before and/or after the expansion. For example:

x = ’foo fox’
y = bar$(x)foz # Single name: ’barfoo foxbaz’

A concatenated expansion is typed unless it is quoted. In a typed concatenated expansion the

parts are combined in a type-aware manner while in an untyped – literally, as string. To illus­

trate the difference, consider this buildfile fragment:

info $src_root/foo.txt
info "$src_root/foo.txt"

If we run it on a UNIX-like operating system, we will see two identical lines, along these

lines:

59Revision 0.18, July 2025 The build2 Build System

1.8.1 Expansion and Quoting

/tmp/test/foo.txt
/tmp/test/foo.txt

However, if we run it on Windows (which uses backslashes as directory separators), we will

see the output along these lines:

C:\test\foo.txt
C:\test/foo.txt

The typed concatenation resulted in a native directory separator because dir_path (the

src_root type) did the right thing.

Not every typed concatenation is well defined and in certain situations we may need to force

untyped concatenation with quoting. Options specifying header search paths (-I) are a typical

case, for example:

cxx.poptions =+ "-I$out_root" "-I$src_root"

If we were to remove the quotes, we would see the following error:

buildfile:6:20: error: no typed concatenation of <untyped> to dir_path
 info: use quoting to force untyped concatenation

1.8.2 Conditions (if-else)

The if directive can be used to conditionally exclude buildfile fragments from being

processed. The conditional fragment can be a single (separate) line or a block with the initial

if optionally followed by a number of elif directives and a final else, which together

form the if-else chain. An if-else block can contain nested if-else chains. For

example:

if ($cxx.target.class == ’linux’)
 info ’linux’
elif ($cxx.target.class == ’windows’)
{
 if ($cxx.target.system == ’mingw32’)
 info ’windows-mingw’
 elif ($cxx.target.system == ’win32-msvc’)
 info ’windows-msvc’
 else
 info ’windows-other’
}
else
 info ’other’

The if and elif directive names must be followed by an expression that expands to a

single, literal true or false. This can be a variable expansion, a function call, an eval

context, or a literal value. For example:

if $version.pre_release
 ...

if $regex.match($x, ’[A-Z]’)
 ...

Revision 0.18, July 202560 The build2 Build System

1.8.2 Conditions (if-else)

if ($cxx.target.class == ’linux’)
 ...

if false
{
 # disabled fragment
}

x = X
if $x # Error, must expand to true or false.
 ...

There are also if! and elif! directives which negate the condition that follows (note that

there is no space before !). For example:

if! $version.pre_release
 ...
elif! $regex.match($x, ’[A-Z]’)
 ...

Besides these general if-directives there is also a number of specialized shortcuts for check­

ing whether a value is/is-not null or empty:

ifn ... ~ if $null(...)
ife ... ~ if $empty(...)

ifn! ... ~ if! $null(...)
ife! ... ~ if! $empty(...)

elifn ... ~ elif $null(...)
elife ... ~ elif $empty(...)

elifn! ... ~ elif! $null(...)
elife! ... ~ elif! $empty(...)

For example, the following two constructs are equivalent:

if $null($foo)
 ...
elif! $empty($bar)
 ...

ifn $foo
 ...
elife! $bar
 ...

Note that a null value is considered empty.

Note also that there is no notion of variable locality in if-else blocks and any value set

inside is visible outside. For example:

61Revision 0.18, July 2025 The build2 Build System

1.8.2 Conditions (if-else)

if true
{
 x = X
}

info $x # Prints ’X’.

The if-else chains should not be used for conditional dependency declarations since this

would violate the expectation that all of the project’s source files are listed as prerequisites,

irrespective of the configuration. Instead, use the special include prerequisite-specific vari­

able to conditionally include prerequisites into the build. For example:

Incorrect.
#
if ($cxx.target.class == ’linux’)
 exe{hello}: cxx{hello-linux}
elif ($cxx.target.class == ’windows’)
 exe{hello}: cxx{hello-win32}

Correct.
#
exe{hello}: cxx{hello-linux}: include = ($cxx.target.class == ’linux’)
exe{hello}: cxx{hello-win32}: include = ($cxx.target.class == ’windows’)

1.8.3 Pattern Matching (switch)

The switch directive is similar to if-else in that it allows us to conditionally exclude

buildfile fragments from being processed. The difference is in the way the conditions are

structured: while in if-else we can do arbitrary tests, in switch we match one or more

values against a set of patterns. For instance, this is how we can reimplement the first example

from Conditionals (if-else) using switch:

switch $cxx.target.class, $cxx.target.system
{
 case ’linux’
 info ’linux’

 case ’windows’, ’mingw32’
 info ’windows-mingw’

 case ’windows’, ’win32-msvc’
 info ’windows-msvc’

 case ’windows’
 info ’windows-other’

 default
 info ’other’
}

Similar to if-else, the conditional fragment can be a single (separate) line or a block with a

zero or more case lines/blocks optionally followed by default. A case-default block

can contain nested switch directives (though it is often more convenient to use multiple

values in a single switch, as shown above). For example:

Revision 0.18, July 202562 The build2 Build System

1.8.3 Pattern Matching (switch)

switch $cxx.target.class
{
 ...
 case ’windows’
 {
 switch $cxx.target.system
 {
 case ’mingw32’
 info ’windows-mingw’

 case ’win32-msvc’
 info ’windows-msvc’

 default
 info ’windows-other’
 }
 }
 ...
}

All the case fragments are tried in the order specified with the first that matches evaluated

and all the others ignored (that is, there is no explicit break nor the ability to fall through). If

none of the case patterns matched and there is the default fragment, then it is evaluated.

Multiple case lines can be specified for a single conditional fragment. For example:

switch $cxx.target.class, $cxx.id
{
 case ’windows’, ’msvc’
 case ’windows’, ’clang’
 info ’msvcrt’
}

The switch directive name must be followed by one or more value expressions separated

with a comma (,). Similarly, the case directive name must be followed by one or more

pattern expressions separated with a comma (,). These expressions can be variable expan­

sions, function calls, eval contexts, or literal values.

If multiple values/patterns are specified, then all the case patterns must match in order for

the corresponding fragment to be evaluated. However, if some trailing patterns are omitted,

then they are considered as matching. For example:

switch $cxx.target.class, $cxx.target.system
{
 case ’windows’, ’mingw32’
 info ’windows-mingw’

 case ’windows’, ’win32-msvc’
 info ’windows-msvc’

 case ’windows’
 info ’windows-other’
}

The first pattern in the pattern expression can be optionally followed by one or more alterna­

tive patterns separated by a vertical bar (|). Only one of the alternatives need to match in

order for the whole pattern expression to be considered as matching. For example:

63Revision 0.18, July 2025 The build2 Build System

1.8.3 Pattern Matching (switch)

switch $cxx.id
{
 case ’clang’ | ’clang-apple’
 ...
}

The value in the value expression can be optionally followed by a colon (:) and a match func­

tion. If the match function is not specified, then equality is used by default. For example:

switch $cxx.target.cpu: regex.match
{
 case ’i[3-6]86’
 ...

 case ’x86_64’
 ...
}

The match function name can be optionally followed by additional values that are passed as

the third argument to the match function. This is normally used to specify additional match

flags, for example:

switch $cxx.target.cpu: regex.match icase
{
 ...
}

Other commonly used match functions are regex.search() (similar to

regex.match() but searches for any match rather than matching the whole value),

path.match() (match using shell wildcard patterns) and string.icasecmp() (match

using equality but ignoring case). Additionally, any other function that takes the value as its

first argument, the pattern as its second, and returns bool can be used as a match function.

Note that there is no special wildcard or match-anything pattern at the syntax level. In most

common cases the desired semantics can be achieved with default and/or by omitting trail­

ing patterns. If you do need it, then we recommend using path.match() and its * wild­

card. For example:

switch $cxx.target.class: path.match, \
 $cxx.target.system: path.match, \
 $cxx.id: path.match
{
 case ’windows’, ’*’, ’clang’
 ...
}

Note also that similar to if-else, there is no notion of variable locality in the switch and

case-default blocks and any value set inside is visible outside. Additionally, the same

considerations about conditional dependency declarations apply.

Revision 0.18, July 202564 The build2 Build System

1.8.3 Pattern Matching (switch)

1.8.4 Repetitions (for)

The for directive can be used to repeat the same buildfile fragment multiple times, once

for each element of a list. The fragment to repeat can be a single (separate) line or a block,

which together form the for loop. A for block can contain nested for loops. For example:

for n: foo bar baz
{
 exe{$n}: cxx{$n}
}

The for directive name must be followed by the variable name (called loop variable) that on

each iteration will be assigned the corresponding element, :, and an expression that expands

to a potentially empty list of values. This can be a variable expansion, a function call, an eval

context, or a literal list as in the above fragment. Here is a somewhat more realistic example

that splits a space-separated environment variable value into names and then generates a

dependency declaration for each of them:

for n: $regex.split($getenv(NAMES), ’ +’, ’’)
{
 exe{$n}: cxx{$n}
}

Note also that there is no notion of variable locality in for blocks and any value set inside is

visible outside. At the end of the iteration the loop variable contains the value of the last

element, if any. For example:

for x: x X
{
 y = Y
}

info $x # Prints ’X’.
info $y # Prints ’Y’.

1.9 Implementing Unit Testing

As an example of how many of these features fit together to implement more advanced func­

tionality, let’s examine a buildfile that provides support for unit testing. This support is

added by the bdep-new(1) command if we specify the unit-tests option when creat­

ing executable (-t exe,unit-tests) or library (-t lib,unit-tests) projects.

Here is the source subdirectory buildfile of an executable created with this option:

./: exe{hello}: libue{hello}: {hxx cxx}{** -**.test...}

Unit tests.
#
exe{*.test}:
{
 test = true
 install = false
}

65Revision 0.18, July 2025 The build2 Build System

1.9 Implementing Unit Testing

for t: cxx{**.test...}
{
 d = $directory($t)
 n = $name($t)...

 ./: $d/exe{$n}: $t $d/hxx{+$n} $d/testscript{+$n}
 $d/exe{$n}: libue{hello}: bin.whole = false
}

cxx.poptions =+ "-I$out_root" "-I$src_root"

The basic idea behind this unit testing arrangement is to keep unit tests next to the source code

files that they test and automatically recognize and build them into test executables without

having to manually list each in the buildfile. Specifically, if we have hello.hxx and

hello.cxx, then to add a unit test for this module all we have to do is drop the

hello.test.cxx source file next to them and it will be automatically picked up, built into

an executable, and run during the test operation.

As an example, let’s say we’ve renamed hello.cxx to main.cxx and factored the print­

ing code into the hello.hxx/hello.cxx module that we would like to unit-test. Here is

the new layout:

hello/
|-- build
| ·-- ...
|-- hello
| |-- hello.cxx
| |-- hello.hxx
| |-- hello.test.cxx
| |-- main.cxx
| ·-- buildfile
·-- ...

Let’s examine how this support is implemented in our buildfile, line by line. Because

now we link hello.cxx object code into multiple executables (unit tests and the hello
program itself), we have to place it into a utility library. This is what the first line does (it has

to explicitly list exe{hello} as a prerequisite of the default targets since we now have

multiple targets that should be built by default):

./: exe{hello}: libue{hello}: {hxx cxx}{** -**.test...}

A utility library (u in libue) is a static library that is built for a specific type of a primary

target (e in libue for executable). If we were building a utility library for a library then we

would have used the libul{} target type instead. In fact, this would be the only difference

in the above unit testing implementation if it were for a library project instead of an

executable:

./: lib{hello}: libul{hello}: {hxx cxx}{** -**.test...}

...

Unit tests.
#
...

Revision 0.18, July 202566 The build2 Build System

1.9 Implementing Unit Testing

for t: cxx{**.test...}
{
 ...

 $d/exe{$n}: libul{hello}: bin.whole = false
}

Going back to the first three lines of the executable buildfile, notice that we had to

exclude source files in the *.test.cxx form from the utility library. This makes sense

since we don’t want unit testing code (each with its own main()) to end up in the utility

library.

The exclusion pattern, -**.test..., looks a bit cryptic. What we have here is a

second-level extension (.test) which we use to classify our source files as belonging to unit

tests. Because it is a second-level extension, we have to indicate this fact to the pattern match­

ing machinery with the trailing triple dot (meaning "there are more extensions coming"). If we

didn’t do that, .test would have been treated as a first-level extension explicitly specified

for our source files (see Target Types for details).

The next couple of lines set target type/pattern-specific variables to treat all unit test executa­

bles as tests that should not be installed:

exe{*.test}:
{
 test = true
 install = false
}

You may be wondering why we had to escape the second-level .test extension in the name

pattern above but not here. The answer is that these are different kinds of patterns in different

contexts. In particular, patterns in the target type/pattern-specific variables are only matched

against target names without regard for extensions. See Name Patterns for details.

Then we have the for-loop that declares an executable target for each unit test source file.

The list of these files is generated with a name pattern that is the inverse of what we’ve used

for the utility library:

for t: cxx{**.test...}
{
 d = $directory($t)
 n = $name($t)...

 ./: $d/exe{$n}: $t $d/hxx{+$n} $d/testscript{+$n}
 $d/exe{$n}: libue{hello}: bin.whole = false
}

In the loop body we first split the test source file into the directory (remember, we can have

sources, including tests, in subdirectories) and name (which contains the .test second-level

extension and which we immediately escape with ...). And then we use these components to

declare a dependency for the corresponding unit test executable. There is nothing here that we

haven’t already seen except for using variable expansions instead of literal names.

67Revision 0.18, July 2025 The build2 Build System

1.9 Implementing Unit Testing

By default utility libraries are linked in the "whole archive" mode where every object file

from the static library ends up in the resulting executable or library. This behavior is what we

want when linking the primary target but can normally be relaxed for unit tests to speed up

linking. This is what the last line in the loop does using the bin.whole prerequisite-specific

variable.

You can easily customize this and other aspects on a test-by-test basis by excluding the

specific test(s) from the loop and then providing a custom implementation. For example:

for t: cxx{**.test... -special.test...}
{
 ...
}

./: exe{special.test...}: cxx{special.test...} libue{hello}

Note also that if you plan to link any of your unit tests in the whole archive mode, then you

will also need to exclude the source file containing the primary executable’s main() from

the utility library. For example:

./: exe{hello}: cxx{main} libue{hello}
libue{hello}: {hxx cxx}{** -main -**.test...}

1.10 Diagnostics and Debugging

Sooner or later we will run into a situation where our buildfiles don’t do what we expect

them to. In this section we examine a number of techniques and mechanisms that can help us

understand the cause of a misbehaving build.

To perform a build the build system goes through several phases. During the load phase the

buildfiles are loaded and processed. The result of this phase is the in-memory build state

that contains the scopes, targets, variables, etc., defined by the buildfiles. Next is the

match phase during which rules are matched to the targets that need to be built, recursively.

Finally, during the execute phase the matched rules are executed to perform the build.

The load phase is always serial and stops at the first error. In contrast, by default, both match

and execute are parallel and continue in the presence of errors (similar to the "keep going"

make mode). While beneficial in normal circumstances, during debugging this can lead to

both interleaved output that is hard to correlate as well as extra noise from cascading errors.

As a result, for debugging, it is usually helpful to run serially and stop at the first error, which

can be achieved with the --serial-stop|-s option.

The match phase can be temporarily switched to either (serial) load or (parallel) execute. The

former is used, for example, to load additional buildfiles during the dir{} prerequisite

to target resolution, as described in Output Directories and Scopes. While the latter is used to

update generated source code (such as headers) that is required to complete the match.

Revision 0.18, July 202568 The build2 Build System

1.10 Diagnostics and Debugging

Debugging issues in each phase requires different techniques. Let’s start with the load phase.

As mentioned in Buildfile Language, buildfiles are processed linearly with directives

executed and variables expanded as they are encountered. As we have already seen, to print a

variable value we can use the info directive. For example:

x = X
info $x

This will print something along these lines:

buildfile:2:1: info: X

Or, if we want to clearly see where the value begins and ends (useful when investigating

whitespace-related issues):

x = " X "
info "’$x’"

Which prints:

buildfile:2:1: info: ’ X ’

Besides the info directive, there are also text, which doesn’t print the info: prefix,

warn, which prints a warning, as well as fail which prints an error and causes the build

system to exit with an error. Here is an example of using each:

text ’note: we are about to get an error’
warn ’the error is imminent’
fail ’this is the end’
info ’we will never get here’

This will produce the following output:

buildfile:1:1: note: we are about to get an error
buildfile:2:1: warning: the error is imminent
buildfile:3:1: error: this is the end

If you find yourself writing code like this:

if ($cxx.target.class == ’windows’)
 fail ’Windows is not supported’

Then the assert directive is a more concise way to express the same:

assert ($cxx.target.class != ’windows’) ’Windows is not supported’

The assert condition must be an expression that evaluates to true or false, similar to the

if directive (see Conditions (if-else) for details). The description after the condition is

optional and, similar to if, there is also the assert! variant, which fails if the condition is

true.

69Revision 0.18, July 2025 The build2 Build System

1.10 Diagnostics and Debugging

All the diagnostics directives write to stderr. If instead we need to write something to

stdout to, for example, send some information back to our caller, then we can use the

print directive. For example, this will print the C++ compiler id and its target:

print "$cxx.id $cxx.target"

To query the value of a target-specific variable we use the qualified name syntax (the

eval-qual production) of eval context, for example:

obj{main}: cxx.poptions += -DMAIN
info $(obj{main}: cxx.poptions)

There is no direct way to query the value of a prerequisite-specific variable since a prerequi­

site has no identity. Instead, we can use the dump directive discussed next to print the entire

dependency declaration, including prerequisite-specific variables for each prerequisite.

While printing variable values is the most common mechanism for diagnosing buildfile
issues, sometimes it is also helpful to examine targets and scopes. For that we use the dump

directive.

Without any arguments, dump prints (to stderr) the contents of the scope it was encoun­

tered in and at that point of processing the buildfile. Its output includes variables, targets

and their prerequisites, as well as nested scopes, recursively. As an example, let’s print the

source subdirectory scope of our hello executable project. Here is its buildfile with the

dump directive at the end:

exe{hello}: {hxx cxx}{**}

cxx.poptions =+ "-I$out_root" "-I$src_root"

dump

This will produce the output along these lines:

buildfile:5:1: dump:
 /tmp/hello/hello/
 {
 [strings] cxx.poptions = -I/tmp/hello -I/tmp/hello
 [dir_path] out_base = /tmp/hello/hello/
 [dir_path] src_base = /tmp/hello/hello/

 buildfile{buildfile.}:

 exe{hello.?}: cxx{hello.?}
 }

The question marks (?) in the dependency declaration mean that the file extensions haven’t

been assigned yet, which happens during the match phase.

Instead of printing the entire scope, we can also print individual targets by specifying one or

more target names in dump. To make things more interesting, let’s convert our hello
project to use a utility library, similar to the unit testing setup (Implementing Unit Testing).

We will also link to the dl library to see an example of a target-specific variable being

Revision 0.18, July 202570 The build2 Build System

1.10 Diagnostics and Debugging

dumped:

exe{hello}: libue{hello}: bin.whole = false
exe{hello}: cxx.libs += -ldl
libue{hello}: {hxx cxx}{**}

dump exe{hello}

The output will look along these lines:

buildfile:5:1: dump:
 /tmp/hello/hello/exe{hello.?}:
 {
 [strings] cxx.libs = -ldl
 }
 /tmp/hello/hello/exe{hello.?}: /tmp/hello/hello/:libue{hello.?}:
 {
 [bool] bin.whole = false
 }

The output of dump might look familiar: in Output Directories and Scopes we’ve used the

--dump option to print the entire build state, which looks pretty similar. In fact, the dump

directive uses the same mechanism but allows us to print individual scopes and targets from

within a buildfile.

There is, however, an important difference to keep in mind: dump prints the state of a target

or scope at the point in the buildfile load phase where it was executed. In contrast, the

--dump option can be used to print the state after the load phase (--dump load) and/or

after the match phase (--dump match). In particular, the after match printout reflects the

changes to the build state made by the matching rules, which may include entering of addi­

tional dependencies, setting of additional variables, resolution of prerequisites to targets,

assignment of file extensions, etc. As a result, while the dump directive should be sufficient

in most cases, sometimes you may need to use the --dump option to examine the build state

just before rule execution.

It is possible to limit the output of --dump to specific scopes and/or targets with the

--dump-scope and --dump-target options.

Let’s now move from state to behavior. As we already know, to see the underlying commands

executed by the build system we use the -v options (which is equivalent to --verbose 2).

Note, however, that these are logical rather than actual commands. You can still run them and

they should produce the desired result, but in reality the build system may have achieved the

same result in a different way. To see the actual commands we use the -V option instead

(equivalent to --verbose 3). Let’s see the difference in an example. Here is what building

our hello executable with -v might look like:

$ b -s -v
g++ -o hello.o -c hello.cxx
g++ -o hello hello.o

71Revision 0.18, July 2025 The build2 Build System

1.10 Diagnostics and Debugging

And here is the same build with -V:

$ b -s -V
g++ -MD -E -fdirectives-only -MF hello.o.t -o hello.o.ii hello.cxx
g++ -E -fpreprocessed -fdirectives-only hello.o.ii
g++ -o hello.o -c -fdirectives-only hello.o.ii
g++ -o hello hello.o

From the second listing we can see that in reality build2 first partially preprocessed

hello.cxx while extracting its header dependency information. It then preprocessed it

fully, which is used to extract module dependency information, calculate the checksum for

ignorable change detection, etc. When it comes to producing hello.o, the build system

compiled the partially preprocessed output rather than the original hello.cxx. The end

result, however, is the same as in the first listing.

Verbosity level 3 (-V) also triggers printing of the build system module configuration infor­

mation. Here is what we would see for the cxx module:

cxx hello@/tmp/hello/
 cxx g++@/usr/bin/g++
 id gcc
 version 7.2.0 (Ubuntu 7.2.0-1ubuntu1~16.04)
 major 7
 minor 2
 patch 0
 build (Ubuntu 7.2.0-1ubuntu1~16.04)
 signature gcc version 7.2.0 (Ubuntu 7.2.0-1ubuntu1~16.04)
 checksum 09b3b59d337eb9a760dd028fa0df585b307e6a49c2bfa00b3[...]
 target x86_64-linux-gnu
 runtime libgcc
 stdlib libstdc++
 c stdlib glibc
...

Verbosity levels higher than 3 enable build system tracing. In particular, level 4 is useful for

understanding why a rule doesn’t match a target or if it does, why it determined the target to

be out of date. For example, assuming we have an up-to-date build of our hello, let’s

change a compile option:

$ b -s --verbose 4
info: /tmp/hello/dir{hello/} is up to date

$ b -s --verbose 4 config.cxx.poptions+=-DNDEBUG
trace: cxx::compile_rule::apply: options mismatch forcing update
of /tmp/hello/hello/obje{hello.o}
...

Higher verbosity levels result in more and more tracing statements being printed. These

include buildfile loading and parsing, prerequisite to target resolution, as well as build

system module and rule-specific logic.

While the tracing statements can be helpful in understanding what is happening, they don’t

make it easy to see why things are happening a certain way. In particular, one question that is

often encountered during build troubleshooting is which dependency chain causes matching

Revision 0.18, July 202572 The build2 Build System

1.10 Diagnostics and Debugging

or execution of a particular target. These questions can be answered with the help of the

--trace-match and --trace-execute options. For example, if we want to under­

stand what causes the update of obje{hello} in the hello project above:

$ b -s --trace-execute ’obje{hello}’
info: updating hello/obje{hello}
 info: using rule cxx.compile
 info: while updating hello/libue{hello}
 info: while updating hello/exe{hello}
 info: while updating dir{hello/}
 info: while updating dir{./}

Another useful diagnostics option is --mtime-check. When specified, the build system

performs a number of file modification time sanity checks that can be helpful in diagnosing

spurious rebuilds.

If neither state dumps nor behavior analysis are sufficient to understand the problem, there is

always an option of running the build system under a C++ debugger in order to better under­

stand what’s going on. This can be particularly productive for debugging complex rules.

Finally, to help with diagnosing the build system performance issues, there is the --stat
option. It causes build2 to print various execution statistics which can be useful for

pin-pointing the bottlenecks. There are also a number of options for tuning the build system’s

performance, such as, the number of jobs to perform in parallel, the stack size, queue depths,

etc. See the b(1) man pages for details.

2 Project Configuration

As discussed in the introduction (specifically, Project Structure) support for build configura­

tions is an integral part of build2 with the same mechanism used by the build system core

(for example, for project importation via the config.import.* variables), by the build

system modules (for example, for supplying compile options such as

config.cxx.coptions), as well as by our projects to provide any project-specific

configurability. Project configuration is the topic of this chapter.

The build2 build system currently provides no support for autoconf-style probing of the

build environment in order to automatically discover available libraries, functions, features,

etc.

The main reason for omitting this support is the fundamental ambiguity and the resulting brit­

tleness of such probing due to the reliance on compiler, linker, or test execution failures.

Specifically, in many such tests it is impossible for a build system to distinguish between a

missing feature, a broken test, and a misconfigured build environment. This leads to requiring

a user intervention in the best case and to a silently misconfigured build in the worst. Other

issues with this approach include portability, speed (compiling and linking takes time), as well

as limited applicability during cross-compilation (specifically, inability to run tests).

73Revision 0.18, July 2025 The build2 Build System

2 Project Configuration

As a result, we recommend using expectation-based configuration where your project

assumes a feature to be available if certain conditions are met. Examples of such conditions at

the source code level include feature test macros, platform macros, runtime library macros,

compiler macros, etc., with the build system modules exposing some of the same information

via variables to allow making similar decisions in buildfiles. The standard pre-installed

autoconf build system module provides emulation of GNU autoconf using this

approach.

Another alternative is to automatically adapt to missing features using more advanced tech­

niques such as C++ SFINAE. And in situations where none of this is possible, we recommend

delegating the decision to the user via a configuration value. Our experience with build2 as

well as those of other large cross-platform projects such as Boost show that this is a viable

strategy.

Having said that, build2 does provide the ability to extract configuration information from

the environment ($getenv() function) or other tools ($process.run*() family of

functions). Note, however, that for this to work reliably there should be no ambiguity between

the "no configuration available" case (if such a case is possible) and the "something went

wrong" case. We show a realistic example of this in Configuration Report where we extract

the GCC plugin directory while dealing with the possibility of it being configured without

plugin support.

Before we delve into the technical details, let’s discuss the overall need for project configura­

bility. While it may seem that making one’s project more user-configurable is always a good

idea, there are costs: by having a choice we increase the complexity and open the door for

potential incompatibility. Specifically, we may end up with two projects in the same build

needing a shared dependency with incompatible configurations.

While some languages, such as Rust, support having multiple differently-configured projects

in the same build, this is not something that is done often in C/C++. This ability is also not

without its drawbacks, most notably code bloat.

As a result, our recommendation is to strive for simplicity and avoid user configurability

whenever possible. For example, there is a common desire to make certain functionality

optional in order not to make the user pay for things they don’t need. This, however, is often

better addressed either by always providing the optional functionality if it’s fairly small or by

factoring it into a separate project if it’s substantial. If a configuration value is to be provided,

it should have a sensible default with a bias for simplicity and compatibility rather than the

optimal result. For example, in the optional functionality case, the default should probably be

to provide it.

As discussed in the introduction, the central part of the build configuration functionality are

the configuration variables. One of the key features that make them special is support for

automatic persistence in the build/config.build file provided by the config module

(see Configuring for details).

Revision 0.18, July 202574 The build2 Build System

2 Project Configuration

https://github.com/build2/libbuild2-autoconf/

Another mechanism that can be used for project configuration is environment variables.

While not recommended, sometimes it may be forced on us by external factors. In such cases,

environment variables that affect the build result should be reported with the

config.environment directive as discussed in Hermetic Build Configurations.

The following example, based on the libhello project from the introduction, gives an

overview of the project configuration functionality with the remainder of the chapter provid­

ing the detailed explanation of all the parts shown as well as the alternative approaches.

libhello/
|-- build/
| |-- root.build
| ·-- ...
|-- libhello/
| |-- hello.cxx
| |-- buildfile
| ·-- ...
·-- ...

build/root.build

config [string] config.libhello.greeting ?= ’Hello’

libhello/buildfile

cxx.poptions += "-DLIBHELLO_GREETING=\"$config.libhello.greeting\""

// libhello/hello.cxx

void say_hello (ostream& o, const string& n)
{
 o << LIBHELLO_GREETING ", " << n << ’!’ << endl;
}

$ b configure config.libhello.greeting=Hi -v
config libhello@/tmp/libhello/
 greeting Hi

$ cat build/config.build
config.libhello.greeting = Hi

$ b -v
g++ ... -DLIBHELLO_GREETING="Hi" ...

By (enforced) convention, configuration variables start with config., for example,

config.import.libhello. In case of a build system module, the second component in

its configuration variables should be the module name, for example, config.cxx,

config.cxx.coptions. Similarly, project-specific configuration variables should have

the project name as their second component, for example, config.libhello.greet­
ing.

More precisely, a project configuration variable must match the

config[.**].<project>.** pattern where additional components may be present

after config. in case of subprojects. Overall, the recommendation is to use hierarchical

names, such as config.libcurl.tests.remote for subprojects, similar to build

75Revision 0.18, July 2025 The build2 Build System

2 Project Configuration

system submodules.

If a build system module for a tool (such as a source code generator) and the tool itself share a

name, then they may need to coordinate their configuration variable names in order to avoid

clashes. Note also that when importing an executable target in the

<project>%exe{<project>} form, the config.<project> variable is treated as an

alias for config.import.<project>.<project>.exe.

For an imported buildfile, <project> may refer to either the importing project or the

project from which the said buildfile was imported.

The build system core reserves build and import as the second component in configura­

tion variables as well as configured as the third and subsequent components.

A variable in the config.<project>.develop form has pre-defined semantics: it

allows a project to distinguish between development and consumption builds. While normally

there is no distinction between these two modes, sometimes a project may need to provide

additional functionality during development. For example, a source code generator which uses

its own generated code in its implementation may need to provide a bootstrap step from the

pre-generated code. Normally, such a step is only needed during development.

While some communities, such as Rust, believe that building and running tests is only done

during development, we believe its reasonable for an end-user to want to run tests for all their

dependencies. As a result, we strongly discourage restricting tests to the development mode

only. Test are an integral part of the project and should always be available.

If used, the config.<project>.develop variable should be explicitly defined by the

project with the bool type and the false default value. For example:

build/root.build

config [bool] config.libhello.develop ?= false

If the config.<project>.develop variable is specified by the user of the project but

the project does not define it (that is, the project does not distinguish between development

and consumption), then this variable is silently ignored. By default bdep-init(1) config­

ures projects being initialized for development. This can be overridden with explicit

config.<project>.develop=false.

2.1 config Directive

To define a project configuration variable we add the config directive into the project’s

build/root.build file (see Project Structure). For example:

config [bool] config.libhello.fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

Revision 0.18, July 202576 The build2 Build System

2.1 config Directive

The irony does not escape us: these configuration variables are exactly of the kind that we

advocate against. However, finding a reasonable example of build-time configurability in a

"Hello, World!" library is not easy. In fact, it probably shouldn’t have any. So, for this

chapter, do as we say, not as we do.

Similar to import (see Target Importation), the config directive is a special kind of vari­

able assignment. Let’s examine all its parts in turn.

First comes the optional list of variable attributes inside []. The only attribute that we have

in the above example is the variable type, bool and string, respectively. It is generally a

good idea to assign static types to configuration variables because their values will be speci­

fied by the users of our project and the more automatic validation we provide the better (see

Variables for the list of available types). For example, this is what will happen if we misspell

the value of the fancy variable:

$ b configure config.libhello.fancy=fals
error: invalid bool value ’fals’ in variable config.libhello.fancy

After the attribute list we have the variable name. The config directive will validate that it

matches the config[.**].<project>.** pattern (with one exception discussed in

Configuration Report).

Finally, after the variable name comes the optional default value. Note that unlike normal

variables, the default value assignment (?=) is the only valid form of assignment in the

config directive.

The semantics of the config directive is as follows: First an overridable variable is entered

with the specified name, type (if any), and global visibility. Then, if the variable is undefined

and the default value is specified, it is assigned the default value. After this, if the variable is

defined (either as user-defined or default), it is marked for persistence. Finally, a defined vari­

able is also marked for reporting as discussed in Configuration Report. Note that if the vari­

able is user-defined, then the default value is not evaluated.

Note also that if the configuration value is not specified by the user and you haven’t provided

the default, the variable will be undefined, not null, and, as a result, omitted from the persis­

tent configuration (build/config.build file). In fact, unlike other variables, project

configuration variables are by default not nullable. For example:

$ b configure config.libhello.fancy=[null]
error: null value in non-nullable variable config.libhello.fancy

There are two ways to make null a valid value of a project configuration variable. Firstly, if

the default value is null, then naturally the variable is assumed nullable. This is traditionally

used for optional configuration values. For example:

config [string] config.libhello.fallback_name ?= [null]

77Revision 0.18, July 2025 The build2 Build System

2.1 config Directive

If we need a nullable configuration variable but with a non-null default value (or no default

value at all), then we have to use the null variable attribute. For example:

config [string, null] config.libhello.fallback_name ?= "World"

A common approach for representing an C/C++ enum-like value is to use string as a type

and pattern matching for validation. In fact, validation and propagation can often be

combined. For example, if our library needed to use a database for some reason, we could

handle it like this:

config [string] config.libhello.database ?= [null]

using cxx

switch $config.libhello.database
{
 case [null]
 {
 # No database in use.
 }
 case ’sqlite’
 {
 cxx.poptions += -DLIBHELLO_WITH_SQLITE
 }
 case ’pgsql’
 {
 cxx.poptions += -DLIBHELLO_WITH_PGSQL
 }
 default
 {
 fail "invalid config.libhello.database value \
’$config.libhello.database’"
 }
}

While it is generally a good idea to provide a sensible default for all your configuration vari­

ables, if you need to force the user to specify its value explicitly, this can be achieved with an

extra check. For example:

config [string] config.libhello.database

if! $defined(config.libhello.database)
 fail ’config.libhello.database must be specified’

A configuration variable without a default value is omitted from config.build unless the

value is specified by the user. This semantics is useful for values that are normally derived

from other configuration values but could also be specified by the user. If the value is derived,

then we don’t want it saved in config.build since that would prevent it from being

re-derived if the configuration values it is based on are changed. For example:

config [strings] config.hello.database

assert ($size($config.hello.database) > 0) \
 ’database must be specified with config.hello.database’

config [bool, config.report.variable=multi] config.hello.multi_database

Revision 0.18, July 202578 The build2 Build System

2.1 config Directive

multi = ($defined(config.hello.multi_database) \
 ? $config.hello.multi_database \
 : $size(config.hello.database) > 1)

assert ($multi || $size(config.hello.database) == 1) \
 ’one database can be specified if config.hello.multi_database=false’

If computing the default value is expensive or requires elaborate logic, then the handling of a

configuration variable can be broken down into two steps along these lines:

config [string] config.libhello.greeting

if! $defined(config.libhello.greeting)
{
 greeting = ... # Calculate default value.

 if ($greeting == [null])
 fail "unable to calculate default greeting, specify manually \
with config.libhello.greeting"

 config config.libhello.greeting ?= $greeting
}

Other than assigning the default value via the config directive, configuration variables

should not be modified by the project’s buildfiles. Instead, if further processing of the

configuration value is necessary, we should assign the configuration value to a different,

non-config.*, variable and modify that. The two situations where this is commonly

required are post-processing of configuration values to be more suitable for use in build­
files as well as further customization of configuration values. Let’s see examples of both.

To illustrate the first situation, let’s say we need to translate the database identifiers specified

by the user:

config [string] config.libhello.database ?= [null]

switch $config.libhello.database
{
 case [null]
 database = [null]

 case ’sqlite’
 database = ’SQLITE’

 case ’pgsql’
 database = ’PGSQL’

 case ’mysql’
 case ’mariadb’
 database = ’MYSQL’

 default
 fail "..."
 }
}

79Revision 0.18, July 2025 The build2 Build System

2.1 config Directive

using cxx

if ($database != [null])
 cxx.poptions += "-DLIBHELLO_WITH_$database"

For the second situation, the typical pattern looks like this:

config [strings] config.libhello.options

options = # Overridable options go here.
options += $config.libhello.options
options += # Non-overridable options go here.

That is, assuming that the subsequently specified options (for example, command line

options) override any previously specified, we first set default buildfile options that are

allowed to be overridden by options from the configuration value, then append such options,

if any, and finish off by appending buildfile options that should always be in effect.

As a concrete example of this approach, let’s say we want to make the compiler warning level

of our project configurable (likely a bad idea; also ignores compiler differences):

config [strings] config.libhello.woptions

woptions = -Wall -Wextra
woptions += $config.libhello.woptions
woptions += -Werror

using cxx

cxx.coptions += $woptions

With this arrangement, the users of our project can customize the warning level but cannot

disable the treatment of warnings as errors. For example:

$ b -v config.libhello.woptions=-Wno-extra
g++ ... -Wall -Wextra -Wno-extra -Werror ...

If you do not plan to package your project, then the above rules are the only constraints you

have. However, if your project is also a package, then other projects that use it as a depen­

dency may have preferences and requirements regarding its configuration. And it becomes the

job of the package manager (bpkg) to negotiate a suitable configuration between all the

dependents of your project (see Dependency Configuration Negotiation for details). This can

be a difficult problem to solve optimally in a reasonable time and to help the package manager

come up with the best configuration quickly you should follow the below additional rules and

recommendations for configuration of packages (but which are also generally good ideas):

1. Prefer bool configuration variables. For example, if your project supports a fixed

number of backends, then provide a bool variable to enable each rather than a single

variable that lists all the backends to be enabled.

2. Avoid project configuration variable dependencies, that is, where the default value of one

variable depends on the value of another. But if you do need such a dependency, make

sure it is expressed using the original config.<project>.* variables rather than

any intermediate/computed values. For example:

Revision 0.18, July 202580 The build2 Build System

2.1 config Directive

Enable Y only if X is enabled.
#
config [bool] config.hello.x ?= false
config [bool] config.hello.y ?= $config.libhello.x

3. Do not make project configuration variables conditional. In other words, the set of

configuration variables and their types should be a static property of the project. If you

do need to make a certain configuration variable "unavailable" or "disabled" if certain

conditions are met (for example, on a certain platform or based on the value of another

configuration variable), then express this with a default value and/or a check. For

example:

windows = ($cxx.target.class == ’windows’)

Y should only be enabled if X is enabled and we are not on
Windows.
#
config [bool] config.hello.x ?= false
config [bool] config.hello.y ?= ($config.hello.x && !$windows)

if $config.libhello.y
{
 assert $config.hello.x "Y can only be enabled if X is enabled"
 assert (!$windows) "Y cannot be enabled on Windows"
}

Additionally, if you wish to factor some config directives into a separate file (for example,

if you have a large number of them or you would like to share them with subprojects) and

source it from your build/root.build, then it is recommended that you place this file

into the build/config/ subdirectory, where the package manager expects to find such

files (see Package Build System Skeleton for background). For example:

root.build
#

...

source $src_root/build/config/common.build

If you would prefer to keep such a file in a different location (for example, because it contains

things other than config directives), then you will need to manually list it in your package’s

manifest file, see the build-file value for details.

Another effect of the config directive is to print the configuration variable in the project’s

configuration report. This functionality is discussed in the following section. While we have

already seen some examples of how to propagate the configuration values to our source code,

Configuration Propagation discusses this topic in more detail.

81Revision 0.18, July 2025 The build2 Build System

2.1 config Directive

2.2 Configuration Report

One of the effects of the config directive is to mark a defined configuration variable for

reporting. The project configuration report is printed automatically at a sufficiently high

verbosity level along with the build system module configuration. For example (some of the

cxx module configuration is omitted for brevity):

$ b config.libhello.greeting=Hey -v
cxx libhello@/tmp/libhello/
 cxx g++@/usr/bin/g++
 id gcc
 version 9.1.0
 ...
config libhello@/tmp/libhello/
 fancy false
 greeting Hey

The configuration report is printed immediately after loading the project’s

build/root.build file. It is always printed at verbosity level 3 (-V) or higher. It is also

printed at verbosity level 2 (-v) if any of the reported configuration variables have a new

value. A value is considered new if it was set to default or was overridden on the command

line.

The project configuration report header (the first line) starts with the special config module

name (the config module itself does not have a report) followed by the project name and its

out_root path. After the header come configuration variables with the

config[.**].<project> prefix removed. The configuration report for each variable

can be customized using a number of config.report* attributes as discussed next.

The config.report attribute controls whether the variable is included into the report and,

if so, the format to print its value in. For example, this is how we can exclude a variable from

the report:

config [bool, config.report=false] config.libhello.selftest ?= false

While we would normally want to report all our configuration variables , if some of them are

internal and not meant to be used by the users of our project, it probably makes sense to

exclude them.

The only currently supported alternative printing format is multiline which prints a list

value one element per line. Other printing formats may be supported in the future. For

example:

config [dir_paths, config.report=multiline] config.libhello.search_dirs

$ b config.libhello.search_dirs="/etc/default /etc" -v
config libhello@/tmp/libhello/
 search_dirs
 /etc/default/
 /etc/

Revision 0.18, July 202582 The build2 Build System

2.2 Configuration Report

The config.report attribute can also be used to include a non-config.* variable into a

report. This is primarily useful for configuration values that are always discovered automati­

cally but that are still useful to report for troubleshooting. Here is a realistic example:

using cxx

Determine the GCC plugin directory.
#
if ($cxx.id == ’gcc’)
{
 plugin_dir = [dir_path] $process.run($cxx.path -print-file-name=plugin)

 # If plugin support is disabled, then -print-file-name will print
 # the name we have passed (the real plugin directory will always
 # be absolute).
 #
 if ("$plugin_dir" == plugin)
 fail "$recall($cxx.path) does not support plugins"

 config [config.report] plugin_dir
}

This is the only situation where a variable that does not match the

config[.**].<project>.** pattern is allowed in the config directive. Note also

that a value of such a variable is never considered new.

Note that this mechanism should not be used to report configuration values that require

post-processing because of the loss of the new value status (unless you are reporting both the

original and post-processed values). Instead, use the config.report.variable
attribute to specify an alternative variable for the report. For example:

config [strings, config.report.variable=woptions] \
 config.libhello.woptions

woptions = -Wall -Wextra
woptions += $config.libhello.woptions
woptions += -Werror

$ b config.libhello.woptions=-Wno-extra -v
config libhello@/tmp/libhello/
 woptions -Wall -Wextra -Wno-extra -Werror

The config.report.module attribute can be used to override the reporting module

name, that is, config in the config libhello@/tmp/libhello/ line above. It is

primarily useful in imported buildfiles that wish to report non-config.* variables

under their own name. For example:

config [string] config.rtos.board

Load the board description and report key information such as the
capability revoker.
#
...
revoker = ...

config [config.report.module=rtos] revoker

83Revision 0.18, July 2025 The build2 Build System

2.2 Configuration Report

$ b config.rtos.board=ibex-safe-simulator -v
rtos hello@/tmp/hello/
 board ibex-safe-simulator
 revoker hardware

2.3 Configuration Propagation

Using configuration values in our buildfiles is straightforward: they are like any other

buildfile variables and we can access them directly. For example, this is how we could

provide optional functionality in our library by conditionally including certain source files:

See Conditions (if-else) for why we should not use if to implement this.

build/root.build

config [strings] config.libhello.io ?= true

libhello/buildfile

lib{hello}: {hxx ixx txx cxx}{** -version -hello-io} hxx{version}
lib{hello}: {hxx cxx}{hello-io}: include = $config.libhello.io

On the other hand, it is often required to propagate the configuration information to our source

code. In fact, we have already seen one way to do it: we can pass this information via C/C++

preprocessor macros defined on the compiler’s command line. For example:

build/root.build

config [bool] config.libhello.fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

libhello/buildfile

if $config.libhello.fancy
 cxx.poptions += -DLIBHELLO_FANCY

cxx.poptions += "-DLIBHELLO_GREETING=\"$config.libhello.greeting\""

// libhello/hello.cxx

void say_hello (ostream& o, const string& n)
{
#ifdef LIBHELLO_FANCY
 // TODO: something fancy.
#else
 o << LIBHELLO_GREETING ", " << n << ’!’ << endl;
#endif
}

We can even use the same approach to export certain configuration information to our

library’s users (see Library Exportation and Versioning for details):

libhello/buildfile

Export options.
#
if $config.libhello.fancy
 lib{hello}: cxx.export.poptions += -DLIBHELLO_FANCY

Revision 0.18, July 202584 The build2 Build System

2.3 Configuration Propagation

This mechanism is simple and works well across compilers so there is no reason not to use it

when the number of configuration values passed and their size are small. However, it can

quickly get unwieldy as these numbers grow. For such cases, it may make sense to save this

information into a separate auto-generated source file with the help of the in module, similar

to how we do it for the version header.

The often-used approach is to generate a header file and include it into source files that need

access to the configuration information. Historically, this was a C header full of macros called

config.h. However, for C++ projects, there is no reason not to make it a C++ header and,

if desired, to use modern C++ features instead of macros. Which is what we will do here.

As an example of this approach, let’s convert the above command line-based implementation

to use the configuration header. We will continue using macros as a start (or in case this is a C

project) and try more modern techniques later. The build/root.build file is unchanged

except for loading the in module:

build/root.build

config [bool] config.libhello.fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

using in

The libhello/config.hxx.in file is new:

// libhello/config.hxx.in

#pragma once

#define LIBHELLO_FANCY $config.libhello.fancy$
#define LIBHELLO_GREETING "$config.libhello.greeting$"

As you can see, we can reference our configuration variables directly in the

config.hxx.in substitutions (see the in module documentation for details on how this

works).

With this setup, the way to export configuration information to our library’s users is to make

the configuration header public and install it, similar to how we do it for the version header.

The rest is changed as follows:

libhello/buildfile

lib{hello}: {hxx ixx txx cxx}{** -version -config} hxx{version config}

hxx{config}: in{config}
{
 install = false
}

85Revision 0.18, July 2025 The build2 Build System

2.3 Configuration Propagation

// libhello/hello.cxx

#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
#if LIBHELLO_FANCY
 // TODO: something fancy.
#else
 o << LIBHELLO_GREETING ", " << n << ’!’ << endl;
#endif
}

Notice that we had to replace #ifdef LIBHELLO_FANCY with

#if LIBHELLO_FANCY. If you want to continue using #ifdef, then you will need to

make the necessary arrangements yourself (the in module is a generic preprocessor and does

not provide any special treatment for #define). For example:

#define LIBHELLO_FANCY $config.libhello.fancy$
#if !LIBHELLO_FANCY
undef LIBHELLO_FANCY
#endif

Now that the macro-based version is working, let’s see how we can take advantage of modern

C++ features to hopefully improve on some of their drawbacks. As a first step, we can replace

the LIBHELLO_FANCY macro with a compile-time constant and use if constexpr
instead of #ifdef in our implementation:

// libhello/config.hxx.in

namespace hello
{
 inline constexpr bool fancy = $config.libhello.fancy$;
}

// libhello/hello.cxx

#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
 if constexpr (fancy)
 {
 // TODO: something fancy.
 }
 else
 o << LIBHELLO_GREETING ", " << n << ’!’ << endl;
}

Note that with if constexpr the branch not taken must still be valid, parsable code. This

is both one of the main benefits of using it instead of #if (the code we are not using is still

guaranteed to be syntactically correct) as well as its main drawback (it cannot be used, for

example, for platform-specific code without extra efforts, such as providing shims for missing

declarations, etc).

Revision 0.18, July 202586 The build2 Build System

2.3 Configuration Propagation

Next, we can do the same for LIBHELLO_GREETING:

// libhello/config.hxx.in

namespace hello
{
 inline constexpr char greeting[] = "$config.libhello.greeting$";
}

// libhello/hello.cxx

#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
 if constexpr (fancy)
 {
 // TODO: something fancy.
 }
 else
 o << greeting << ", " << n << ’!’ << endl;
}

Note that for greeting we can achieve the same result without using inline variables or

constexpr and which would be usable in older C++ and even C. All we have to do is add

the config.cxx.in source file next to our header with the definition of the greeting

variable. For example:

// libhello/config.hxx.in

namespace hello
{
 extern const char greeting[];
}

// libhello/config.cxx.in

#include <libhello/config.hxx>

namespace hello
{
 const char greeting[] = "$config.libhello.greeting$";
}

libhello/buildfile

lib{hello}: {hxx ixx txx cxx}{** -config} {hxx cxx}{config}

hxx{config}: in{config}
{
 install = false
}

cxx{config}: in{config}

As this illustrates, the in module can produce as many auto-generated source files as we

need. For example, we could use this to split the configuration header into two, one public and

installed while the other private.

87Revision 0.18, July 2025 The build2 Build System

2.3 Configuration Propagation

3 Targets and Target Types

This chapter is a work in progress and is incomplete.

3.1 Target Types

A target type is part of a target’s identity. The core idea behind the concept of target types is

to abstract away from file extensions which can vary from project to project (for example,

C++ source files extensions) or from platform to platform (for example, executable file exten­

sions). It also allows us to have non-file-based targets.

Target types form a base-derived inheritance tree. The root of this tree is the abstract

target{} type. The build2 core defines a number of standard target types, such as

file{}, doc{}, and exe{}. Build system modules can define additional target types that

are based on the standard ones (or on types defined by other modules). For example, the c
module that provides the C compilation support defines the h{} and c{} target types.

Finally, buildfiles can derive project-local target types using the define directive.

If a target type represents a file type with a well-established extension, then by convention

such an extension is used as the target type name. For example, the C language header and

source files use the .h and .c extensions and the target types are called h{} and c{}.

Speaking of conventions, as you may have noticed, when mentioning a target type we custom­

arily add {} after its name. We found that this helps with comprehension since target type

names are often short (you can also search for <type>{ to narrow it down to target types). In

a way this is a similar approach to adding () after a function name except here we use {},

which mimics target type usage in target names, for example c{hello} for hello.c.

The following listing shows the hierarchy of the standard target types defined by the build2
core (the abstract target types are marked with *) while the following sections describe each

standard target type in detail. For target types defined by a module refer to the respective

module documentation.

 .-----target*------------.
 | | |
 mtime_target*---. alias fsdir
 | | |
 path_target* group dir
 |
 .---------file----------.
 | | | |
 .----doc-----. exe json buildfile
 | | |
legal man manifest
 |
 man<N>

Revision 0.18, July 202588 The build2 Build System

3 Targets and Target Types

While target types replace (potentially variable) extensions, there still needs to be a mecha­

nism for specifying them since in most cases targets have to be mapped to files. There are

several ways this can be achieved.

If a target type represents a file type with a well-established extension, then such an extension

is normally used by default and we don’t need to take any extra steps. For example the h{}
and c{} target types for C header and source files default to the .h and .c extensions,

respectively, and if our project follows this convention, then we can simply write:

exe{utility}: c{utility} h{utility}

And c{utility} will be mapped to utility.c and h{utility} – to utility.h.

There are two variants of this default extension case: fixed extension and customizable exten­

sion. A target type may choose to fix the default extension if it’s a bad idea to deviate from

the default extension. A good example of such a target is man1{}, which fixes the default

extension to be .1. More commonly, however, a target will have a default extension but will

allow customizing it with the extension variable.

A good example where extension customization is often required are the hxx{} and cxx{}
target types for C++ header and source files, which default to the .hxx and .cxx extensions,

respectively. If our project uses other extensions, for example, .hpp and .cpp, then we can

adjust the defaults (typically done in root.build, after loading the cxx module):

hxx{*}: extension = hpp
cxx{*}: extension = cpp

Then we can write:

exe{utility}: cxx{utility} hxx{utility}

And cxx{utility} will be mapped to utility.cpp and hxx{utility} – to

utility.hpp.

What about exe{utility}, where does its extension come from? This is an example of a

target type with an extension that varies from platform to platform. In such cases the exten­

sion is expected to be assigned by the rule that matches the target. In the above example, the

link rule from the cxx module that matches updating exe{utility} will assign a suitable

extension based on the target platform of the C++ compiler that it was instructed to use.

Finally, it is always possible to specify the file extension explicitly as part of the target name.

For example:

exe{utility}: cxx{utility.cc} hxx{utility.hh}

This is normally only needed if the default extension is not appropriate or if the target type

does not have a default extension, as is the case, for example, for the file{} and doc{}
target types. This mechanism can also be used to override the automatically derived exten­

sion. For example:

89Revision 0.18, July 2025 The build2 Build System

3.1 Target Types

exe{($cxx.target.class == ’windows’ ? utility.com : utility)}: ...

If you need to specify a name that does not have an extension, then end it with a single dot.

For example, for a header utility you would write hxx{utility.}. If you need to

specify a name with an actual trailing dot, then escape it with a double dot, for example,

hxx{utility..}.

More generally, anywhere in a name, a double dot can be used to specify a dot that should not

be considered the extension separator while a triple dot – which should. For example, in

obja{foo.a.o} the extension is .o and if instead we wanted .a.o to be considered the

extension, then we could rewrite it either as obja{foo.a..o} or as obja{foo...a.o}.

To derive a new target type in a buildfile we use the define directive. Such target types

are project-local, meaning they cannot be exported to other projects. Typically this is used to

provide a more meaningful name to a set of files and also avoid having to specify their exten­

sions explicitly. Compare:

./: doc{README.md PACKAGE-README.md INSTALL.md}

To:

define md: doc
doc{*}: extension = md

./: md{README PACKAGE-README INSTALL}

3.1.1 target{}

The target{} target type is a root of the target type hierarchy. It is abstract and is not

commonly used directly, except perhaps in patterns (target type/pattern-specific variable,

pattern rules).

3.1.2 alias{} and dir{}

The alias{} target type is used for non-file-based targets that serve as aliases for their

prerequisite.

Alias targets in build2 are roughly equivalent to phony targets in make.

For example:

alias{tests}: exe{test1 test2 test3}

$ b test: alias{tests}

An alias{} target can also serve as an "action" if supplied with an ad hoc recipe (or

matched by an ad hoc pattern rule). For example:

Revision 0.18, July 202590 The build2 Build System

3.1.1 target{}

alias{strip}: exe{hello}
{{
 diag strip $<
 strip $path($<)
}}

The dir{} target type is a special kind of alias that represents a directory. Building it means

building everything inside the directory. See Project Structure for background.

A target without a type that ends with a directory separator (/) is automatically treated as

dir{}. For example, the following two lines are equivalent:

./: exe{test1 test2}
dir{./}: exe{test1 test2}

Omitting the target type in such situations is customary.

3.1.3 fsdir{}

The fsdir{} target type represents a filesystem directory. Unlike dir{} above, it is not an

alias and listing an fsdir{} directory as a prerequisite of a target will cause that directory to

be created on update and removed on clean.

While we usually don’t need to list explicit fsdir{} prerequisites for our targets, one situa­

tion where this is necessary is when the target resides in a subdirectory that does not corre­

spond to an existing source directory. A typical example of this situation is placing object files

into subdirectories. Compare:

obj{foo}: c{foo}
sub/obj{bar}: c{bar} fsdir{sub/}

3.1.4 mtime_target{} and path_target{}

The mtime_target{} target type represents a target that uses modification times to deter­

mine if it is out of date. The path_target{} target type represents a target that has a

corresponding filesystem entry. It is derived from mtime_target{} and uses the modifica­

tion time of that filesystem entry to determine if the target is out of date.

Both of these target types are abstract and are not commonly used directly, except perhaps in

patterns (target type/pattern-specific variable, pattern rules).

3.1.5 group{}

The group{} target type represents a user-defined explicit target group, that is, a target that

has multiple member targets that are all built together with a single recipe.

Normally this target type is not used to declare targets or prerequisites but rather as a base of a

derived group. If desired, such a derived group can be marked with an attribute as

"see-through", meaning that when the group is listed as a prerequisite of a target, the matching

rule "sees" its members, rather than the group itself. For example:

91Revision 0.18, July 2025 The build2 Build System

3.1.3 fsdir{}

define [see_through] thrift_cxx: group

3.1.6 file{}

The file{} target type represents a generic file. This target type is used as a base for most

of the file-based targets and can also be used to declare targets and prerequisites when there

are no more specific target types.

A target or prerequisite without a target type is automatically treated as file{}. However,

omitting a target type in such situations is not customary.

The file{} target type has no default extension and one cannot be assigned with the

extension variable. As a result, if a file{} target has an extension, then it must be speci­

fied explicitly as part of the target name. For example:

./: file{example.conf}

3.1.7 doc{}, legal{}, and man{}

The doc{} target type represents a generic documentation file. It has semantics similar to

file{} (from which it derives): it can be used as a base or declare targets/prerequisites and

there is no default extension. One notable difference, however, is that doc{} targets are by

default installed into the doc/ installation location (see install Module). For example:

./: doc{README.md ChangeLog.txt}

The legal{} target type is derived from doc{} and represents a legal documentation file,

such as a license, copyright notice, authorship information, etc. The main purpose of having a

separate target type like this is to help with installing licensing-related files into a different

location. To this effect, legal{} targets are installed into the legal/ installation location,

which by default is the same as doc/ but can be customized. For example:

./: legal{COPYRIGHT LICENSE AUTHORS.md}

The man{} target type is derived from doc{} and represents a manual page. This target type

requires an explicit extension specification and is installed into the man/ installation location

If you are using the man{} target type directly (instead of one of man<N>{} described

below), for example, to install a localized version of a man page, then you will likely need to

adjust the installation location on the per target basis.

The man<N>{} target types (where <N> is an integer between 1 and 9) are derived from

man{} and represent manual pages in the respective sections. These target types have fixed

default extensions .<N> (but an explicit extension can still be specified, for example

man1{foo.1p}) and are installed into the man<N>/ installation locations. For example:

./: man1{foo}

Revision 0.18, July 202592 The build2 Build System

3.1.6 file{}

3.1.8 exe{}

The exe{} target type represents an executable file. Executables in build2 appear in two

distinct but sometimes overlapping contexts: We can build an executable target, for example

from C source files. Or we can list an executable target as a prerequisite in order to execute it

as part of a recipe. And sometimes this can be the same executable target. For example, one

project may build an executable target that is a source code generator and another project may

import this executable target and use it in its recipes in order to generate some source code.

To support this semantics the exe{} target type has a peculiar default extension logic.

Specifically, if the exe{} target is "output", then the extension is expected to be assigned by

the matching rule according to the target platform for which this executable is built. But if it

does not, then we fall back to no extension (for example, a script). If, however, the exe{}
target is "input" (that is, it’s listed as a prerequisite and there is no corresponding "output"

target), then the extension of the host platform is used as the default.

In all these cases the extension can also be specified explicitly. This, for example, would be

necessary if the executable were a batch file:

h{generate}: exe{generate.bat}
{{
 diag $< -> $>
 $< -o $path($>)
}}

Here, without the explicit extension, the .exe extension would have been used by default.

3.1.9 json{}

The json{} target type represents a JSON text file. It is derived from file{} and has the

.json default extension.

4 Variables

This chapter is a work in progress and is incomplete.

The following variable/value types can currently be used in buildfiles:

bool

int64
int64s

uint64
uint64s

string
strings
string_set
string_map

93Revision 0.18, July 2025 The build2 Build System

4 Variables

path
paths
dir_path
dir_paths

json
json_array
json_object
json_set
json_map

name
names
name_pair

cmdline
project_name
target_triplet

Note that while expansions in the target and prerequisite-specific assignments happen in the

corresponding target and prerequisite contexts, respectively, for type/pattern-specific assign­

ments they happen in the scope context. Plus, a type/pattern-specific prepend/append is

applied at the time of expansion for the actual target. For example:

x = s

file{foo}: # target
{
 x += t # s t
 y = $x y # s t y
}

file{foo}: file{bar} # prerequisite
{
 x += p # x t p
 y = $x y # x t p y
}

file{b*}: # type/pattern
{
 x += w # <append w>
 y = $x w # <assign s w>
}

x = S

info $(file{bar}: x) # S w
info $(file{bar}: y) # s w

5 Functions

This chapter is a work in progress and is incomplete.

Functions in build2 are organized into families, such as the $string.*() family for

manipulating strings or $regex.*() for working with regular expressions. Most functions

are pure and those that are not, such as $builtin.getenv(), are explicitly documented

as such.

Revision 0.18, July 202594 The build2 Build System

5 Functions

Some functions, such as from the $regex.*() family, can only be called fully qualified

with their family name. For example:

if $regex.match($name, ’(.+)-(.+)’)
 ...

While other functions can be called without explicit qualification. For example:

path = $getenv(’PATH’)

There are also functions that can be called unqualified only for certain types of arguments

(this fact will be reflected in their synopsis and/or documentation). Note, however, that every

function can always be called qualified.

5.1 Builtin Functions

The $builtin.*() function family contains fundamental build2 functions.

5.1.1 $builtin.defined()

$defined(<variable>)

Return true if the specified variable is defined in the calling scope or any outer scopes.

Note that this function is not pure.

5.1.2 $builtin.visibility()

$visibility(<variable>)

Return variable visibility if it is known and null otherwise.

Possible visibility value are:

global -- all outer scopes
project -- this project (no outer projects)
scope -- this scope (no outer scopes)
target -- target and target type/pattern-specific
prereq -- prerequisite-specific

Note that this function is not pure.

5.1.3 $builtin.type()

$type(<value>)

Return the type name of the value or empty string if untyped.

95Revision 0.18, July 2025 The build2 Build System

5.1 Builtin Functions

5.1.4 $builtin.null()

$null(<value>)

Return true if the value is null.

5.1.5 $builtin.empty()

$empty(<value>)

Return true if the value is empty.

5.1.6 $builtin.first(), $builtin.second()

$first(<value>[, <not_pair>])
$second(<value>[, <not_pair>])

Return the first or the second half of a pair, respectively. If a value is not a pair, then return

null unless the not_pair argument is true, in which case return the non-pair value.

If multiple pairs are specified, then return the list of first/second halfs. If an element is not a

pair, then omit it from the resulting list unless the not_pair argument is true, in which

case add the non-pair element to the list.

5.1.7 $builtin.quote()

$quote(<value>[, <escape>])

Quote the value returning its string representation. If escape is true, then also escape (with

a backslash) the quote characters being added (this is useful if the result will be re-parsed, for

example as a script command line).

5.1.8 $builtin.getenv()

$getenv(<name>)

Get the value of the environment variable. Return null if the environment variable is not set.

Note that if the build result can be affected by the variable being queried, then it should be

reported with the config.environment directive.

Note that this function is not pure.

5.2 String Functions

Revision 0.18, July 202596 The build2 Build System

5.2 String Functions

5.2.1 $string.icasecmp()

$string.icasecmp(<untyped>, <untyped>)
$icasecmp(<string>, <string>)

Compare ASCII strings ignoring case and returning the boolean value.

5.2.2 $string.contains()

$string.contains(<untyped>, <untyped>[, <flags>])
$contains(<string>, <string>[, <flags>])

Check if the string (first argument) contains the given substring (second argument). The

substring must not be empty.

The following flags are supported:

icase - compare ignoring case

once - check if the substring occurs exactly once

See also $string.starts_with(), $string.ends_with(), $regex.search().

5.2.3 $string.starts_with()

$string.starts_with(<untyped>, <untyped>[, <flags>])
$starts_with(<string>, <string>[, <flags>])

Check if the string (first argument) begins with the given prefix (second argument). The

prefix must not be empty.

The following flags are supported:

icase - compare ignoring case

See also $string.contains().

5.2.4 $string.ends_with()

$string.ends_with(<untyped>, <untyped>[, <flags>])
$ends_with(<string>, <string>[, <flags>])

Check if the string (first argument) ends with the given suffix (second argument). The suffix

must not be empty.

The following flags are supported:

icase - compare ignoring case

See also $string.contains().

97Revision 0.18, July 2025 The build2 Build System

5.2.1 $string.icasecmp()

5.2.5 $string.replace()

$string.replace(<untyped>, <from>, <to> [, <flags>])
$replace(<string>, <from>, <to> [, <flags>])

Replace occurences of substring from with to in a string. The from substring must not be

empty.

The following flags are supported:

icase - compare ignoring case

first_only - only replace the first match

last_only - only replace the last match

If both first_only and last_only flags are specified, then from is replaced only if it

occurs in the string once.

See also $regex.replace().

5.2.6 $string.trim()

$string.trim(<untyped>)
$trim(<string>)

Trim leading and trailing whitespaces in a string.

5.2.7 $string.lcase(), $string.ucase()

$string.lcase(<untyped>)
$string.ucase(<untyped>)
$lcase(<string>)
$ucase(<string>)

Convert ASCII string into lower/upper case.

5.2.8 $string.size()

$size(<strings>)
$size(<string-set>)
$size(<string-map>)
$size(<string>)

First three forms: return the number of elements in the sequence.

Fourth form: return the number of characters (bytes) in the string.

Revision 0.18, July 202598 The build2 Build System

5.2.5 $string.replace()

5.2.9 $string.sort()

$sort(<strings> [, <flags>])

Sort strings in ascending order.

The following flags are supported:

icase - sort ignoring case

dedup - in addition to sorting also remove duplicates

5.2.10 $string.find()

$find(<strings>, <string>[, <flags>])

Return true if the string sequence contains the specified string.

The following flags are supported:

icase - compare ignoring case

See also $regex.find_match() and $regex.find_search().

5.2.11 $string.find_index()

$find_index(<strings>, <string>[, <flags>])

Return the index of the first element in the string sequence that is equal to the specified string

or $size(strings) if none is found.

The following flags are supported:

icase - compare ignoring case

5.2.12 $string.keys()

$keys(<string-map>)

Return the list of keys in a string map.

Note that the result is sorted in ascending order.

5.3 Integer Functions

5.3.1 $integer.string()

$string(<int64>)
$string(<uint64>[, <base>[, <width>]])

99Revision 0.18, July 2025 The build2 Build System

5.3 Integer Functions

Convert an integer to a string. For unsigned integers we can specify the desired base and

width. For example:

x = [uint64] 0x0000ffff

c.poptions += "-DOFFSET=$x" # -DOFFSET=65535
c.poptions += "-DOFFSET=$string($x, 16)" # -DOFFSET=0xffff
c.poptions += "-DOFFSET=$string($x, 16, 8)" # -DOFFSET=0x0000ffff

5.3.2 $integer.integer_sequence()

$integer_sequence(<begin>, <end>[, <step>])

Return the list of uint64 integers starting from begin (including) to end (excluding) with the

specified step or 1 if unspecified. If begin is greater than end, empty list is returned.

5.3.3 $integer.size()

$size(<ints>)

Return the number of elements in the sequence.

5.3.4 $integer.sort()

$sort(<ints> [, <flags>])

Sort integers in ascending order.

The following flags are supported:

dedup - in addition to sorting also remove duplicates

5.3.5 $integer.find()

$find(<ints>, <int>)

Return true if the integer sequence contains the specified integer.

5.3.6 $integer.find_index()

$find_index(<ints>, <int>)

Return the index of the first element in the integer sequence that is equal to the specified

integer or $size(ints) if none is found.

5.4 Bool Functions

Revision 0.18, July 2025100 The build2 Build System

5.4 Bool Functions

5.4.1 $bool.string()

$string(<bool>)

Convert a boolean value to a string literal true or false.

5.5 Path Functions

The $path.*() function family contains function that manipulating filesystem paths.

5.5.1 $path.string()

$string(<paths>)

Return the traditional string representation of a path (or a list of string representations for a list

of paths). In particular, for directory paths, the traditional representation does not include the

trailing directory separator (except for the POSIX root directory). See $representa­
tion() below for the precise string representation.

5.5.2 $path.posix_string()

$posix_string(<paths>)
$path.posix_string(<untyped>)

Return the traditional string representation of a path (or a list of string representations for a list

of paths) using the POSIX directory separators (forward slashes).

5.5.3 $path.representation()

$representation(<paths>)

Return the precise string representation of a path (or a list of string representations for a list of

paths). In particular, for directory paths, the precise representation includes the trailing direc­

tory separator. See $string() above for the traditional string representation.

5.5.4 $path.posix_representation()

$posix_representation(<paths>)
$path.posix_representation(<untyped>)

Return the precise string representation of a path (or a list of string representations for a list of

paths) using the POSIX directory separators (forward slashes).

5.5.5 $path.absolute()

$absolute(<path>)
$path.absolute(<untyped>)

101Revision 0.18, July 2025 The build2 Build System

5.5 Path Functions

Return true if the path is absolute and false otherwise.

5.5.6 $path.simple()

$simple(<path>)
$path.simple(<untyped>)

Return true if the path is simple, that is, has no direcrory component, and false otherwise.

Note that on POSIX /foo is not a simple path (it is foo in the root directory) while / is (it is

the root directory).

5.5.7 $path.sub_path()

$sub_path(<path>, <path>)
$path.sub_path(<untyped>, <untyped>)

Return true if the path specified as the first argument is a sub-path of the one specified as the

second argument (in other words, the second argument is a prefix of the first) and false other­

wise. Both paths are expected to be normalized. Note that this function returns true if the

paths are equal. Empty path is considered a prefix of any path.

5.5.8 $path.super_path()

$super_path(<path>, <path>)
$path.super_path(<untyped>, <untyped>)

Return true if the path specified as the first argument is a super-path of the one specified as

the second argument (in other words, the second argument is a suffix of the first) and false

otherwise. Both paths are expected to be normalized. Note that this function returns true if the

paths are equal. Empty path is considered a suffix of any path.

5.5.9 $path.directory()

$directory(<paths>)
$path.directory(<untyped>)

Return the directory part of a path (or a list of directory parts for a list of paths) or an empty

path if there is no directory. A directory of a root directory is an empty path.

5.5.10 $path.root_directory()

$root_directory(<paths>)
$path.root_directory(<untyped>)

Return the root directory of a path (or a list of root directories for a list of paths) or an empty

path if the specified path is not absolute.

Revision 0.18, July 2025102 The build2 Build System

5.5.6 $path.simple()

5.5.11 $path.leaf()

$leaf(<paths>)
$path.leaf(<untyped>)
$leaf(<paths>, <dir-path>)
$path.leaf(<untyped>, <dir-path>)

First form (one argument): return the last component of a path (or a list of last components for

a list of paths).

Second form (two arguments): return a path without the specified directory part (or a list of

paths without the directory part for a list of paths). Return an empty path if the paths are the

same. Issue diagnostics and fail if the directory is not a prefix of the path. Note: expects both

paths to be normalized.

5.5.12 $path.relative()

$relative(<paths>, <dir-path>)
$path.relative(<untyped>, <dir-path>)

Return the path relative to the specified directory that is equivalent to the specified path (or a

list of relative paths for a list of specified paths). Issue diagnostics and fail if a relative path

cannot be derived (for example, paths are on different drives on Windows).

Note: to check if a path if relative, use $path.absolute().

5.5.13 $path.base()

$base(<paths>)
$path.base(<untyped>)

Return the base part (without the extension) of a path (or a list of base parts for a list of paths).

5.5.14 $path.extension()

$extension(<path>)
$path.extension(<untyped>)

Return the extension part (without the dot) of a path or empty string if there is no extension.

5.5.15 $path.complete()

$complete(<paths>)
$path.complete(<untyped>)

Complete the path (or list of paths) by prepending the current working directory unless the

path is already absolute.

103Revision 0.18, July 2025 The build2 Build System

5.5.11 $path.leaf()

5.5.16 $path.canonicalize()

$canonicalize(<paths>)
$path.canonicalize(<untyped>)

Canonicalize the path (or list of paths) by converting all the directory separators to the canoni­

cal form for the host platform. Note that multiple directory separators are not collapsed.

5.5.17 $path.normalize(), $path.try_normalize()

$normalize(<paths>)
$path.normalize(<untyped>)
$try_normalize(<path>)
$path.try_normalize(<untyped>)

Normalize the path (or list of paths) by collapsing the . and .. components if possible,

collapsing multiple directory separators, and converting all the directory separators to the

canonical form for the host platform.

If the resulting path would be invalid, the $normalize() version issues diagnostics and

fails while the $try_normalize() version returns null. Note that $try_normal­
ize() only accepts a single path.

5.5.18 $path.actualize(), $path.try_actualize()

$actualize(<paths>)
$path.actualize(<untyped>)
$try_actualize(<path>)
$path.try_actualize(<untyped>)

Actualize the path (or list of paths) by first normalizing it and then for host platforms with

case-insensitive filesystems obtaining the actual spelling of the path.

Only an absolute path can be actualized. If a path component does not exist, then its (and all

subsequent) spelling is unchanged. Note that this is a potentially expensive operation.

If the resulting path would be invalid or in case of filesystem errors (other than non-existent

component), the $actualize() version issues diagnostics and fails while the

$try_actualize() version returns null. Note that $try_actualize() only accepts

a single path.

Note that this function is not pure.

5.5.19 $path.size()

$size(<paths>)
$size(<path>)

First form: return the number of elements in the paths sequence.

Revision 0.18, July 2025104 The build2 Build System

5.5.16 $path.canonicalize()

Second form: return the number of characters (bytes) in the path. Note that for dir_path
the result does not include the trailing directory separator (except for the POSIX root direc­

tory).

5.5.20 $path.sort()

$sort(<paths>[, <flags>])

Sort paths in ascending order. Note that on host platforms with a case-insensitive filesystem

the order is case-insensitive.

The following flags are supported:

dedup - in addition to sorting also remove duplicates

5.5.21 $path.find()

$find(<paths>, <path>)

Return true if the paths sequence contains the specified path. Note that on host platforms with

a case-insensitive filesystem the comparison is case-insensitive.

5.5.22 $path.find_index()

$find_index(<paths>, <path>)

Return the index of the first element in the paths sequence that is equal to the specified path or

$size(paths) if none is found. Note that on host platforms with a case-insensitive filesys­

tem the comparison is case-insensitive.

5.5.23 $path.match()

$path.match(<entry>, <pattern>[, <start-dir>])

Match a filesystem entry name against a name pattern (both are strings), or a filesystem entry

path against a path pattern. For the latter case the start directory may also be required (see

below). The pattern is a shell-like wildcard pattern. The semantics of the pattern and

entry arguments is determined according to the following rules:

1. The arguments must be of the string or path types, or be untyped.

2. If one of the arguments is typed, then the other one must be of the same type or be untyped.

In the later case, an untyped argument is converted to the type of the other argument.

3. If both arguments are untyped and the start directory is specified, then the arguments are

converted to the path type.

4. If both arguments are untyped and the start directory is not specified, then, if one of the

arguments is syntactically a path (the value contains a directory separator), then they are

converted to the path type, otherwise -- to the string type (match as names).

105Revision 0.18, July 2025 The build2 Build System

5.5.20 $path.sort()

If pattern and entry paths are both either absolute or relative and not empty, and the first

pattern component is not a self-matching wildcard (doesn’t contain ***), then the start direc­

tory is not required, and is ignored if specified. Otherwise, the start directory must be speci­

fied and be an absolute path.

5.6 Name Functions

The $name.*() function family contains function that operate on target and prerequisite

names. See also the $target.*() function family for functions that operate on actual

targets.

5.6.1 $name.name()

$name(<names>)

Return the name of a target (or a list of names for a list of targets).

5.6.2 $name.extension()

$extension(<name>)

Return the extension of a target.

Note that this function returns null if the extension is unspecified (default) and empty string

if it’s specified as no extension.

5.6.3 $name.directory()

$directory(<names>)

Return the directory of a target (or a list of directories for a list of targets).

5.6.4 $name.target_type()

$target_type(<names>)

Return the target type name of a target (or a list of target type names for a list of targets).

5.6.5 $name.project()

$project(<name>)

Return the project of a target or null if not project-qualified.

5.6.6 $name.is_a()

$is_a(<name>, <target-type>)

Revision 0.18, July 2025106 The build2 Build System

5.6 Name Functions

Return true if the name’s target type is-a target-type. Note that this is a dynamic type

check that takes into account target type inheritance.

5.6.7 $name.filter(), $name.filter_out()

$filter(<names>, <target-types>)
$filter_out(<names>, <target-types>)

Return names with target types which are-a (filter) or not are-a (filter_out) one of

target-types. See $is_a() for background.

5.6.8 $name.size()

$size(<names>)

Return the number of elements in the sequence.

5.6.9 $name.sort()

$sort(<names>[, <flags>])

Sort names in ascending order.

The following flags are supported:

dedup - in addition to sorting also remove duplicates

5.6.10 $name.find()

$find(<names>, <name>)

Return true if the name sequence contains the specified name.

5.6.11 $name.find_index()

$find_index(<names>, <name>)

Return the index of the first element in the name sequence that is equal to the specified name

or $size(names) if none is found.

5.7 Target Functions

The $target.*() function family contains function that operate on targets. See also the

$name.*() function family for functions that operate on target (and prerequisite) names.

5.7.1 $target.path()

$path(<names>)

107Revision 0.18, July 2025 The build2 Build System

5.7 Target Functions

Return the path of a target (or a list of paths for a list of targets). The path must be assigned,

which normally happens during match. As a result, this function is normally called from a

recipe, but can also be called from a buildfile provided the target has been updated during

load.

Note that while this function is technically not pure, we don’t mark it as such since it can only

be called (normally from a recipe) after the target has been matched, meaning that this target

is a prerequisite and therefore this impurity has been accounted for.

5.7.2 $target.process_path()

$process_path(<name>)

Return the process path of an executable target.

Note that while this function is not technically pure, we don’t mark it as such for the same

reasons as for $path() above.

5.8 Regex Functions

The $regex.*() function family contains function that provide comprehensive regular

expression matching and substitution facilities. The supported regular expression flavor is

ECMAScript, more precisely, ECMA-262-based C++11 regular expressions. Note that the

match_not_null flag is in effect unless the string being matched is empty.

In the $regex.*() functions the substitution escape sequences in the format string (the

fmt argument) are extended with a subset of the Perl escape sequences: \n, \u, \l, \U, \L,

\E, \1 ... \9, and \\. Note that the standard ECMAScript escape sequences ($1, $2, $&,

etc) are still supported.

Note that functions from the $regex.*() family can only be called fully qualified with

their family name. For example:

if $regex.match($name, ’(.+)-(.+)’)
 ...

5.8.1 $regex.match()

$regex.match(<val>, <pat> [, <flags>])

Match a value of an arbitrary type against the regular expression. Convert the value to string

prior to matching. Return the boolean value unless return_subs flag is specified (see

below), in which case return names (or null if no match).

The following flags are supported:

Revision 0.18, July 2025108 The build2 Build System

5.8 Regex Functions

icase - match ignoring case

return_subs - return names (rather than boolean), that contain
 sub-strings that match the marked sub-expressions
 and null if no match

5.8.2 $regex.find_match()

$regex.find_match(<vals>, <pat> [, <flags>])

Match list elements against the regular expression and return true if the match is found.

Convert the elements to strings prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.3 $regex.filter_match(),

$regex.filter_out_match()

$regex.filter_match(<vals>, <pat> [, <flags>])
$regex.filter_out_match(<vals>, <pat> [, <flags>])

Return elements of a list that match (filter) or do not match (filter_out) the regular

expression. Convert the elements to strings prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.4 $regex.search()

$regex.search(<val>, <pat> [, <flags>])

Determine if there is a match between the regular expression and some part of a value of an

arbitrary type. Convert the value to string prior to searching. Return the boolean value unless

return_match or return_subs flag is specified (see below) in which case return names

(null if no match).

The following flags are supported:

icase - match ignoring case

return_match - return names (rather than boolean), that contain a
 sub-string that matches the whole regular expression
 and null if no match

return_subs - return names (rather than boolean), that contain
 sub-strings that match the marked sub-expressions
 and null if no match

109Revision 0.18, July 2025 The build2 Build System

5.8.2 $regex.find_match()

If both return_match and return_subs flags are specified then the sub-string that

matches the whole regular expression comes first.

See also $string.contains(), $string.starts_with(),

$string.ends_with().

5.8.5 $regex.find_search()

$regex.find_search(<vals>, <pat> [, <flags>])

Determine if there is a match between the regular expression and some part of any of the list

elements. Convert the elements to strings prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.6 $regex.filter_search(),

$regex.filter_out_search()

$regex.filter_search(<vals>, <pat> [, <flags>])
$regex.filter_out_search(<vals>, <pat> [, <flags>])

Return elements of a list for which there is a match (filter) or no match (filter_out)

between the regular expression and some part of the element. Convert the elements to strings

prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.7 $regex.replace()

$regex.replace(<val>, <pat>, <fmt> [, <flags>])

Replace matched parts in a value of an arbitrary type, using the format string. Convert the

value to string prior to matching. The result value is always untyped, regardless of the argu­

ment type.

The following flags are supported:

icase - match ignoring case

format_first_only - only replace the first match

format_no_copy - do not copy unmatched value parts into the
 result

If both format_first_only and format_no_copy flags are specified then the result

will only contain the replacement of the first match.

Revision 0.18, July 2025110 The build2 Build System

5.8.5 $regex.find_search()

See also $string.replace().

5.8.8 $regex.replace_lines()

$regex.replace_lines(<val>, <pat>, <fmt> [, <flags>])

Convert the value to string, parse it into lines and for each line apply the

$regex.replace() function with the specified pattern, format, and flags. If the format

argument is null, omit the "all-null" replacements for the matched lines from the result.

Return unmatched lines and line replacements as a name list unless return_lines flag is

specified (see below), in which case return a single multi-line simple name value.

The following flags are supported in addition to the $regex.replace() function’s flags:

return_lines - return the simple name (rather than a name list)
 containing the unmatched lines and line replacements
 separated with newlines.

Note that if format_no_copy is specified, unmatched lines are not copied either.

5.8.9 $regex.split()

$regex.split(<val>, <pat>, <fmt> [, <flags>])

Split a value of an arbitrary type into a list of unmatched value parts and replacements of the

matched parts, omitting empty ones (unless the format_copy_empty flag is specified).

Convert the value to string prior to matching.

The following flags are supported:

icase - match ignoring case

format_no_copy - do not copy unmatched value parts into the
 result

format_copy_empty - copy empty elements into the result

5.8.10 $regex.merge()

$regex.merge(<vals>, <pat>, <fmt> [, <delim> [, <flags>]])

Replace matched parts in a list of elements using the regex format string. Convert the

elements to strings prior to matching. The result value is untyped and contains concatenation

of transformed non-empty elements (unless the format_copy_empty flag is specified)

optionally separated with a delimiter.

The following flags are supported:

111Revision 0.18, July 2025 The build2 Build System

5.8.8 $regex.replace_lines()

icase - match ignoring case

format_first_only - only replace the first match

format_no_copy - do not copy unmatched value parts into the
 result

format_copy_empty - copy empty elements into the result

If both format_first_only and format_no_copy flags are specified then the result

will be a concatenation of only the first match replacements.

5.8.11 $regex.apply()

$regex.apply(<vals>, <pat>, <fmt> [, <flags>])

Replace matched parts of each element in a list using the regex format string. Convert the

elements to strings prior to matching. Return a list of transformed elements, omitting the

empty ones (unless the format_copy_empty flag is specified).

The following flags are supported:

icase - match ignoring case

format_first_only - only replace the first match

format_no_copy - do not copy unmatched value parts into the
 result

format_copy_empty - copy empty elements into the result

If both format_first_only and format_no_copy flags are specified then the result

elements will only contain the replacement of the first match.

5.9 JSON Functions

The $json.*() function family contains function that operate on the JSON types: json,

json_array, and json_object. For example:

j = [json] one@1 two@abc three@([json] x@1 y@-1)

for m: $j
{
 n = $member_name($m)
 v = $member_value($m)

 info $n $value_type($v) $v
}

Revision 0.18, July 2025112 The build2 Build System

5.9 JSON Functions

5.9.1 $json.value_type()

$value_type(<json>[, <distinguish_numbers>])

Return the type of a JSON value: null, boolean, number, string, array, or object.

If the distinguish_numbers argument is true, then instead of number return

signed number, unsigned number, or hexadecimal number.

5.9.2 $json.value_size()

$value_size(<json>)

Return the size of a JSON value.

The size of a null value is 0. The sizes of simple values (boolean, number, and

string) is 1. The size of array and object values is the number of elements and

members, respectively.

Note that the size of a string JSON value is not the length of the string. To get the length

call $string.size() instead by casting the JSON value to the string value type.

5.9.3 $json.member_name()

$member_name(<json-member>)

Return the name of a JSON object member.

5.9.4 $json.member_value()

$member_value(<json-member>)

Return the value of a JSON object member.

5.9.5 $json.object_names()

$object_names(<json-object>)

Return the list of names in the JSON object. If the JSON null is passed instead, assume it is

a missing object and return an empty list.

5.9.6 $json.array_size()

$array_size(<json-array>)

Return the number of elements in the JSON array. If the JSON null value is passed instead,

assume it is a missing array and return 0.

113Revision 0.18, July 2025 The build2 Build System

5.9.1 $json.value_type()

5.9.7 $json.array_find()

$array_find(<json-array>, <json>)

Return true if the JSON array contains the specified JSON value. If the JSON null value is

passed instead, assume it is a missing array and return false.

5.9.8 $json.array_find_index()

$array_find_index(<json-array>, <json>)

Return the index of the first element in the JSON array that is equal to the specified JSON

value or $array_size(json-array) if none is found. If the JSON null value is

passed instead, assume it is a missing array and return 0.

5.9.9 $json.load()

$json.load(<path>)

Parse the contents of the specified file as JSON input text and return the result as a value of

the json type.

See also $json.parse().

Note that this function is not pure.

5.9.10 $json.parse()

$json.parse(<text>)

Parse the specified JSON input text and return the result as a value of the json type.

See also $json.load() and $json.serialize().

5.9.11 $json.serialize()

$serialize(<json>[, <indentation>])

Serialize the specified JSON value and return the resulting JSON output text.

The optional indentation argument specifies the number of indentation spaces that

should be used for pretty-printing. If 0 is passed, then no pretty-printing is performed. The

default is 2 spaces.

See also $json.parse().

Revision 0.18, July 2025114 The build2 Build System

5.9.7 $json.array_find()

5.9.12 $json.size()

$size(<json-set>)
$size(<json-map>)

Return the number of elements in the sequence.

5.9.13 $json.keys()

$keys(<json-map>)

Return the list of keys in a json map as a json array.

Note that the result is sorted in ascending order.

5.10 Process Functions

5.10.1 $process.run()

$process.run(<prog>[<args>...])

Run builtin or external program and return trimmed stdout output.

Note that if the result of executing the program can be affected by environment variables and

this result can in turn affect the build result, then such variables should be reported with the

config.environment directive.

Note that this function is not pure and can only be called during the load phase.

5.10.2 $process.run_regex()

$process.run_regex(<prog>[<args>...], <pat>[, <fmt>])

Run builtin or external program and return stdout output lines matched and optionally

processed with a regular expression.

Each line of stdout (including the customary trailing blank) is matched (as a whole) against

pat and, if successful, returned, optionally processed with fmt, as an element of a list. See

the $regex.*() function family for details on regular expressions and format strings.

Note that if the result of executing the program can be affected by environment variables and

this result can in turn affect the build result, then such variables should be reported with the

config.environment directive.

Note that this function is not pure and can only be called during the load phase.

115Revision 0.18, July 2025 The build2 Build System

5.10 Process Functions

5.11 Filesystem Functions

5.11.1 $filesystem.file_exists()

$file_exists(<path>)

Return true if a filesystem entry at the specified path exists and is a regular file (or is a

symlink to a regular file) and false otherwise.

Note that this function is not pure.

5.11.2 $filesystem.directory_exists()

$directory_exists(<path>)

Return true if a filesystem entry at the specified path exists and is a directory (or is a symlink

to a directory) and false otherwise.

Note that this function is not pure.

5.11.3 $filesystem.path_search()

$path_search(<pattern>[, <start-dir>])

Return filesystem paths that match the shell-like wildcard pattern. If the pattern is an absolute

path, then the start directory is ignored (if present). Otherwise, the start directory must be

specified and be absolute.

Note that this function is not pure.

5.12 Project Name Functions

The $project_name.*() function family contains function that operate on the

project_name type.

5.12.1 $project_name.string()

$string(<project-name>)

Return the string representation of a project name. See also the $variable() function

below.

5.12.2 $project_name.base()

$base(<project-name>[, <extension>])

Return the base part (without the extension) of a project name.

Revision 0.18, July 2025116 The build2 Build System

5.11 Filesystem Functions

If extension is specified, then only remove that extension. Note that extension should

not include the dot and the comparison is always case-insensitive.

5.12.3 $project_name.extension()

$extension(<project-name>)

Return the extension part (without the dot) of a project name or empty string if there is no

extension.

5.12.4 $project_name.variable()

$variable(<project-name>)

Return the string representation of a project name that is sanitized to be usable as a variable

name. Specifically, ., -, and + are replaced with _.

5.13 Process Path Functions

The $process_path.*() function family contains function that operate on the

process_path type and its extended process_path_ex variant. These types describe a

path to an executable that, if necessary, has been found in PATH, completed with an exten­

sion, etc. The process_path_ex variant includes additional metadata, such as the stable

process name for diagnostics and the executable checksum for change tracking.

5.13.1 $process_path.recall()

$recall(<process-path>)

Return the recall path of an executable, that is, a path that is not necessarily absolute but

which nevertheless can be used to re-run the executable in the current environment. This path,

for example, could be used in diagnostics when printing the failing command line.

5.13.2 $process_path.effect()

$effect(<process-path>)

Return the effective path of an executable, that is, the absolute path to the executable that will

also include any omitted extensions, etc.

5.13.3 $process_path.name()

$name(<process-path-ex>)

Return the stable process name for diagnostics.

117Revision 0.18, July 2025 The build2 Build System

5.13 Process Path Functions

5.13.4 $process_path.checksum()

$checksum(<process-path-ex>)

Return the executable checksum for change tracking.

5.13.5 $process_path.env_checksum()

$env_checksum(<process-path-ex>)

Return the environment checksum for change tracking.

5.14 Target Triplet Functions

The $target_triplet.*() function family contains function that operate on the

target_triplet type that represents the ubiquitous cpu-vendor-os target platform

triplet.

5.14.1 $target_triplet.string()

$string(<target-triplet>)

Return the canonical (that is, without the unknown vendor component) target triplet string.

5.14.2 $target_triplet.representation()

$representation(<target-triplet>)

Return the complete target triplet string that always contains the vendor component.

6 Directives

This chapter is a work in progress and is incomplete.

6.1 define

define <derived>: <base>

Define a new target type <derived> by inheriting from existing target type <base>. See

Target Types for details.

6.2 include

include <file>
include <directory>

Load the specified file (the first form) or buildfile in the specified directory (the second

form). In both cases the file is loaded in the scope corresponding to its directory. Subsequent

inclusions of the same file are automatically ignored. See also source.

Revision 0.18, July 2025118 The build2 Build System

6 Directives

6.3 source

source <file>

Load the specified file in the current scope as if its contents were copied and pasted in place

of the source directive. Note that subsequent sourcing of the same file in the same scope are

not automatically ignored. See also include.

6.4 update

update <target>...

Update the specified targets during load before continuing evaluating the buildfile.

Updating a target during load is primarily useful when the information it contains is required

in the buildfile itself. For example, we may need to know the target architecture

byte-order in order to decide which source files must be included into the build. And, at least

in case of the C/C++ compilation, the only reliable source of this information are the compiler

macros. To extract this information from the compiler and make it available during the

buildfile evaluation, we can generate a buildfile fragment during load and then

source it into the main buildfile. For example (see C Compiler Predefined Macro Extrac­

tion for the actual extraction):

./: buildfile{byte-order} # Make sure it gets cleaned.

buildfile{byte-order}:
{{
 diag gen $>
 echo ’little_endian = true’ >$path($>)
}}

update buildfile{byte-order}

source $path(buildfile{byte-order})

./: exe{hello}: cxx{hello}
exe{hello}: cxx{hello-big}: include = (!$little_endian)
exe{hello}: cxx{hello-little}: include = $little_endian

Once a target is updated during load, its path can be queried with the $path() function (or

$process_path(), for executables). The resulting path is normally used to load the infor­

mation contained in the target into the buildfile, for example, using the source direc­

tive as in the above example, using the $json.load() function if the target is a JSON file,

or using the run directive or $process.run*() function if the target is either an

executable or the information it contains can be extracted using builtin commands such as

cat or sed.

Updating targets during load should only be used as a last resort because such updates happen

serially and block further buildfile evaluation until completed. Even during the incre­

mental build where the target in question is already up-to-date, this check is performed seri­

ally during load whereas it would be performed in parallel with other targets if updated

normally.

119Revision 0.18, July 2025 The build2 Build System

6.3 source

More precisely, each update directive is processed serially as the buildfile is evaluated.

However, targets specified in each directive (and their prerequisites) are updated in parallel.

As result, if you need to update several targets during load, it is beneficial to do it with a

single update directive if possible.

As a result, if you do need to update certain targets during load, try to make the update (and

the up-to-date check) as fast as possible by limiting the amount of work done during load to

the absolute minimum, including limiting the number of prerequisites to only what’s neces­

sary. If a certain prerequisite, for example, generated config.h, is also used for other

purposes and thus contains more information than what’s needed during load, consider

making a smaller version (or even a static version, if possible) specifically for update during

load.

Another reason to avoid update during load unless absolutely necessary is the counter-intu­

itive behavior during operations other than update. Since updating such targets is required

to continue evaluating the buildfile, this is performed regardless of the operation

requested by the user, including, for example, during clean. As a result, the user may see

targets being updated in unexpected situations.

While there is nothing we can do about clean, we can limit update during load to the

perform meta-operation only. This will be especially helpful for the configure

meta-operation since seeing update commands during configuration will be surprising, espe­

cially if they are coming from a third-party dependency.

Limiting update during load to perform is safe to do if the accurate information is only

required during perform and we are able to provide a suitable fallback for other meta-opera­

tions. For example:

./: buildfile{byte-order} # Make sure it gets cleaned.

buildfile{byte-order}:
{{
 diag gen $>
 echo ’little_endian = true’ >$path($>)
}}

if ($build.meta_operation == ’perform’)
{
 update buildfile{byte-order}
 source $path(buildfile{byte-order})
}
else
{
 little_endian = true
}

./: exe{hello}: cxx{hello}
exe{hello}: cxx{hello-big}: include = (!$little_endian)
exe{hello}: cxx{hello-little}: include = $little_endian

Revision 0.18, July 2025120 The build2 Build System

6.4 update

One scenario where limiting update during load to perform would not work is if, for

example, we were using the extracted information to set default values of the configuration

variables.

A target being updated during load should be defined in the buildfile containing the

update directive and this buildfile should be standalone, that is, it should be possible to

load it on its own. Note also that everything pertaining to updating the target (prerequisites,

options, recipes/rules, etc) should be in effect before the update directive since the target

will be updated without evaluating the rest of the buildfile.

The update during load mechanism also has a number of restrictions and limitations:

It cannot be used in bootstrap.build (but can be used in root.build).

Targets (and their prerequisites) that are updated during load should not be aliases

(alias{}, including dir{}).

Post hoc prerequisites will not yet be updated after the update directive.

7 Attributes

This chapter is a work in progress and is incomplete.

The only currently recognized target attribute is rule_hint which specifies the rule hint.

Rule hints can be used to resolve ambiguity when multiple rules match the same target as well

as to override an unambiguous match. For example, the following rule hint makes sure our

executable is linked with the C++ compiler even though it only has C sources:

[rule_hint=cxx] exe{hello}: c{hello}

8 Name Patterns

For convenience, in certain contexts, names can be generated with shell-like wildcard

patterns. A name is a name pattern if its value contains one or more unquoted wildcard char­

acters or character sequences. For example:

./: */ # All (immediate) subdirectories
exe{hello}: {hxx cxx}{**} # All C++ header/source files.
pattern = ’*.txt’ # Literal ’*.txt’.

Pattern-based name generation is not performed in certain contexts. Specifically, it is not

performed in target names where it is interpreted as a pattern for target type/pattern-specific

variable assignments. For example.

s = *.txt # Variable assignment (performed).
./: cxx{*} # Prerequisite names (performed).
cxx{*}: dist = false # Target pattern (not performed).

121Revision 0.18, July 2025 The build2 Build System

7 Attributes

In contexts where it is performed, it can be inhibited with quoting, for example:

pat = ’foo*bar’
./: cxx{’foo*bar’}

The following wildcards are recognized:

* - match any number of characters (including zero)
? - match any single character
[...] - match a character with a bracket expression

Currently only literal character and range bracket expressions are supported. Specifically, no

character or equivalence classes, etc., are supported nor the special characters back­

slash-escaping. See the "Pattern Matching Notation" section in the POSIX "Shell Command

Language" specification for details.

Note that some wildcard characters may have special meaning in certain contexts. For

instance, [at the beginning of a value will be interpreted as the start of the attribute list while

? and [in the eval context are part of the ternary operator and value subscript, respectively.

In such cases the character will need to be escaped in order to be treated as a wildcard, for

example:

x = \[1-9]-foo.txt
y = (foo.\?xx)
z = ($foo\[123].txt)

If a pattern ends with a directory separator, then it only matches directories. Otherwise, it only

matches files. Matches that start with a dot (.) are automatically ignored unless the pattern

itself also starts with this character.

In addition to the above wildcards, ** and *** are recognized as wildcard sequences. If a

pattern contains **, then it is matched just like * but in all the subdirectories, recursively, but

excluding directories that contain the .buildignore file. The *** wildcard behaves like

** but also matches the start directory itself. For example:

exe{hello}: cxx{**} # All C++ source files recursively.

A group-enclosed ({}) pattern value may be followed by inclusion/exclusion

patterns/matches. A subsequent value is treated as an inclusion or exclusion if it starts with a

literal, unquoted plus (+) or minus (-) sign, respectively. In this case the remaining group

values, if any, must all be inclusions or exclusions. If the second value doesn’t start with a

plus or minus, then all the group values are considered independent with leading pluses and

minuses not having any special meaning. For regularity as well as to allow patterns without

wildcards, the first pattern can also start with the plus sign. For example:

exe{hello}: cxx{f* -foo} # Exclude foo if exists.
exe{hello}: cxx{f* +bar} # Include bar if exists.
exe{hello}: cxx{f* -fo?} # Exclude foo and fox if exist.
exe{hello}: cxx{f* +b* -foo -bar} # Exclude foo and bar if exist.
exe{hello}: cxx{+f* +b* -foo -bar} # Same as above.
exe{hello}: cxx{+foo} # Pattern without wildcards.
exe{hello}: cxx{f* b* -z*} # Names matching three patterns.

Revision 0.18, July 2025122 The build2 Build System

8 Name Patterns

Inclusions and exclusions are applied in the order specified and only to the result produced up

to that point. The order of names in the result is unspecified. However, it is guaranteed not to

contain duplicates. The first pattern and the following inclusions/exclusions must be consis­

tent with regards to the type of filesystem entry they match. That is, they should all match

either files or directories. For example:

exe{hello}: cxx{f* -foo +*oo} # Exclusion has no effect.
exe{hello}: cxx{f* +*oo} # Ok, no duplicates.
./: {*/ -build} # Error: exclusion not a directory.

As a more realistic example, let’s say we want to exclude source files that reside in the

test/ directories (and their subdirectories) anywhere in the tree. This can be achieved with

the following pattern:

exe{hello}: cxx{** -***/test/**}

Similarly, if we wanted to exclude all source files that have the -test suffix:

exe{hello}: cxx{** -**-test}

In contrast, the following pattern only excludes such files from the top directory:

exe{hello}: cxx{** -*-test}

If many inclusions or exclusions need to be specified, then an inclusion/exclusion group can

be used. For example:

exe{hello}: cxx{f* -{foo bar}}
exe{hello}: cxx{+{f* b*} -{foo bar}}

This is particularly useful if you would like to list the names to include or exclude in a vari­

able. For example, this is how we can exclude certain files from compilation but still include

them as ordinary file prerequisites (so that they are still included into the source distribution):

exc = foo.cxx bar.cxx
exe{hello}: cxx{+{f* b*} -{$exc}} file{$exc}

If we want to specify our pattern in a variable, then we have to use the explicit inclusion

syntax, for example:

pat = ’f*’
exe{hello}: cxx{+$pat} # Pattern match.
exe{hello}: cxx{$pat} # Literal ’f*’.

pat = ’+f*’
exe{hello}: cxx{$pat} # Literal ’+f*’.

inc = ’f*’ ’b*’
exc = ’f*o’ ’b*r’
exe{hello}: cxx{+{$inc} -{$exc}}

123Revision 0.18, July 2025 The build2 Build System

8 Name Patterns

One common situation that calls for exclusions is auto-generated source code. Let’s say we

have auto-generated command line parser in options.hxx and options.cxx. Because

of the in/out of source builds, our name pattern may or may not find these files. Note,

however, that we cannot just include them as non-pattern prerequisites. We also have to

exclude them from the pattern match since otherwise we may end up with duplicate prerequi­

sites. As a result, this is how we have to handle this case provided we want to continue using

patterns to find other, non-generated source files:

exe{hello}: {hxx cxx}{* -options} {hxx cxx}{options}

If all our auto-generated source files have a common prefix or suffix, then we can exclude

them wholesale with a pattern. For example, if all our generated files end with the ‘-options‘

suffix:

exe{hello}: {hxx cxx}{** -**-options} {hxx cxx}{foo-options bar-options}

If the name pattern includes an absolute directory, then the pattern match is performed in that

directory and the generated names include absolute directories as well. Otherwise, the pattern

match is performed in the pattern base directory. In buildfiles this is src_base while on the

command line – the current working directory. In this case the generated names are relative to

the base directory. For example, assuming we have the foo.cxx and b/bar.cxx source

files:

exe{hello}: $src_base/cxx{**} # $src_base/cxx{foo} $src_base/b/cxx{bar}
exe{hello}: cxx{**} # cxx{foo} b/cxx{bar}

Pattern matching as well as inclusion/exclusion logic is target type-specific. If the name

pattern does not contain a type, then the dir{} type is assumed if the pattern ends with a

directory separator and file{} otherwise.

For the dir{} target type the trailing directory separator is added to the pattern and all the

inclusion/exclusion patterns/matches that do not already end with one. Then the filesystem

search is performed for matching directories. For example:

./: dir{* -build} # Search for */, exclude build/.

For the file{} and file{}-based target types the default extension (if any) is added to the

pattern and all the inclusion/exclusion patterns/matches that do not already contain an exten­

sion. Then the filesystem search is performed for matching files.

For example, the cxx{} target type obtains the default extension from the extension vari­

able (see Target Types for background). Assuming we have the following line in our

root.build:

cxx{*}: extension = cxx

And the following in our buildfile:

Revision 0.18, July 2025124 The build2 Build System

8 Name Patterns

exe{hello}: {cxx}{* -foo -bar.cxx}

The pattern match will first search for all the files matching the *.cxx pattern in src_base
and then exclude foo.cxx and bar.cxx from the result. Note also that target type-specific

decorations are removed from the result. So in the above example if the pattern match

produces baz.cxx, then the prerequisite name is cxx{baz}, not cxx{baz.cxx}.

If the name generation cannot be performed because the base directory is unknown, target

type is unknown, or the target type is not directory or file-based, then the name pattern is

returned as is (that is, as an ordinary name). Project-qualified names are never considered to

be patterns.

9 config Module

This chapter is a work in progress and is incomplete.

9.1 Hermetic Build Configurations

Hermetic build configurations save environment variables that affect the project along with

other project configuration in the build/config.build file. These saved environment

variables are then used instead of the current environment when performing operations on the

project, thus making sure the project "sees" exactly the same environment as during configu­

ration.

While currently hermetic configurations only deal with the environment, in the future this

functionality may be extended to also support disallowing changes to external resources

(compilers, system headers and libraries, etc).

To create a hermetic configuration we use the config.config.hermetic configuration

variable. For example:

$ b configure config.config.hermetic=true

Hermetic configurations are not the default because they are not without drawbacks. Firstly, a

hermetic configuration may break if the saved environment becomes incompatible with the

rest of the system. For example, you may re-install an external program (say, a compiler) into

a different location and update your PATH to match the new setup. However, a hermetic

configuration will "see" the first change but not the second.

Another issue is the commands printed during a hermetic build: they are executed in the saved

environment which may not match the environment in which the build system was invoked.

As a result, we cannot easily re-execute such commands, which is often handy during build

troubleshooting.

It is also important to keep in mind that a non-hermetic build configuration does not break or

produce incorrect results if the environment changes. Instead, changes to the environment are

detected and affected targets are automatically rebuilt.

125Revision 0.18, July 2025 The build2 Build System

9 config Module

The two use-cases where hermetic configurations are especially useful are when we need to

save an environment which is not generally available (for example, an environment of a

Visual Studio development command prompt) or when our build results need to exactly match

the specific configuration (for example, because parts of the overall result have already been

built and installed, as is the case with build system modules).

If we now examine config.build, we will see something along these lines:

$ cat build/config.build

config.config.hermetic = true
config.config.environment = CPATH CPLUS_INCLUDE_PATH PATH=...

Hermetic configuration support is built on top of the low-level config.config.envi­
ronment configuration variable which allows us to specify custom environment variables

and their values. Specifically, it contains a list of environment variable "sets" (name=value)

and "unsets" (name). For example:

$ b configure \
 config.config.environment="PATH=/bin:/usr/bin LD_LIBRARY_PATH"

Specifying config.config.hermetic=true simply instructs the config module to

collect and save in config.config.environment environment variables that affect the

project. These include:

built-in variables (such as PATH and LD_LIBRARY_PATH or equivalent),

variables that affect external programs as reported by build system modules (such as

CPLUS_INCLUDE_PATH reported by the cxx module) or by imported programs via

metadata,

variables reported by the project itself with the config.environment directive

(discussed below).

Reconfiguring a hermetic configuration preserves the saved environment unless re-hermetiza­

tion is explicitly requested with the config.config.hermetic.reload configuration

variable. For example:

$ b configure config.config.hermetic.reload=true

Note that config.config.hermetic.reload is transient and is not stored in

config.build. In other words, there is no way to create a hermetic configuration that is

re-hermetized by default during reconfiguration.

To de-hermetize a hermetic build configuration, reconfigure it with

config.config.hermetic=false.

The config.config.hermetic variable has essentially a tri-state value: true means

keep hermetized (save the environment in config.config.environment), false
means keep de-hermetized (clear config.config.environment) and null or unde­

fined means don’t touch config.config.environment.

Revision 0.18, July 2025126 The build2 Build System

9.1 Hermetic Build Configurations

We can adjust the set of environment variables saved in a hermetic configuration using the

config.config.hermetic.environment configuration variable. It contains a list of

inclusions (name) and exclusions (name@false) which are applied to the final set of envi­

ronment variables that affect the project. For example:

LC_ALL=C b configure \
 config.config.hermetic=true \
 config.config.hermetic.environment="LC_ALL PATH@false"

Typically, the set of environment variables that affect the project is discovered automatically.

Specifically, modules that we use (such as cxx) are expected to report the environment vari­

ables that affect the programs they invoke (such as the C++ compiler). Similarly, programs

that we import in our buildfiles (for example to use in ad hoc recipes) are expected to

report environment variables that affect them as part of their metadata.

However, there are situations where we need to report an environment variable manually.

These include calling the $getenv() function from a buildfile or invoking a program

(either in an ad hoc recipe, the run directive, or the $run*() function family) that either

does not provide the metadata or does not report the environment as part of it. In such cases

we should report the environment variable manually using the config.environment

directive. For example:

config.environment USE_FOO

foo = $getenv(USE_FOO)

if ($foo != [null])
 cxx.poptions += "-DUSE_FOO=$foo"

Additionally, if invoking a program in an ad hoc recipe that either does not provide the meta­

data or does not report the environment as part of it, then we additionally should track the

changes to the relevant environment variables manually using the depdb env builtin. For

example:

import! foo = foo%exe{foo} # Uses FOO and BAR environment variables.

config.environment FOO BAR

file{output}: file{input} $foo
{{
 diag foo $>
 depdb env FOO BAR
 $foo $path($<[0]) >$path($>)
}}

Normally, we would want to report variables that affect the build result rather than build

byproducts (for example, diagnostics). This is, for example, the reason why locale-related

environment variables are not saved by default. Also, sometime environment variables only

affect certain modes of a program. If such modes are not used, then there is no need to report

the corresponding variables.

127Revision 0.18, July 2025 The build2 Build System

9.1 Hermetic Build Configurations

10 test Module

This chapter is a work in progress and is incomplete.

The targets to be tested as well as the tests/groups from testscripts to be run can be narrowed

down using the config.test variable. While this value is normally specified as a

command line override (for example, to quickly re-run a previously failed test), it can also be

persisted in config.build in order to create a configuration that will only run a subset of

tests by default. For example:

$ b test config.test=foo/exe{driver} # Only test foo/exe{driver} target.
$ b test config.test=bar/baz # Only run bar/baz testscript test.

The config.test variable contains a list of @-separated pairs with the left hand side being

the target and the right hand side being the testscript id path. Either can be omitted (along with

@). If the value contains a target type or ends with a directory separator, then it is treated as a

target name. Otherwise – an id path. The targets are resolved relative to the root scope where

the config.test value is set. For example:

$ b test config.test=foo/exe{driver}@bar

To specify multiple id paths for the same target we can use the pair generation syntax:

$ b test config.test=foo/exe{driver}@{bar baz}

If no targets are specified (only id paths), then all the targets are tested (with the testscript

tests to be run limited to the specified id paths). If no id paths are specified (only targets), then

all the testscript tests are run (with the targets to be tested limited to the specified targets). An

id path without a target applies to all the targets being considered.

A directory target without an explicit target type (for example, foo/) is treated specially. It

enables all the tests at and under its directory. This special treatment can be inhibited by spec­

ifying the target type explicitly (for example, dir{foo/}).

The test execution time can be limited using the config.test.timeout variable. Its

value has the <operation-timeout>/<test-timeout> form where the timeouts are

specified in seconds and either of them (but not both) can be omitted. The left hand side sets

the timeout for the whole test operation and the right hand side – for individual tests. The

zero value clears the previously set timeout. For example:

$ b test config.test.timeout=20 # Test operation.
$ b test config.test.timeout=20/5 # Test operation and individual tests.
$ b test config.test.timeout=/5 # Individual tests.

The test timeout can be specified on multiple nested root scopes. For example, we can specify

a greater timeout for the entire build configuration and lesser ones for individual projects. The

tests must complete before the nearest of the enclosing scope timeouts. Failed that, the timed

out tests are terminated forcibly causing the entire test operation to fail. See also the

timeout builtin for specifying timeouts from within the tests and test groups.

Revision 0.18, July 2025128 The build2 Build System

10 test Module

The programs being tested can be executed via a runner program by specifying the

config.test.runner variable. Its value has the <path> [<options>] form. For

example:

$ b test config.test.runner="valgrind -q"

When the runner program is specified, commands of simple and Testscript tests are automati­

cally adjusted so that the runner program is executed instead, with the test command passed to

it as arguments. For ad hoc test recipes, the runner program has to be handled explicitly.

Specifically, if config.test.runner is specified, the test.runner.path and

test.runner.options variables contain the runner program path and options, respec­

tively, and are set to null otherwise. These variables can be used by ad hoc recipes to detect

the presence of the runner program and, if so, arrange appropriate execution of desired

commands. For example:

exe{hello}:
% test
{{
 diag test $>

 cmd = ($test.runner.path == [null] \
 ? $> \
 : $test.runner.path $test.runner.options $path($>))

 $cmd ’World’ >>>?’Hello, World!’
}}

11 install Module

This chapter is a work in progress and is incomplete.

The install module provides support for installing and uninstalling projects.

As briefly discussed in the Installing section of the Introduction, the install module

defines the following standard installation locations:

name default config.install.*
 (c.i.*) override
---- ------- ----------------
root c.i.root

data_root root/ c.i.data_root
exec_root root/ c.i.exec_root

bin exec_root/bin/ c.i.bin
sbin exec_root/sbin/ c.i.sbin
lib exec_root/lib/<private>/ c.i.lib
libexec exec_root/libexec/<private>/<project>/ c.i.libexec
pkgconfig lib/pkgconfig/ c.i.pkgconfig

etc data_root/etc/ c.i.etc
include data_root/include/<private>/ c.i.include
include_arch include/ c.i.include_arch
share data_root/share/ c.i.share

129Revision 0.18, July 2025 The build2 Build System

11 install Module

data share/<private>/<project>/ c.i.data
buildfile share/build2/export/<project>/ c.i.buildfile

doc share/doc/<private>/<project>/ c.i.doc
legal doc/ c.i.legal
man share/man/ c.i.man
man<N> man/man<N>/ c.i.man<N>

The include_arch location is meant for architecture-specific files, such as configuration

headers. By default it’s the same as include but can be configured by the user to a different

value (for example, /usr/include/x86_64-linux-gnu/) for platforms that support

multiple architectures from the same installation location. This is how one would normally

use it from a buildfile:

The configuration header may contain target architecture-specific
information so install it into include_arch/ instead of include/.
#
h{*}: install = include/libhello/
h{config}: install = include_arch/libhello/

The buildfile location is meant for exported buildfiles that can be imported by other

projects. If a project contains any **.build buildfiles in its build/export/ directory

(or **.build2 and build2/export/ in the alternative naming scheme), then they are

automatically installed into this location (recreating subdirectories).

The <project>, <version>, and <private> substitutions in these

config.install.* values are replaced with the project name, version, and private subdi­

rectory, respectively. If either is empty, then the corresponding directory component is

ignored.

The optional private installation subdirectory (<private>) mechanism can be used to hide

the implementation details of a project. This is primarily useful when installing an executable

that depends on a bunch of libraries into a shared location, such as /usr/local/. By

hiding the libraries in the private subdirectory we can make sure that they will not interfere

with anything that is already installed into such a shared location by the user and that any

further such installations won’t interfere with our executable.

The private installation subdirectory is specified with the config.install.private

variable. Its value must be a relative directory and may include multiple components. For

example:

$ b install \
 config.install.root=/usr/local/ \
 config.install.private=hello/

If you are relying on your system’s dynamic linker defaults to automatically find shared

libraries that are installed with your executable, then adding the private installation subdirec­

tory will most definitely cause this to stop working. The recommended way to resolve this

problem is to use rpath, for example:

Revision 0.18, July 2025130 The build2 Build System

11 install Module

$ b install \
 config.install.root=/usr/local/ \
 config.install.private=hello/ \
 config.bin.rpath=/usr/local/lib/hello/

11.1 Relocatable Installation

A relocatable installation can be moved to a directory other than its original installation loca­

tion. Note that the installation should be moved as a whole preserving the directory structure

under its root (config.install.root). To request a relocatable installation, set the

config.install.relocatable variable to true. For example:

$ b install \
 config.install.root=/tmp/install \
 config.install.relocatable=true

A relocatable installation is achieved by using paths relative to one filesystem entry within the

installation to locate another. Some examples include:

Paths specified in config.bin.rpath are made relative using the $ORIGIN (Linux,

BSD) or @loader_path (Mac OS) mechanisms.

Paths in the generated pkg-config files are made relative to the ${pcfiledir}
built-in variable.

Paths in the generated installation manifest (config.install.manifest) are made

relative to the location of the manifest file.

While these common aspects are handled automatically, if a projects relies on knowing its

installation location, then it will most likely need to add manual support for relocatable instal­

lations.

As an example, consider an executable that supports loading plugins and requires the plugin

installation directory to be embedded into the executable during the build. The common way

to support relocatable installations for such cases is to embed a path relative to the executable

and complete it at runtime, normally by resolving the executable’s path and using its directory

as a base.

If you would like to always use the relative path, regardless of whether the installation is relo­

catable of not, then you can obtain the library installation directory relative to the executable

installation directory like this:

plugin_dir = $install.resolve($install.lib, $install.bin)

Alternatively, if you would like to continue using absolute paths for non-relocatable installa­

tions, then you can use something like this:

plugin_dir = $install.resolve(\
 $install.lib, \
 ($install.relocatable ? $install.bin : [dir_path]))

131Revision 0.18, July 2025 The build2 Build System

11.1 Relocatable Installation

Finally, if you are unable to support relocatable installations, the correct way to handle this is

to assert this fact in root.build of your project, for example:

assert (!$install.relocatable) ’relocatable installation not supported’

11.2 Installation Filtering

While project authors determine what gets installed at the buildfile level, the users of the

project can further filter the installation using the config.install.filter variable.

The value of this variable is a list of key-value pairs that specify the filesystem entries to

include or exclude from the installation. For example, the following filters will omit installing

headers and static libraries (notice the quoting of the wildcard).

$ b install config.install.filter=’include/@false "*.a"@false’

The key in each pair is a file or directory path or a path wildcard pattern. If a key is relative

and contains a directory component or is a directory, then it is treated relative to the corre­

sponding config.install.* location. Otherwise (simple path, normally a pattern), it is

matched against the leaf of any path. Note that if an absolute path is specified, it should be

without the config.install.chroot prefix.

The value in each pair is either true (include) or false (exclude). The filters are evaluated

in the order specified and the first match that is found determines the outcome. If no match is

found, the default is to include. For a directory, while false means exclude all the sub-paths

inside this directory, true does not mean that all the sub-paths will be included wholesale.

Rather, the matched component of the sub-path is treated as included with the rest of the

components matched against the following sub-filters. For example:

$ b install config.install.filter=’
 include/x86_64-linux-gnu/@true
 include/x86_64-linux-gnu/details/@false
 include/@false’

The true or false value may be followed by comma and the symlink modifier to only

apply to symlink filesystem entries. For example:

$ b config.install.filter=’"*.so"@false,symlink’

A filter can be negated by specifying ! as the first pair. For example:

$ b install config.install.filter=’! include/@false "*.a"@false’

Note that the filtering mechanism only affects what gets physically copied to the installation

directory without affecting what gets built for install or the view of what gets installed at the

buildfile level. For example, given the include/@false *.a@false filters, static

libraries will still be built (unless arranged not to with config.bin.lib) and the

pkg-config files will still end up with -I options pointing to the header installation direc­

tory. Note also that this mechanism applies to both install and uninstall operations.

Revision 0.18, July 2025132 The build2 Build System

11.2 Installation Filtering

If you are familiar with the Debian or Fedora packaging, this mechanism is somewhat similar

to (and can be used for a similar purpose as) the Debian’s .install files and Fedora’s

%files spec file sections, which are used to split the installation into multiple binary pack­

ages.

As another example, the following filters will omit all the development-related files (headers,

pkg-config files, static libraries, and shared library symlinks; assuming the platform uses

the .a/.so extensions for the libraries):

$ b install config.install.filter=’
 include/@false
 pkgconfig/@false
 "lib/*.a"@false
 "lib/*.so"@false,symlink’

12 version Module

A project can use any version format as long as it meets the package version requirements.

The toolchain also provides additional functionality for managing projects that conform to the

build2 standard version format. If you are starting a new project that uses build2, you are

strongly encouraged to use this versioning scheme. It is based on much thought and, often

painful, experience. If you decide not to follow this advice, you are essentially on your own

where version management is concerned.

The standard build2 project version conforms to Semantic Versioning and has the follow­

ing form:

<major>.<minor>.<patch>[-<prerel>]

For example:

1.2.3
1.2.3-a.1
1.2.3-b.2

The build2 package version that uses the standard project version will then have the follow­

ing form (epoch is the versioning scheme version and revision is the package revision):

[+<epoch>-]<major>.<minor>.<patch>[-<prerel>][+<revision>]

For example:

1.2.3
1.2.3+1
+2-1.2.3-a.1+2

The major, minor, and patch should be numeric values between 0 and 99999 and all three

cannot be zero at the same time. For initial development it is recommended to use 0 for

major, start with version 0.1.0, and change to 1.0.0 once things stabilize.

133Revision 0.18, July 2025 The build2 Build System

12 version Module

http://semver.org/

In the context of C and C++ (or other compiled languages), you should increment patch when

making binary-compatible changes, minor when making source-compatible changes, and

major when making breaking changes. While the binary compatibility must be set in stone,

the source compatibility rules can sometimes be bent. For example, you may decide to make a

breaking change in a rarely used interface as part of a minor release (though this is probably

still a bad idea if your library is widely depended upon). Note also that in the context of C++

deciding whether a change is binary-compatible is a non-trivial task. There are resources that

list the rules but no automated tooling yet. If unsure, increment minor.

If present, the prerel component signifies a pre-release. Two types of pre-releases are

supported by the standard versioning scheme: final and snapshot (non-pre-release versions are

naturally always final). For final pre-releases the prerel component has the following form:

(a|b).<num>

For example:

1.2.3-a.1
1.2.3-b.2

The letter ’a’ signifies an alpha release and ’b’ – beta. The alpha/beta numbers (num) should

be between 1 and 499.

Note that there is no support for release candidates. Instead, it is recommended that you use

later-stage beta releases for this purpose (and, if you wish, call them "release candidates" in

announcements, etc).

What version should be used during development? The common approach is to increment to

the next version and use that until the release. This has one major drawback: if we publish

intermediate snapshots (for example, for testing) they will all be indistinguishable both

between each other and, even worse, from the final release. One way to remedy this is to

increment the pre-release number before each publication. However, unless automated, this

will be burdensome and error-prone. Also, there is a real possibility of running out of version

numbers if, for example, we do continuous integration by publishing and testing each commit.

To address this, the standard versioning scheme supports snapshot pre-releases with the

prerel component having the following extended form:

(a|b).<num>.<snapsn>[.<snapid>]

For example:

1.2.3-a.1.20180319215815.26efe301f4a7

In essence, a snapshot pre-release is after the previous final release but before the next (a.1
and, perhaps, a.2 in the above example) and is uniquely identified by the snapshot sequence

number (snapsn) and optional snapshot id (snapid).

Revision 0.18, July 2025134 The build2 Build System

12 version Module

The num component has the same semantics as in the final pre-releases except that it can be 0.

The snapsn component should be either the special value ’z’ or a numeric, non-zero value

that increases for each subsequent snapshot. It must not be longer than 16 decimal digits. The

snapid component, if present, should be an alpha-numeric value that uniquely identifies the

snapshot. It is not required for version comparison (snapsn should be sufficient) and is

included for reference. It must not be longer than 16 characters.

Where do the snapshot number and id come from? Normally from the version control system.

For example, for git, snapsn is the commit date in the YYYYMMDDhhmmss form and UTC

timezone and snapid is a 12-character abbreviated commit id. As discussed below, the

build2 version module extracts and manages all this information automatically (but the

use of git commit dates is not without limitations; see below for details).

The special ’z’ snapsn value identifies the latest or uncommitted snapshot. It is chosen to be

greater than any other possible snapsn value and its use is discussed further below.

As an illustration of this approach, let’s examine how versions change during the lifetime of a

project:

0.1.0-a.0.z # development after a.0
0.1.0-a.1 # pre-release
0.1.0-a.1.z # development after a.1
0.1.0-a.2 # pre-release
0.1.0-a.2.z # development after a.2
0.1.0-b.1 # pre-release
0.1.0-b.1.z # development after b.1
0.1.0 # release
0.1.1-b.0.z # development after b.0 (bugfix)
0.2.0-a.0.z # development after a.0
0.1.1 # release (bugfix)
1.0.0 # release (jumped straight to 1.0.0)
...

As shown in the above example, there is nothing wrong with "jumping" to a further version

(for example, from alpha to beta, or from beta to release, or even from alpha to release). We

cannot, however, jump backwards (for example, from beta back to alpha). As a result, a sensi­

ble strategy is to start with a.0 since it can always be upgraded (but not downgraded) at a

later stage.

When it comes to the version control systems, the recommended workflow is as follows: The

change to the final version should be the last commit in the (pre-)release. It is also a good idea

to tag this commit with the project version. A commit immediately after that should change

the version to a snapshot, "opening" the repository for development.

The project version without the snapshot part can be represented as a 64-bit decimal value

comparable as integers (for example, in preprocessor directives). The integer representation

has the following form:

135Revision 0.18, July 2025 The build2 Build System

12 version Module

AAAAABBBBBCCCCCDDDE

AAAAA - major
BBBBB - minor
CCCCC - patch
DDD - alpha / beta (DDD + 500)
E - final (0) / snapshot (1)

If the DDDE value is not zero, then it signifies a pre-release. In this case one is subtracted

from the AAAAABBBBBCCCCC value. An alpha number is stored in DDD as is while beta –

incremented by 500. If E is 1, then this is a snapshot after DDD.

For example:

 AAAAABBBBBCCCCCDDDE
0.1.0 0000000001000000000
0.1.2 0000000001000020000
1.2.3 0000100002000030000
2.2.0-a.1 0000200001999990010
3.0.0-b.2 0000299999999995020
2.2.0-a.1.z 0000200001999990011

A project that uses standard versioning can rely on the build2 version module to

simplify and automate version managements. The version module has two primary func­

tions: eliminate the need to change the version anywhere except in the project’s manifest file

and automatically extract and propagate the snapshot information (sequence number and id).

The version module must be loaded in the project’s bootstrap.build. While being

loaded, it reads the project’s manifest and extracts its version (which must be in the standard

form).

Another function of the version module is to check the build2 version requirement that

is customarily specified in the manifest. This check is also the reason why we normally load

the version module in subprojects, such as tests/, which don’t have their own manifest

file. In this case the version module loads the amalgamating project’s manifest.

The extracted version is parsed and presented as the following build system variables (which

can be used in the buildfiles):

[string] version # +2-1.2.3-b.4.1234567.deadbeef+3

[string] version.project # 1.2.3-b.4.1234567.deadbeef
[uint64] version.project_number # 0000100002000025041
[string] version.project_id # 1.2.3-b.4.deadbeef

[bool] version.stub # false (true for 0[+<revision>])

[uint64] version.epoch # 2

[uint64] version.major # 1
[uint64] version.minor # 2
[uint64] version.patch # 3

[bool] version.alpha # false
[bool] version.beta # true

Revision 0.18, July 2025136 The build2 Build System

12 version Module

[bool] version.pre_release # true
[string] version.pre_release_string # b.4
[uint64] version.pre_release_number # 4

[bool] version.snapshot # true
[uint64] version.snapshot_sn # 1234567
[string] version.snapshot_id # deadbeef
[string] version.snapshot_string # 1234567.deadbeef
[bool] version.snapshot_committed # true

[uint64] version.revision # 3

As a convenience, the version module also extracts the summary and url manifest

values and sets them as the following build system variables (this additional information is

used, for example, when generating the pkg-config files):

[string] project.summary
[string] project.url

If the version is the latest snapshot (that is, it’s in the .z form), then the version module

extracts the snapshot information from the version control system used by the project.

Currently only git is supported with the following semantics.

If the project’s source directory (src_root) is clean (that is, it does not have any changed or

untracked files), then the HEAD commit date and id are used as the snapshot number and id,

respectively.

Otherwise (that is, the project is between commits), the HEAD commit date is incremented by

one second and is used as the snapshot number with no id. While we can work with such

uncommitted snapshots locally, we should not distribute or publish them since they are indis­

tinguishable from each other.

Finally, if the project does not have HEAD (that is, the project has no commits yet), the special

19700101000000 (UNIX epoch) commit date is used.

The use of git commit dates for snapshot ordering has its limitations: they have one second

resolution which means it is possible to create two commits with the same date (but not the

same commit id and thus snapshot id). We also need all the committers to have a reasonably

accurate clock. Note, however, that in case of a commit date clash/ordering issue, we still end

up with distinct versions (because of the commit id) – they are just not ordered correctly. As a

result, we feel that the risks are justified when the only alternative is manual version manage­

ment (which is always an option, nevertheless).

When we prepare a source distribution of a snapshot, the version module automatically

adjusts the package name to include the snapshot information as well as patches the manifest

file in the distribution with the snapshot number and id (that is, replacing .z in the version

value with the actual snapshot information). The result is a package that is specific to this

commit.

137Revision 0.18, July 2025 The build2 Build System

12 version Module

Besides extracting the version information and making it available as individual components,

the version module also provides rules for installing the manifest file as well as automati­

cally generating version headers (or other similar version-based files).

By default the project’s manifest file is installed as documentation, just like other doc{}
targets (thus replacing the version file customarily shipped in the project root directory).

The manifest installation rule in the version module in addition patches the installed mani­

fest file with the actual snapshot number and id, just like during the preparation of distribu­

tions.

The version header rule is based on the in module rule and can be used to preprocess a

template file with version information. While it is usually used to generate C/C++ version

headers (thus the name), it can really generate any kind of files.

The rule matches a file-based target that has the corresponding in prerequisite and also

depends on the project’s manifest file. As an example, let’s assume we want to auto-gener­

ate a header called version.hxx for our libhello library. To accomplish this we add

the version.hxx.in template as well as something along these lines to our buildfile:

lib{hello}: {hxx cxx}{** -version} hxx{version}

hxx{version}: in{version} $src_root/file{manifest}

The header rule is a line-based preprocessor that substitutes fragments enclosed between (and

including) a pair of dollar signs ($) with $$ being the escape sequence (see the in module for

details). As an example, let’s assume our version.hxx.in contains the following lines:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION $libhello.version.project_number$ULL
#define LIBHELLO_VERSION_STR "$libhello.version.project$"

#endif

If our libhello is at version 1.2.3, then the generated version.hxx will look like

this:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION 100002000030000ULL
#define LIBHELLO_VERSION_STR "1.2.3"

#endif

The first component after the opening $ should be either the name of the project itself (like

libhello above) or a name of one of its dependencies as listed in the manifest. If it is the

project itself, then the rest can refer to one of the version.* variables that we discussed

earlier (in reality it can be any variable visible from the project’s root scope).

Revision 0.18, July 2025138 The build2 Build System

12 version Module

If the name refers to one of the dependencies (that is, projects listed with depends: in the

manifest), then the following special substitutions are recognized:

$<name>.version$ - textual version constraint
$<name>.condition(<VERSION>[,<SNAPSHOT>])$ - numeric satisfaction condition
$<name>.check(<VERSION>[,<SNAPSHOT>])$ - numeric satisfaction check

Here VERSION is the version number macro and the optional SNAPSHOT is the snapshot

number macro. The snapshot is only required if you plan to include snapshot information in

your dependency constraints.

As an example, let’s assume our libhello depends on libprint which is reflected with

the following line in our manifest:

depends: libprint >= 2.3.4

We also assume that libprint provides its version information in the

libprint/version.hxx header and uses analogous-named macros. Here is how we can

add a version check to our version.hxx.in:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION $libhello.version.project_number$ULL
#define LIBHELLO_VERSION_STR "$libhello.version.project$"

#include <libprint/version.hxx>

$libprint.check(LIBPRINT_VERSION)$

#endif

After the substitution our version.hxx header will look like this:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION 100002000030000ULL
#define LIBHELLO_VERSION_STR "1.2.3"

#include <libprint/version.hxx>

#ifdef LIBPRINT_VERSION
if !(LIBPRINT_VERSION >= 200003000040000ULL)
error incompatible libprint version, libprint >= 2.3.4 is required
endif
#endif

#endif

The version and condition substitutions are the building blocks of the check substitu­

tion. For example, here is how we can implement a check with a customized error message:

#if !($libprint.condition(LIBPRINT_VERSION)$)
error bad libprint, need libprint $libprint.version$
#endif

139Revision 0.18, July 2025 The build2 Build System

12 version Module

The version module also treats one dependency in a special way: if you specify the

required version of the build system in your manifest, then the module will automatically

check it for you. For example, if we have the following line in our manifest:

depends: * build2 >= 0.5.0

And someone tries to build our project with build2 0.4.0, then they will see an error like

this:

build/bootstrap.build:3:1: error: incompatible build2 version
 info: running 0.4.0
 info: required 0.5.0

What version constraints should be used when depending on another project? We start with a

simple case where we depend on a release. Let’s say libprint 2.3.0 added a feature that

we need in our libhello. If libprint follows the source/binary compatibility guidelines

discussed above, then any 2.X.Y version should work provided X >= 3. And this how we

can specify it in the manifest:

depends: libprint ^2.3.0

Let’s say we are now working on libhello 2.0.0 and would like to start using features

from libprint 3.0.0. However, currently, only pre-releases of 3.0.0 are available. If

you would like to add a dependency on a pre-release (most likely from your own pre-release),

then the recommendation is to only allow a specific version, essentially "expiring" the combi­

nation as soon as newer versions become available. For example:

version: 2.0.0-b.1
depends: libprint == 3.0.0-b.2

Finally, let’s assume we are feeling adventurous and would like to test development snapshots

of libprint (most likely from our own snapshots). In this case the recommendation is to

only allow a snapshot range for a specific pre-release with the understanding and a warning

that no compatibility between snapshot versions is guaranteed. For example:

version: 2.0.0-b.1.z
depends: libprint [3.0.0-b.2.1 3.0.0-b.3)

13 bin Module

This chapter is a work in progress and is incomplete.

13.1 Binary Target Types

The following listing shows the hierarchy of the target types defined by the bin module

while the following sections describe each target type in detail (target{} and file{} are

standard target types defined by the build2 core; see Target Types for details).

Revision 0.18, July 2025140 The build2 Build System

13 bin Module

 target----------------.
 | |
 ... |
 | |
 .---------------file------------. lib
 | | | | | | libul
 | libue obje bmie hbmie def obj
liba libua obja bmia hbmia bmi
libs libus objs bmis hbmis hbmi

13.1.1 lib{}, liba{}, libs{}

The liba{} and libs{} target types represent static (archive) and shared libraries, respec­

tively.

The lib{} target type is a group with the liba{} and/or libs{} members. A rule that

encounters a lib{} prerequisite may pick a member appropriate for the target being built or

it may build all the members according to the bin.lib variable. See Library Exportation

and Versioning for background.

The lib*{} file extensions are normally automatically assigned by the matching rules based

on the target platform.

13.1.2 libul{}, libue{}, libua{}, libus{}

The libu*{} target types represent utility libraries. Utility libraries are static libraries with

object files appropriate for linking an executable (libue{}), static library (libua{}), or

shared library (libus{}). Where possible, utility libraries are built in the "thin archive"

mode.

The libul{} target type is a group with the libua{} and/or libus{} members. A rule

that encounters a libul{} prerequisite picks a member appropriate for the target being built.

The libu*{} file extensions are normally automatically assigned by the matching rules

based on the target platform.

13.1.3 obj{}, obje{}, obja{}, objs{}

The obj*{} target types represent object files appropriate for linking an executable

(obje{}), static library (obja{}), or shared library (objs{}).

In build2 we use distinct object files for the three types of binaries (executable, static

library, and shared library). The distinction between static and shared libraries is made to

accommodate build differences such as the need for position-independent code (-fPIC) in

shared libraries. While in most cases the same object file can be used for executables and

static libraries, they are kept separate for consistency and generality.

141Revision 0.18, July 2025 The build2 Build System

13.1.1 lib{}, liba{}, libs{}

The obj{} target type is a group with the obje{}, and/or obja{}, and/or objs{}
members. A rule that encounters an obj{} prerequisite picks a member appropriate for the

target being built.

The obj*{} file extensions are normally automatically assigned by the matching rules based

on the target platform.

13.1.4 bmi{}, bmie{}, bmia{}, bmis{}

The bmi*{} target types represent binary module interfaces (BMI) for C++20 named

modules appropriate for linking an executable (bmie{}), static library (bmia{}), or shared

library (bmis{}).

The bmi{} target type is a group with the bmie{}, and/or bmia{}, and/or bmis{}
members. A rule that encounters an bmi{} prerequisite picks a member appropriate for the

target being built.

The bmi*{} file extensions are normally automatically assigned by the matching rules based

on the target platform.

13.1.5 hbmi{}, hbmie{}, hbmia{}, hbmis{}

The hbmi*{} target types represent binary module interfaces (BMI) for C++20 header units

appropriate for linking an executable (hbmie{}), static library (hbmia{}), or shared library

(hbmis{}).

The hbmi{} target type is a group with the hbmie{}, and/or hbmia{}, and/or hbmis{}
members. A rule that encounters an hbmi{} prerequisite picks a member appropriate for the

target being built.

The hbmi*{} file extensions are normally automatically assigned by the matching rules

based on the target platform.

13.1.6 def{}

The def{} target type represents Windows module definition files and has the fixed default

extension .def.

14 cc Module

This chapter is a work in progress and is incomplete.

This chapter describes the cc build system module which provides the common compilation

and linking support for C-family languages.

Revision 0.18, July 2025142 The build2 Build System

14 cc Module

14.1 C-Common Configuration Variables

config.c
config.cxx
 cc.id

 cc.target
 cc.target.cpu
 cc.target.vendor
 cc.target.system
 cc.target.version
 cc.target.class

config.cc.poptions
 cc.poptions

config.cc.coptions
 cc.coptions

config.cc.loptions
 cc.loptions

config.cc.aoptions
 cc.aoptions

config.cc.libs
 cc.libs

config.cc.internal.scope
 cc.internal.scope

config.cc.reprocess
 cc.reprocess

config.cc.pkgconfig.sysroot

config.cc.compiledb
config.cc.compiledb.name
config.cc.compiledb.filter
config.cc.compiledb.filter.input
config.cc.compiledb.filter.output

Note that the compiler mode options are "cross-hinted" between config.c and

config.cxx meaning that if we specify one but not the other, mode options, if any, will be

added to the absent. This may or may not be the desired behavior, for example:

Ok: config.c="gcc -m32"
$ b config.cxx="g++ -m32"

Not OK: config.c="clang -stdlib=libc++"
$ b config.cxx="clang++ -stdlib=libc++"

14.2 C-Common Target Types

The following listing shows the hierarchy of the target types defined by the cc module while

the following sections describe each target type in detail (file{} is a standard target type

defined by the build2 core; see Target Types for details). Every cc-based module (such as

143Revision 0.18, July 2025 The build2 Build System

14.1 C-Common Configuration Variables

c and cxx) will have these common target types defined in addition to the language-specific

ones.

.--file--.
| |
h pc
 |
 pca
 pcs

While the h{} target type represents a C header file, there is hardly a C-family compilation

without a C header inclusion. As a result, this target types is defined by all cc-based modules.

For the description of the h{} target type refer to c{}, h{} in the C module documentation.

14.2.1 pc{}, pca{}, pcs{}

The pc*{} target types represent pkg-config files. The pc{} target type represents the

common file and has the fixed default extension .pc. The pca{} and pcs{} target types

represent the static and shared files and have the fixed default extensions .static.pc and

.shared.pc, respectively. See Importation of Installed Libraries for background.

14.3 Compilation Internal Scope

While this section uses the cxx module and C++ compilation as an example, the same func­

tionality is available for C compilation – simply replace cxx with c in the module and vari­

able names.

The cxx module has a notion of a project’s internal scope. During compilation of a project’s

C/C++ translation units a header search path (-I) exported by a library that is outside of the

internal scope is considered external and, if supported by the compiler, the corresponding -I
option is translated to an appropriate "external header search path" option (-isystem for

GCC/Clang, /external:I for MSVC 16.10 and later). In particular, this suppresses

compiler warnings in such external headers (/external:W0 is automatically added unless a

custom /external:Wn is specified).

While the aim of this functionality is to control warnings in external libraries, the underlying

mechanisms currently provided by compilers have limitations and undesirable side effects. In

particular, -isystem paths are searched after -I so translating -I to -isystem alters the

search order. This should normally be harmless when using a development build of a library

but may result in a change of semantics for installed libraries. Also, marking the search path

as system has additional (to warning suppression) effects, see System Headers in the GCC

documentation for details. On the MSVC side, /external:W0 currently does not suppress

some warnings (refer to the MSVC documentation for details).

Another issue is warnings in template instantiations. Each such warning could be either due to

a (potential) issue in the template itself or due to the template arguments we are instantiating it

with. By default, all such warnings are suppressed and there is currently no way to change this

with GCC/Clang -isystem. While MSVC provides /external:templates-, it cannot

Revision 0.18, July 2025144 The build2 Build System

14.3 Compilation Internal Scope

https://gcc.gnu.org/onlinedocs/cpp/System-Headers.html

be applied on the library by library basis, only globally for the entire compilation. See MSVC

/external:templates- documentation for more background on this issue.

In the future this functionality will be extended to side-building BMIs for external module

interfaces and header units.

The internal scope can be specified by the project with the cxx.internal.scope vari­

able and overridden by the user with the config.cxx.internal.scope variable. Note

that cxx.internal.scope must be specified before loading the cxx module

(cxx.config, more precisely) and after which it contains the effective value (see below).

For example:

root.build

cxx.std = latest
cxx.internal.scope = current

using cxx

Valid values for cxx.internal.scope are:

current -- current root scope (where variable is assigned)
base -- target’s base scope
root -- target’s root scope
bundle -- target’s bundle amalgamation
strong -- target’s strong amalgamation
weak -- target’s weak amalgamation
global -- global scope (everything is internal)

Valid values for config.cxx.internal.scope are the same except for current.

Note also that there are [config.]cc.internal.scope variables that can be used to

specify the internal scope for all the cc-based modules.

The project’s effective internal scope is chosen based on the following priority list:

1. config.cxx.internal.scope

2. config.cc.internal.scope

3. effective scope from bundle amalgamation

4. cxx.internal.scope

5. cc.internal.scope

In particular, item #3 allows an amalgamation that bundles a project to override its internal

scope.

If no *.internal.scope is specified by the project, user, or bundle, then this functional­

ity is disabled and all libraries are treated as internal regardless of their location.

While it may seem natural to have this enabled by default, the limitations and side effects of

the underlying mechanisms as well as cases where it would be undesirable (such as in sepa­

rate *-tests projects, see below) all suggest that explicit opt-in is probably the correct

145Revision 0.18, July 2025 The build2 Build System

14.3 Compilation Internal Scope

choice.

The recommended value for a typical project is current, meaning that only headers inside

the project will be considered internal. The tests subproject, if present, will inherit its value

from the project (which acts as a bundle amalgamation), unless it is being built out of source

(for example, to test an installed library).

A project can also whitelist specific libraries using the cxx.internal.libs variable. If a

library target name (that is, the name inside lib{}) matches any of the wildcard patterns

listed in this variable, then the library is considered internal regardless of its location. For

example (notice that the pattern is quoted):

root.build

cxx.std = latest
cxx.internal.scope = current
cxx.internal.libs = foo ’bar-*’

using cxx

Note that this variable should also be set before loading the cxx module and there is the

common cc.internal.libs equivalent. However, there are no config.* versions nor

the override by the bundle amalgamation semantics.

Typically you would want to whitelist libraries that are developed together but reside in sepa­

rate build system projects. In particular, a separate *-tests project for a library should

whitelist the library being tested if the internal scope functionality is in use. Another reason to

whitelist is to catch warnings in instantiations of templates that belong to a library that is

otherwise warning-free (see the MSVC /external:templates- option for background).

Note also that if multiple libraries are installed into the same location (or otherwise share the

same header search paths, for example, as a family of libraries), then the whitelist may not be

effective.

14.4 Automatic DLL Symbol Exporting

The bin.def module (automatically loaded by the c and cxx modules for the

*-win32-msvc targets) provides a rule for generating symbol-exporting .def files. This

allows automatically exporting all symbols for all the Windows targets/compilers using the

following arrangement (showing for cxx in this example):

lib{foo}: libul{foo}: {hxx cxx}{**} ...

libs{foo}: def{foo}: include = ($cxx.target.system == ’win32-msvc’)
def{foo}: libul{foo}

if ($cxx.target.system == ’mingw32’)
 cxx.loptions += -Wl,--export-all-symbols

Revision 0.18, July 2025146 The build2 Build System

14.4 Automatic DLL Symbol Exporting

That is, we use the .def file approach for MSVC (including when building with Clang) and

the built-in support (--export-all-symbols) for MinGW.

You will likely also want to add the generated .def file (or the blanket *.def) to your

.gitignore file.

Note that it is also possible to use the .def file approach for MinGW. In this case we need to

explicitly load the bin.def module (which should be done after loading c or cxx) and can

use the following arrangement:

root.build

using cxx

if ($cxx.target.class == ’windows’)
 using bin.def

lib{foo}: libul{foo}: {hxx cxx}{**} ...

libs{foo}: def{foo}: include = ($cxx.target.class == ’windows’)
def{foo}: libul{foo}

Note also that this only deals with exporting of the symbols from a DLL. In order to work,

code that uses such a DLL should be able to import the symbols without explicit

__declspec(dllimport) declarations. This works thanks to the symbol auto-importing

support in Windows linkers. Note, however, that auto-importing only works for functions and

not for global variables.

14.5 Compiler Predefined Macro Extraction

The cc-based modules provide the *.predefs submodule which can be loaded in order to

register a rule that extracts predefined compiler macros. Note that the *.predefs module

must be loaded after the respective main module and the rule will only match with an explicit

rule hint. Typical usage:

root.build
#
using c
using c.predefs

buildfile
#
[rule_hint=c.predefs] h{predefs}:

The predefs rule has two modes: the so-called "pure predefs", where we preprocess an

empty translation unit with the resulting set of macros consisting of only what is pre-defined

by the compiler, and "custom predefs" where we preprocess a custom input header with the

resulting set of macros including what is defined by such a header and headers that it includes.

147Revision 0.18, July 2025 The build2 Build System

14.5 Compiler Predefined Macro Extraction

The mode is determined by the presence or absence of a prerequisite of a header type. For

example:

[rule_hint=c.predefs] h{predefs}: # Pure.
[rule_hint=c.predefs] h{predefs}: h{config} # Custom.

Note that the explicit rule hint is required in both modes.

If the custom input header is only used to extract the predefined macros during the build, then

you will want to make sure it does not get installed.

The autoconf build system module can be used to generate the custom input header for a

number of common checks.

The predefs rule can produce its output in three forms: a header file containing a number of

#define directive, a JSON file containing an object with each macro recorded as its

member, and a buildfile with each macro recorded as a variable assignment. For

example:

/* config.h */
#define FOO 1
#define BAR 123ULL
#define BAZ 0xFFFF
#undef BIZ

c.poptions += -DFOX

c.predefs.poptions = true # Include *.poptions.

[rule_hint=c.predefs] h{predefs}: h{config}
[rule_hint=c.predefs] json{predefs}: h{config}
[rule_hint=c.predefs] buildfile{predefs}: h{config}
{
 c.predefs.macros = FOO BAR BAZ BIZ FOX
}

The resulting predefs.h header would have the following contents:

#define FOO 1
#define BAR 123ULL
#define BAZ 0xffff
#define FOX 1
...

The resulting predefs.json file would have the following contents:

{
 "FOO": 1,
 "BAR": 123,
 "BAZ": 65535,
 "FOX": 1,
 ...
}

Revision 0.18, July 2025148 The build2 Build System

14.5 Compiler Predefined Macro Extraction

https://github.com/build2/libbuild2-autoconf/

The resulting predefs.build file would have the following contents:

FOO = [uint64] 1
BAR = [uint64] 123
BAZ = [uint64] 0xffff
FOX = [uint64] 1
BIZ = [null]

The buildfile output of the predefs rule is typically used with the update during load

functionality (see update directive) in order to communicate macro values to the build­
files.

Note that macro values do not undergo recursive macro-expansion. Instead, we get the value

as defined, which could be another macro. This could be a problem for the JSON and

buildfile output since the extracted value may not be directly usable. The

__BYTE_ORDER__ macro provides a good illustration of this problem:

#define __ORDER_BIG_ENDIAN__ 4321
#define __ORDER_LITTLE_ENDIAN__ 1234
#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__

As a result, you may need to implement custom evaluation logic in your header in order to

communicate the actual value of a macro. For example:

#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
define BYTE_ORDER_LITTLE_ENDIAN true
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
define BYTE_ORDER_LITTLE_ENDIAN false
#else
error unexpected byte order
#endif

In the future the predefs rule may perform simple macro expansions and expression evalu­

ations automatically.

A number of variables control the behavior of the predefs rule:

[bool] *.predefs.poptions
[string] *.predefs.default
[string_map] *.predefs.macros

The *.predefs.poptions variable controls whether *.poptions are included on the

compiler command line, in which case any macro definitions they may contain will end up in

the output. It is false by default for pure predefs and is required if we are preprocessing a

custom header (since command line macros may affect its contents).

The *.predefs.default variable specifies the default macro value to use in the JSON

and buildfile output for macros that are not defined to any value (that is, just

#define FOO). If not specified, then 1 is used (which is what macros specified on the

command line as -DFOO end up being defined to by the compilers).

149Revision 0.18, July 2025 The build2 Build System

14.5 Compiler Predefined Macro Extraction

The *.predefs.macros variable specifies the macros to extract for the JSON and

buildfile output. Additionally, optional mapping to member/variable name can be speci­

fied as the second half of a pair for each macro. For example:

c.predefs.macros = FOO BAR __SIZEOF_SIZE_T__@SIZEOF_SIZE_T

Note that for the buildfile output specifying *.predefs.macros is mandatory (since

undefined macros need to be explicitly set to null).

Finally note also that the MSVC compiler only supports the predefined macro extraction start­

ing from Visual Studio 2019 (16.0; cl.exe version 19.20). If support for earlier versions is

required, then you will need to provide a fallback implementation appropriate for your

project. For example:

[rule_hint=c.predefs] h{predefs}:
% update
if ($c.id == ’msvc’ && \
 ($c.version.major < 19 || \
 ($c.version.major == 19 && $c.version.minor < 20)))
{{
 diag c-predefs $>

 cat <<EOF >$path($>)
 #define _WIN32
 EOF
}}

Similarly, custom predefs extraction is only supported in Clang version 12 and later due to

bugs in earlier versions related to producing both macros and header dependency information

into the same stream.

14.6 Importation of Installed Libraries

As discussed in Target Importation, searching for installed C/C++ libraries is seamlessly inte­

grated into the general target importation mechanism. This section provides more details on

the installed library search semantics and pkg-config integration. These details can be

particularly useful when dealing with libraries that were not built with build2 and which

often use idiosyncratic pkg-config file names.

The cc-based modules use the common installed library search implementation with the

following semantics. To illustrate the finer points, we assume the following import:

import libs = libbar%lib{Xfoo}

1. First, the ordered list of library search directories is obtained by combining two lists: the

lists of the compiler’s system library search directories (extracted, for example, with

-print-search-dirs GCC/Clang options) and the list of user library search direc­

tories (specified, for example, with the -L options in *.loptions).

Revision 0.18, July 2025150 The build2 Build System

14.6 Importation of Installed Libraries

The key property of this combined list is that it matches the search semantics that would

be used by the compiler to find libraries specified with the -l option during linking.

2. Given the list obtained in the previous step, a library binary (shared and/or static library)

is searched for in the correct order and using the target platform-appropriate library

prefix and extension (for example, lib prefix and the .so/.a extensions if targeting

Linux).

For example (continuing with the above import and assuming Linux), each directory will

be checked for the presence of libXfoo.so and libXfoo.a (where the Xfoo stem

is the imported target name).

If only a shared or static binary is found in a given directory, no further directories are

checked for the missing variant. Instead, the missing variant is assumed to be unavail­

able.

If neither a shared nor static library is found in a given directory, then it is also checked

for the presence of the corresponding pkg-config file as in the following step. If such

a file is found, then the library is assumed to be binless (header-only, etc).

3. If a static and/or shared library is found (or if looking for a binless library), the corre­

sponding pkg-config subdirectory (normally just pkgconfig/) is searched for the

library’s .pc file.

More precisely, we first look for the .static.pc file for a static library and for the

.shared.pc file for a shared library falling back to the common .pc if they don’t

exist.

It is often required to use different options for consuming static and shared libraries.

While there is the Libs.private and Cflags.private mechanism in

pkg-config, its semantics is to append options to Libs and Cflags rather than to

provide alternative options. And often the required semantics is to provide different

options for static and shared libraries, such as to provide a macro which indicates

whether linking static or shared in order to setup symbol exporting.

As a result, in build2 we produce separate .pc files for static and shared libraries in

addition to the "best effort" common .pc file for compatibility with other build systems.

Similarly, when consuming a library we first look for the .static.pc and

.shared.pc files falling back to the common .pc if they are not available.

To deal with idiosyncrasies in pkg-config file names, the following base names are

tried in order, where name is the imported target name (Xfoo in the above import),

proj is the imported project name (libbar in the above import), and ext is one of the

above-mentioned pkg-config extensions (static.pc, shared.pc, or pc). The

concrete name tried for the above import is shown in parenthesis as an example.

151Revision 0.18, July 2025 The build2 Build System

14.6 Importation of Installed Libraries

1. libname.ext (libXfoo.pc)

2. name.ext (Xfoo.pc)

3. lowercase libname.ext (libxfoo.pc)

4. lowercase name.ext (xfoo.pc)

5. proj.ext (libbar.pc; this test is omitted if not project-qualified)

In particular, the last try (for proj.ext) serves as an escape hatch for cases where the .pc
file name does not have anything to do with the names of library binaries. The canonical

example of this is zlib which names its library binaries libz.so/libz.a while its .pc
file – zlib.pc. To be able to import zlib that was not built with build2, we have to use

the following import:

import libs = zlib%lib{z}

Note also that these complex rules (which are unfortunately necessary to deal with the lack of

any consistency in .pc file naming) can sometimes produce surprising interactions. For

example, it may appear that a clearly incorrect import nevertheless appears to somehow work,

as in the following example:

import libs = zlib%lib{znonsense}

What happens here is that while no library binary is found, zlib.pc is found and as a result

the library ends up being considered binless with the -lz (that is found in the Libs value of

zlib.pc) treated as a prerequisite library, resolved using the above algorithm, and linked. In

other words, in this case we end up with a binless library lib{znonsense} that depends

on lib{z} instead of a single lib{z} library.

14.6.1 Rewriting Installed Libraries System Root (sysroot)

Sometimes the installed libraries are moved to a different location after the installation. This

is especially common in embedded development where the code is normally cross-compiled

and the libraries for the target platform are placed into a host directory, called system root or

sysroot, that doesn’t match where these libraries were originally installed to. For example, the

libraries might have been installed into /usr/ but on the host machine they may reside in

/opt/target/usr/. In this example, /opt/target/ is the sysroot.

While such relocations usually do not affect the library headers or binaries, they do break the

pkg-config’s .pc files which often contain -I and -L options with absolute paths.

Continue with the above example, a .pc file as originally installed may contain

-I/usr/include and -L/usr/lib while now, that the libraries have been relocated to

/opt/target/, they somehow need to be adjusted to -I/opt/target/usr/include
and -L/opt/target/usr/lib.

While it is possible (and perhaps correct) to accomplish this by fixing the .pc files to match

the new location, it is not always possible or easy. As a result, build2 provides a mecha­

nism for automatically adjusting the system root in the -I and -L options extracted from .pc

files.

Revision 0.18, July 2025152 The build2 Build System

14.6.1 Rewriting Installed Libraries System Root (sysroot)

This functionality is roughly equivalent to that provided with the

PKG_CONFIG_SYSROOT_DIR environment variable by the pkg-config utility.

Specifically, the config.cc.pkgconfig.sysroot variable can be used to specify an

alternative system root. When specified, all absolute paths in the -I and -L options that are

not already in this directory will be rewritten to start with this sysroot.

Note that this mechanism is a workaround rather than a proper solution since it is limited to

the -I and -L options. In particular, it does not handle any other options that may contain

absolute paths nor pkg-config variables that may be queried.

As a result, it should only be used for dealing with issues in third-party .pc files that do not

handle relocation (for example, using the ${pcfiledir} built-in pkg-config variable).

In particular, for build2-generated .pc files a relocatable installation should be used

instead.

14.7 Compilation Database

The cc-based modules provide support for generating and maintaining the JSON Compilation

Database which can be used by other tools (static analyzers, language servers, IDEs, etc) to

understand how a codebase is compiled. "Maintaining" in the previous sentence means that if

new source files get added to the project or old ones removed, or if any compilation options

change, then the corresponding entries in the compilation database will be automatically

updated when you update your project. This helps maintain the database in sync with the

project state.

The generation of compilation databases and their configuration are controlled with a number

of config.cc.compiledb.* variables. The config.cc.compiledb variable

provides a simplified interface that enables the generation of one database per project with the

resulting database containing entries for all the source and object files. The rest of the vari­

ables provide a more flexible interface that allows you to generate multiple databases in

different locations as well as filter the entries that end up in each database.

Let’s start with the simplified interface as provided by config.cc.compiledb. The

value of this configuration variable is a single name or a name and path pair in the

name[@path] form.

The name part is the compilation database name that can be used to refer to it in filters (see

below). If path is absent or is (syntactically) a directory, then name is also used to derive the

compilation database file by appending the .json extension to it.

If path is absent, then the compilation database is placed into the top-level amalgamation

that loads any cc-based module. Otherwise, the database is placed into the specified location.

The special - name is interpreted as an instruction to dump the database to stdout.

153Revision 0.18, July 2025 The build2 Build System

14.7 Compilation Database

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

Let’s see some examples of using config.cc.compiledb to handle a few common

scenarios. Here we will use bdep(1) to create amalgamations (configurations) and config­

ure (initialize) one or more projects. We will assume we have hello and libhello as if

created like this:

$ bdep new -t exe hello
$ bdep new -t lib libhello

The most common scenario is likely having a compilation database per project:

$ cd libhello
$ bdep config create ../build-gcc @gcc cc config.cxx=g++
$ bdep init @gcc config.cc.compiledb=libhello
$ cd ..

$ cd hello
$ bdep config add ../build-gcc @gcc
$ bdep init @gcc config.cc.compiledb=hello
$ cd ..

$ b hello/ libhello/

Or if you prefer to create/add configuration as part of init (notice the -- separator):

$ bdep init -C ../build-gcc @gcc cc config.cxx=g++ -- \
 config.cc.compiledb=libhello

$ bdep init -A ../build-gcc @gcc config.cc.compiledb=hello

After the update (the last command), we will have hello.json and libhello.json in

build-gcc/ which contain the compilation command lines for each project.

Only source files that are compiled end up being added to the compilation database.

To illustrate this point, let’s assume our hello project imports and links libhello. And

instead of updating both as in the above example, we will first update only hello:

$ b hello/

In this case libhello.json will still be generated but it will only contain a subset of the

expected entries – only those that were caused to be compiled by hello. The missing entries

can be added by updating libhello:

$ b libhello/

In the above setup it feels natural to call each database after the project and place them into

the output directory. However, some consumers, such as IDEs and LSP servers, may not

handle this setup well. Specifically, they may only recognize the canonical

compile_commands.json file as the compilation database, opening all other files as

generic JSON. They may also assume the directory where this file resides to be the project

source directory root. To accommodate these assumptions we can instead place each database

into the project’s source directory and call it compile_commands.json:

Revision 0.18, July 2025154 The build2 Build System

14.7 Compilation Database

$ cd libhello
$ bdep init @gcc config.cc.compiledb=libhello@./compile_commands.json

$ cd hello
$ bdep init @gcc config.cc.compiledb=hello@./compile_commands.json

To facilitate this use-case, config.cc.compiledb supports another shortcut: if we

specify just name and it contains a directory component, then it is interpreted as path rather

than name. In this case name is taken to be the name of the last directory component in

path (which would typically be a project or package name). And if path is a directory, then

the database file name is taken to be compile_commands.json. Or, in other words, the

following:

config.cc.compiledb=.../<dir>/

Is equivalent to:

config.cc.compiledb=<dir>@.../<dir>/compile_commands.json

This shortcut allows us to simplify the above init commands to read:

$ cd libhello
$ bdep init @gcc config.cc.compiledb=./

$ cd hello
$ bdep init @gcc config.cc.compiledb=./

Note also that in this case it will be your responsibility to remove the database files if and

when necessary. bdep-new(1) adds compile_commands.json to .gitignore it

generates.

If instead of having a separate database for each project we wanted to place all the entries into

a single database (and in the output directory), then the relevant commands would change as

follows:

$ bdep init @gcc config.cc.compiledb=compiledb

$ bdep init @gcc config.cc.compiledb=compiledb

This would give us a single build-gcc/compiledb.json that contains the compilation

command lines for both projects.

In the above example only hello and libhello will end up in the database, but not any of

their dependencies. What if we wanted entries for everything in build-gcc/? In this case,

we should enable the compilation database for the entire configuration rather than for individ­

ual projects:

$ bdep config create ../build-gcc @gcc cc \
 config.cxx=g++ \
 config.cc.compiledb=compiledb
$ bdep init @gcc

$ bdep config add ../build-gcc @gcc
$ bdep init @gcc

155Revision 0.18, July 2025 The build2 Build System

14.7 Compilation Database

If multiple linked configurations are involved, then we would often want projects initialized in

different configurations share the compilation database. The representative scenario here is a

tool, such as a source code generator, which is initialized in the host configuration, and its

runtime library plus tests/examples, which are initialized in the target configuration. Let’s

assume that in our example hello is the tool and libhello is the runtime library and both

are part of the same project. This is how we can arrange for them to share the compilation

database:

$ bdep config create @host ../host-gcc --type host cc config.cxx=g++
$ bdep config create @target ../build-gcc cc config.cxx=g++

$ bdep init @host -d hello config.cc.compiledb=hello@../build-gcc/
$ bdep init @target -d libhello config.cc.compiledb=hello

$ bdep update @host @target

With this setup the hello.json database in build-gcc/ will contain entries for both

hello and libhello.

If instead of configuring and maintaining the compilation database in a file you want to dump

it somewhere once, the recommended approach is to write it to stdout. For example:

$ b -n hello/ libhello/ config.cc.compiledb=- >/tmp/compiledb.json

Note that writing to stdout forces recompilation of all the targets that would be updated in

order to make sure their entries end up in the database. If you don’t want the actual recompila­

tion, then you can use the dry run mode (-n option above).

If your projects are spread across multiple linked configurations and you would like to get

compilation command lines for all of them, then use the global override for

config.cc.compiledb:

$ b ’!config.cc.compiledb=-’ ...

As mentioned earlier, the entries that will end up in such a database are determined by what

gets updated.

Let’s now turn to the rest of the config.cc.compiledb.* configuration variables that

provide a lower-level but more flexible interface. The following listing shows their synopsis:

config.cc.compiledb.name = <name>[@<path>]...
config.cc.compiledb.filter = [<name>@]<bool>...
config.cc.compiledb.filter.input = [<name>@]<target-type>...
config.cc.compiledb.filter.output = [<name>@]<target-type>...

The config.cc.compiledb.name variable specifies the name and location of one or

more compilation databases. The semantics of the name[@path] pair is the same as in

config.cc.compiledb discussed above, except that if path is absent, then the database

is placed into the project being configured rather than into the top-level amalgamation.

Revision 0.18, July 2025156 The build2 Build System

14.7 Compilation Database

Also, unlike config.cc.compiledb, this variable does not automatically enable writing

to the specified databases. Instead, this is the job of config.cc.compiledb.filter.

Splitting this logic into two steps allows us to configure the database name/location in one

place, typically an outer amalgamation, and then enable writing to it in other places, typically

specific subprojects.

The config.cc.compiledb.filter.{input,output} variables allow us to filter

the entries that end up in the databases based on the input (c{}, cxx{}, etc) and output

(obja{}, objs{}, etc) target types.

Note that in all three .filter variables the values are examined in the reverse order and the

first entry that matches determines the outcome. Entries without name apply to all databases

and the target types are matched taking into account inheritance (so target{} will match

any type) and groups (so obj{} will match any obj[eas]{}). If no target type filter (input

or output) is specified, then no corresponding target filtering is performed.

The config.cc.compiledb=<name> semantics can be expressed as the following set of

lower-level variables:

config.cc.compiledb.name = <name>@../path/to/amalgamation/
config.cc.compiledb.filter += <name>@true
config.cc.compiledb.filter.input += <name>@target
config.cc.compiledb.filter.output += <name>@target

The last three assignments only apply if the corresponding variable is not set to a custom

value for this project.

Let’s look at a few examples of using these lower-level configuration variables. The common

use for the output target filtering is getting rid of obja{} or objs{} entries in libraries.

Unless configured otherwise, when we build a library we end up with both static and shared

variants. And this means that each source file for the library is compiled twice, once to

produce obja{} that goes to the static library and once -- objs{}. And that, in turn, means

that we will end up with two compilation database entries for each such source file. If we

don’t want that for some reason (for instance, because the consumer of the database does not

handle this well), then we can filter one of them out. For example, below is how we can

initialize libhello to achieve this (notice that we also include obje{} to keep object files

for executables, such as tests):

$ bdep init @gcc \
 config.cc.compiledb=libhello \
 config.cc.compiledb.filter.output=’obje objs’

As an example of the input target type filtering, below is how we can keep entries only for the

C and C++ source files, filtering out everything else (assembler, Objective-C/C++), for

instance, because the consumer of our database does not recognize them:

$ bdep init @gcc \
 config.cc.compiledb=libhello \
 config.cc.compiledb.filter.input=’c cxx’

157Revision 0.18, July 2025 The build2 Build System

14.7 Compilation Database

As an example of a more advanced configuration, consider a compilation database for a

project that use C++ modules. To know how such a project is compiled we not only need to

know how its own source files are compiled, but also how to compile all the module inter­

faces that it consumes, including from other projects, transitively. One way to set this up

would be to enable writing entries of the bmi{} output target type to any database in the

amalgamation:

$ bdep config create ../build-gcc @gcc cc \
 config.cxx=g++ \
 config.cc.compiledb.filter=true \
 config.cc.compiledb.filter.output=bmi \

$ bdep init @gcc config.cc.compiledb=libhello

$ bdep init @gcc config.cc.compiledb=hello

With this setup libhello.json and hello.json will contain module interface entries

from all the dependencies.

When debugging complex compilation database setups it can be helpful to increase diagnos­

tics verbosity to level 6 in order to get a trace of filtering decisions (the relevant lines will

contain the compiledb keyword).

14.8 GCC Compiler Toolchain

The GCC compiler id is gcc.

14.9 Clang Compiler Toolchain

The vanilla Clang compiler id is clang (including when targeting the MSVC runtime),

Apple Clang compiler id is clang-apple, and Clang’s cl compatibility driver

(clang-cl) id is msvc-clang.

14.9.1 Clang Targeting MSVC

There are two common ways to obtain Clang on Windows: bundled with the MSVC installa­

tion or as a separate installation. If you are using the separate installation, then the Clang

compiler is most likely already in the PATH environment variable. Otherwise, if you are using

Clang that is bundled with MSVC, the cc module will attempt various search strategies

described below. Note, however, that in both cases once the Clang compiler binary located,

the mode (32 or 64-bit) and the rest of the environment (locations of binary utilities as well as

the system headers and libraries) are obtained by querying Clang.

Normally, if Clang is invoked from one of the Visual Studio command prompts, then it will

use the corresponding Visual Studio version and environment (it is, however, still up to you to

match the mode with the -m32/-m64 options, if necessary). Otherwise, Clang will try to

locate the latest version of Visual Studio and Platform SDK and use that (in this case it

matches the environment to the -m32/-m64 options). Refer to Clang documentation for

Revision 0.18, July 2025158 The build2 Build System

14.8 GCC Compiler Toolchain

details.

If you specify the compiler as just config.c=clang or config.cxx=clang++ and it is

found in the PATH environment variable or if you specify it as an absolute path, then the cc
module will use that.

Otherwise, if you are building from one of the Visual Studio development command prompts,

the cc module will look for the corresponding bundled Clang (%VCIN­
STALLDIR%\Tools\Llvm\bin).

Finally, the cc module will attempt to locate the latest installed version of Visual Studio and

look for a bundled Clang in there.

The default mode (32 or 64-bit) depends on the Clang configuration and can be overridden

with the -m32/-m64 options. For example:

> b "config.cxx=clang++ -m64"

The default MSVC runtime selected by the cc module is multi-threaded shared (the /MD
option in cl). Unfortunately, the Clang driver does not yet provide anything equivalent to the

cl /M* options (see Clang bug #33273) and selection of an alternative runtime has to be

performed manually:

> rem /MD - multi-threaded shared (default)
> rem
> b "config.cxx=clang++ -nostdlib -D_MT -D_DLL" ^
 config.cc.libs=/DEFAULTLIB:msvcrt

> rem /MDd - multi-threaded debug shared
> rem
> b "config.cxx=clang++ -nostdlib -D_MT -D_DLL -D_DEBUG" ^
 config.cc.libs=/DEFAULTLIB:msvcrtd

> rem /MT - multi-threaded static
> rem
> b "config.cxx=clang++ -nostdlib -D_MT" ^
 config.cc.libs=/DEFAULTLIB:libcmt

> rem /MTd - multi-threaded debug static
> rem
> b "config.cxx=clang++ -nostdlib -D_MT -D_DEBUG" ^
 config.cc.libs=/DEFAULTLIB:libcmtd

By default the MSVC’s binary utilities (link and lib) are used when compiling with Clang.

It is, however, possible to use LLVM’s versions instead, for example:

> b config.cxx=clang++ ^
 config.bin.ld=lld-link ^
 config.bin.ar=llvm-lib

In particular, one benefit of using llvm-lib is support for thin archives which, if available,

is automatically enabled for utility libraries.

159Revision 0.18, July 2025 The build2 Build System

14.9.1 Clang Targeting MSVC

https://bugs.llvm.org/show_bug.cgi?id=33273

While there is basic support for Clang’s cl compatibility driver (clang-cl), its use is not

recommended. This driver is a very thin wrapper over the standard Clang interface that does

not always recreate the cl’s semantics exactly. Specifically, its diagnostics in the /showIn­
cludes mode does not match that of cl in the presence of missing headers. As a result,

clang-cl’s use, if any, should be limited to projects that do not have auto-generated

headers.

If you need to link with other projects that use clang-cl, then the recommended approach

is to discover any additional cc1 options passed by clang-cl by comparing the -v output

of a test compilation with clang-cl and clang/clang++ and then passing them explic­

itly to clang/clang++, potentially prefixed with -Xclang. For example:

b "config.cxx=clang++ -Xclang -fms-volatile ..."

Relevant additional options that are passed by clang-cl at the time of this writing:

-fno-strict-aliasing
-fstack-protector-strong
-Xclang -fms-volatile
-ffunction-sections

14.10 MSVC Compiler Toolchain

The Microsoft VC (MSVC) compiler id is msvc.

There are several ways to specify the desired MSVC compiler and mode (32 or 64-bit) as well

as the corresponding environment (locations of binary utilities as well as the system headers

and libraries).

Unlike other compilers, MSVC compiler (cl) binaries are target-specific, that is, there are no

-m32/-m64 options nor something like the /MACHINE option available in link.

If the compiler is specified as just cl in config.{c,cxx} and it is found in the PATH

environment variable, then the cc module assumes the build is performed from one of the

Visual Studio development command prompts and expects the environment (the PATH,

INCLUDE, and LIB environment variables) to already be setup.

If, however, cl is not found in PATH, then the cc module will attempt to locate the latest

installed version of Visual Studio and Platform SDK and use that in the 64-bit mode.

Finally, if the compiler is specified as an absolute path to cl, then the cc module will attempt

to locate the corresponding Visual Studio installation as well as the latest Platform SDK and

use that in the mode corresponding to the specified cl executable. Note that to specify an

absolute path to cl (which most likely contains spaces) we have to use two levels of quoting:

> b "config.cxx=’...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl’"

Revision 0.18, July 2025160 The build2 Build System

14.10 MSVC Compiler Toolchain

The latter two methods are only available for Visual Studio 15 (2017) and later and for earlier

versions the development command prompt must be used.

The default MSVC runtime selected by the cc module is multi-threaded shared (the /MD cl
option). An alternative runtime can be selected by passing one of the cl /M* options, for

example:

> b "config.cxx=cl /MT"

15 c Module

This chapter is a work in progress and is incomplete.

This chapter describes the c build system module which provides the C compilation and

linking support. Most of its functionality, however, is provided by the cc module, a common

implementation for the C-family languages.

15.1 C Configuration Variables

The following listing summarizes the c module configuration variables as well as the corre­

sponding module-specific variables that are derived from their values. See also C-Common

Configuration Variables.

config.c
 c.path
 c.mode

config.c.id
 c.id
 c.id.type
 c.id.variant
 c.class

config.c.version
 c.version
 c.version.major
 c.version.minor
 c.version.patch
 c.version.build

config.c.target
 c.target
 c.target.cpu
 c.target.vendor
 c.target.system
 c.target.version
 c.target.class

config.c.std
 c.std

config.c.poptions
 c.poptions

161Revision 0.18, July 2025 The build2 Build System

15 c Module

config.c.coptions
 c.coptions

config.c.loptions
 c.loptions

config.c.aoptions
 c.aoptions

config.c.libs
 c.libs

config.c.internal.scope
 c.internal.scope

15.2 C Target Types

The following listing shows the hierarchy of the target types defined by the c module while

the following sections describe each target type in detail (file{} is a standard target type

defined by the build2 core; see Target Types for details). See also C-Common Target

Types for target types defined by all the cc-based modules.

.--file--.
| | |
c m S
h

The m{} target type represents an Objective-C source file, see Objective-C Compilation for

details.

The S{} target type represents an Assembler with C Preprocessor file, see Assembler with C

Preprocessor Compilation for details.

15.2.1 c{}, h{}

The c{} and h{} target types represent C source and header files. They have the default

extensions .c and .h, respectively, which can be customized with the extension variable.

15.3 Objective-C Compilation

The c module provides the c.objc submodule which can be loaded in order to register the

m{} target type and enable Objective-C compilation in the C compile rule. Note that c.objc
must be loaded after the c module and while the m{} target type is registered unconditionally,

compilation is only enabled if the C compiler supports Objective-C for the target platform.

Typical usage:

root.build
#
using c
using c.objc

Revision 0.18, July 2025162 The build2 Build System

15.2 C Target Types

buildfile
#
lib{hello}: {h c}{*}
lib{hello}: m{*}: include = ($c.target.class == ’macos’)

Note also that while there is support for linking Objective-C executables and libraries, this is

done using the C compiler driver and no attempt is made to automatically link any necessary

Objective-C runtime library (such as -lobjc).

15.4 Assembler with C Preprocessor Compilation

The c module provides the c.as-cpp submodule which can be loaded in order to register

the S{} target type and enable Assembler with C Preprocessor compilation in the C compile

rule. Note that c.as-cpp must be loaded after the c module and while the S{} target type

is registered unconditionally, compilation is only enabled if the C compiler supports Assem­

bler with C Preprocessor compilation. Typical usage:

root.build
#
using c
using c.as-cpp

buildfile
#
exe{hello}: {h c}{* -hello.c}

Use C implementation as a fallback if no assembler.
#
assembler = ($c.class == ’gcc’ && $c.target.cpu == ’x86_64’)

exe{hello}: S{hello}: include = $assembler
exe{hello}: c{hello}: include = (!$assembler)

/* hello.S
 */
#ifndef HELLO_RESULT
define HELLO_RESULT 0
#endif

text

.global hello
hello:
 /* ... */
 movq $HELLO_RESULT, %rax
 ret

#ifdef __ELF__
.section .note.GNU-stack, "", @progbits
#endif

The default file extension for the S{} target type is .S (capital) but that can be customized

using the standard mechanisms. For example:

163Revision 0.18, July 2025 The build2 Build System

15.4 Assembler with C Preprocessor Compilation

root.build
#
using c
using c.as-cpp

h{*}: extension = h
c{*}: extension = c
S{*}: extension = sx

Note that *.coptions are passed to the C compiler when compiling Assembler with C

Preprocessor files because compile options may cause additional preprocessor macros to be

defined. Plus, some of them (such as -g) are passed (potentially translated) to the underlying

assembler. To pass additional options when compiling Assembler files use c.poptions and

c.coptions. For example (continuing with the previous example):

if $assembler
{
 obj{hello}:
 {
 c.poptions += -DHELLO_RESULT=1
 c.coptions += -Wa,--no-pad-sections
 }
}

15.5 C Compiler Predefined Macro Extraction

The c module provides the c.predefs submodule which can be loaded in order to register

a rule that generates a C header with predefined compiler macros. Note that the c.predefs
module must be loaded after the c module and the rule will only match with an explicit rule

hint. Typical usage:

root.build
#
using c
using c.predefs

buildfile
#
[rule_hint=c.predefs] h{predefs}:

See Compiler Predefined Macro Extraction for details.

16 cxx Module

This chapter is a work in progress and is incomplete.

This chapter describes the cxx build system module which provides the C++ compilation and

linking support. Most of its functionality, however, is provided by the cc module, a common

implementation for the C-family languages.

Revision 0.18, July 2025164 The build2 Build System

16 cxx Module

16.1 C++ Configuration Variables

The following listing summarizes the cxx module configuration variables as well as the

corresponding module-specific variables that are derived from their values. See also

C-Common Configuration Variables.

config.cxx
 cxx.path
 cxx.mode

config.cxx.id
 cxx.id
 cxx.id.type
 cxx.id.variant
 cxx.class

config.cxx.version
 cxx.version
 cxx.version.major
 cxx.version.minor
 cxx.version.patch
 cxx.version.build

config.cxx.target
 cxx.target
 cxx.target.cpu
 cxx.target.vendor
 cxx.target.system
 cxx.target.version
 cxx.target.class

config.cxx.std
 cxx.std

config.cxx.poptions
 cxx.poptions

config.cxx.coptions
 cxx.coptions

config.cxx.loptions
 cxx.loptions

config.cxx.aoptions
 cxx.aoptions

config.cxx.libs
 cxx.libs

config.cxx.internal.scope
 cxx.internal.scope

config.cxx.translate_include
 cxx.translate_include

165Revision 0.18, July 2025 The build2 Build System

16.1 C++ Configuration Variables

16.2 C++ Target Types

The following listing shows the hierarchy of the target types defined by the cxx module

while the following sections describe each target type in detail (file{} is a standard target

type defined by the build2 core; see Target Types for details). See also C-Common Target

Types for target types defined by all the cc-based modules.

 .--file--.
 | |
cxx mm
hxx
ixx
txx
mxx

The mm{} target type represents an Objective-C++ source file, see Objective-C++ Compila­

tion for details.

16.2.1 cxx{}, hxx{}, ixx{}, txx{}, mxx{}

The cxx{}, hxx{}, ixx{}, txx{}, and mxx{} target types represent C++ source, header,

inline, template, and module interface files. They have the default extensions .cxx, .hxx,

.ixx, .txx, and .mxx, respectively, which can be customized with the extension vari­

able. For example (normally done in root.build):

using cxx

cxx{*}: extension = cpp
hxx{*}: extension = hpp
mxx{*}: extension = cppm

16.3 C++ Modules Support

This section describes the build system support for C++ modules.

16.3.1 Modules Introduction

The goal of this section is to provide a practical introduction to C++ Modules and to establish

key concepts and terminology. You can skip directly to Building Modules if you are already

familiar with this topic.

A pre-modules C++ program or library consists of one or more translation units which are

customarily referred to as C++ source files. Translation units are compiled to object files

which are then linked together to form a program or library.

Let’s also recap the difference between an external name and a symbol: External names refer

to language entities, for example classes, functions, and so on. The external qualifier means

they are visible across translation units.

Revision 0.18, July 2025166 The build2 Build System

16.2 C++ Target Types

Symbols are derived from external names for use inside object files. They are the cross-refer­

encing mechanism for linking a program from multiple, separately-compiled translation units.

Not all external names end up becoming symbols and symbols are often decorated with addi­

tional information, for example, a namespace. We often talk about a symbol having to be

satisfied by linking an object file or a library that provides it. Similarly, duplicate symbol

issues may arise if more than one object file or library provides the same symbol.

What is a C++ module? It is hard to give a single but intuitive answer to this question. So we

will try to answer it from three different perspectives: that of a module consumer, a module

producer, and a build system that tries to make those two play nice. But we can make one

thing clear at the outset: modules are a language-level not a preprocessor-level mechanism; it

is import, not #import.

One may also wonder why C++ modules, what are the benefits? Modules offer isolation, both

from preprocessor macros and other modules’ symbols. Unlike headers, modules require

explicit exportation of entities that will be visible to the consumers. In this sense they are a

physical design mechanism that forces us to think how we structure our code. Modules

promise significant build speedups since importing a module, unlike including a header,

should be essentially free. Modules are also the first step to not needing the preprocessor in

most translation units. Finally, modules have a chance of bringing to mainstream reliable and

easy to setup distributed C++ compilation, since with modules build systems can make sure

compilers on the local and remote hosts are provided with identical inputs.

To refer to a module we use a module name, a sequence of dot-separated identifiers, for

example hello.core. While the specification does not assign any hierarchical semantics to

this sequence, it is customary to refer to hello.core as a submodule of hello. We

discuss submodules and provide the module naming guidelines below.

From a consumer’s perspective, a module is a collection of external names, called module

interface, that become visible once the module is imported:

import hello.core;

What exactly does visible mean? To quote the standard: An import-declaration makes

exported declarations [...] visible to name lookup in the current translation unit, in the same

namespaces and contexts [...]. [Note: The entities are not redeclared in the translation unit

containing the module import declaration. -- end note] One intuitive way to think about this

visibility is as if there were only a single translation unit for the entire program that contained

all the modules as well as all their consumers. In such a translation unit all the names would

be visible to everyone in exactly the same way and no entity would be redeclared.

This visibility semantics suggests that modules are not a name scoping mechanism and are

orthogonal to namespaces. Specifically, a module can export names from any number of

namespaces, including the global namespace. While the module name and its namespace

names need not be related, it usually makes sense to have a parallel naming scheme, as

discussed below. Finally, the import declaration does not imply any additional visibility for

names declared inside namespaces. Specifically, to access such names we must continue using

the existing mechanisms, such as qualification or using declaration/directive. For example:

167Revision 0.18, July 2025 The build2 Build System

16.3.1 Modules Introduction

import hello.core; // Exports hello::say().

say (); // Error.
hello::say (); // Ok.

using namespace hello;
say (); // Ok.

Note also that from the consumer’s perspective a module does not provide any symbols, only

C++ entity names. If we use names from a module, then we may have to satisfy the corre­

sponding symbols using the usual mechanisms: link an object file or a library that provides

them. In this respect, modules are similar to headers and as with headers, module’s use is not

limited to libraries; they make perfect sense when structuring programs. Furthermore, a

library may also have private or implementation modules that are not meant to be imported by

the library’s consumers.

The producer perspective on modules is predictably more complex. In pre-modules C++ we

only had one kind of translation unit (or source file). With modules there are three kinds:

module interface unit, module implementation unit, and the original kind which we will call a

non-module translation unit.

There are two additional modular translation units: module interface partition and module

implementation partition. While partitions are supported, they are not covered in this introduc­

tion. A link to a complete example that uses both types of partitions will be given in the next

section.

From the producer’s perspective, a module is a collection of module translation units: one

interface unit and zero or more implementation units. A simple module may consist of just the

interface unit that includes implementations of all its functions (not necessarily inline). A

more complex module may span multiple implementation units.

A translation unit is a module interface unit if it contains an exporting module declaration:

export module hello;

A translation unit is a module implementation unit if it contains a non-exporting module

declaration:

module hello;

While module interface units may use the same file extension as normal source files, we

recommend that a different extension be used to distinguish them as such, similar to header

files. While the compiler vendors suggest various (and predictably different) extensions, our

recommendation is .mxx for the .hxx/.cxx source file naming and .mpp for

.hpp/.cpp. And if you are using some other naming scheme, then perhaps now is a good

opportunity to switch to one of the above. Continuing using the source file extension for

module implementation units appears reasonable and that’s what we recommend.

Revision 0.18, July 2025168 The build2 Build System

16.3.1 Modules Introduction

A modular translation unit (that is, either module interface or implementation) that does not

start with one of the above module declarations must then start with the module introducer:

module;

...

export module hello;

The fragment from the module introducer and until the module declaration is called the global

module fragment. Any name declared in the global module fragment belongs to the global

module, an implied module containing "old" or non-modular declarations that don’t belong to

any named module.

A module declaration (exporting or non-exporting) starts a module purview that extends until

the end of the module translation unit. Any name declared in a module’s purview belongs to

the said module. For example:

module; // Start of global module fragment.

#include <cassert> // Not in purview.

export module hello; // Start of purview.

import std; // In purview.

void say_hello (const std::string&); // In purview.

A name that belongs to a module is invisible to the module’s consumers unless it is exported.

A name can be declared exported only in a module interface unit, only in the module’s

purview, and there are several syntactic ways to accomplish this. We can start the declaration

with the export specifier, for example:

export module hello;

export enum class volume {quiet, normal, loud};

export void say_hello (const char*, volume);

Alternatively, we can enclose one or more declarations into an exported group, for example:

export module hello;

export
{
 enum class volume {quiet, normal, loud};

 void say_hello (const char*, volume);
}

Finally, if a namespace definition is declared exported, then every name in its body is

exported, for example:

169Revision 0.18, July 2025 The build2 Build System

16.3.1 Modules Introduction

export module hello;

export namespace hello
{
 enum class volume {quiet, normal, loud};

 void say_hello (const char*, volume);
}

namespace hello
{
 void impl (const char*, volume); // Not exported.
}

Up until now we’ve only been talking about names belonging to a module. What about the

corresponding symbols? All the major C++ compilers have chosen to implement the so-called

strong ownership model, where for both exported and non-exported names, the corresponding

symbols are decorated with the module name. As a result, they cannot clash with symbols for

identical names from other named modules or the global module.

What about the preprocessor? Modules do not export preprocessor macros, only C++ names.

A macro defined in the module interface unit cannot affect the module’s consumers. And

macros defined by the module’s consumers cannot affect the module interface they are

importing. In other words, module producers and consumers are isolated from each other

where the preprocessor is concerned. For example, consider this module interface:

export module hello;

#ifndef SMALL
#define HELLO
export void say_hello (const char*);
#endif

And its consumer:

// module consumer
//
#define SMALL // No effect.
import hello;

#ifdef HELLO // Not defined.
...
#endif

This is not to say that the preprocessor cannot be used by either the module interface or its

consumer, it just that macros don’t "leak" through the module interface. One practical conse­

quence of this model is the insignificance of the importation order.

If a module imports another module in its purview, the imported module’s names are not

made automatically visible to the consumers of the importing module. This is unlike headers

and can be surprising. Consider this module interface as an example:

Revision 0.18, July 2025170 The build2 Build System

16.3.1 Modules Introduction

export module hello;

import std;

export std::string formal_hello (const std::string&);

And its consumer:

import hello;

int
main ()
{
 std::string s (format_hello ("World"));
}

This example will result in a compile error and the diagnostics may confusingly indicate that

there is no member string in namespace std. But with the understanding of the difference

between import and #include the reason should be clear: while the module interface

"sees" std::string (because it imported its module), we (the consumer) do not (since we

did not). So the fix is to explicitly import std:

import std;
import hello;

int
main ()
{
 std::string s (format_hello ("World"));
}

A module, however, can choose to re-export a module it imports. In this case, all the names

from the imported module will also be visible to the importing module’s consumers. For

example, with this change to the module interface the first version of our consumer will

compile without errors (note that whether this is a good design choice is debatable, as

discussed below):

export module hello;

export import std;

export std::string formal_hello (const std::string&);

One way to think of a re-export is as if an import of a module also "injects" all the imports the

said module re-exports, recursively. That’s essentially how most compilers implement it.

Module re-export is the mechanism for assembling bigger modules out of submodules. As an

example, let’s say we had the hello.core, hello.basic, and hello.extra modules.

To make life easier for users that want to import all of them we can create the hello module

that re-exports the three:

171Revision 0.18, July 2025 The build2 Build System

16.3.1 Modules Introduction

export module hello;

export
{
 import hello.core;
 import hello.basic;
 import hello.extra;
}

Besides starting a module purview, a non-exporting module declaration in the implementation

unit makes (non-internal linkage) names declared or made visible (via import) in the module

purview of an interface unit also visible in the module purview of the implementation unit. In

this sense a non-exporting module declaration acts as a special import. The following

example illustrates this point:

module;

import hello.impl; // Not visible (exports impl()).

#include <string.h> // Not visible (declares strlen()).

export module hello.extra; // Start of module purview (interface).

import hello.core; // Visible (exports core()).

void extra (); // Visible.

static void extra2 (); // Not visible (internal linkage).

And this is the implementation unit:

module hello.extra; // Start of module purview (implementation).

void
f ()
{
 impl (); // Error.
 strlen (""); // Error.
 core (); // Ok.
 extra (); // Ok.
 extra2 (); // Error.
}

In particular, this means that while the relative order of imports is not significant, the place­

ment of imports in the module interface unit relative to the module declaration can be.

The final perspective that we consider is that of the build system. From its point of view the

central piece of the module infrastructure is the binary module interface or BMI: a binary file

that is produced by compiling the module interface unit and that is required when compiling

any translation unit that imports this module as well as the module’s implementation units.

Then, in a nutshell, the main functionality of a build system when it comes to modules support

is figuring out the order in which all the translation units should be compiled and making sure

that every compilation process is able to find the binary module interfaces it needs.

Revision 0.18, July 2025172 The build2 Build System

16.3.1 Modules Introduction

Predictably, the details are more complex. Compiling a module interface unit produces two

outputs: the binary module interface and the object file. The latter contains object code for

non-inline functions, global variables, etc., that the interface unit may define. This object file

has to be linked when producing any binary (program or library) that uses this module.

Also, all the compilers currently implement module re-export as a shallow reference to the

re-exported module name which means that their binary interfaces must be discoverable as

well, recursively. In fact, currently, all the imports are handled like this, though a different

implementation is at least plausible, if unlikely.

While the details vary between compilers, the contents of the binary module interface can

range from a stream of preprocessed tokens to something fairly close to object code. As a

result, binary interfaces can be sensitive to the compiler options and if the options used to

produce the binary interface (for example, when building a library) are sufficiently different

compared to the ones used when compiling the module consumers, the binary interface may

be unusable. So while a build system should strive to reuse existing binary interfaces, it

should also be prepared to compile its own versions "on the side".

This also suggests that binary module interfaces are not a distribution mechanism and should

probably not be installed. Instead, we should install and distribute module interface sources

and build systems should be prepared to compile them, again, on the side.

16.3.2 Building Modules

Compiler support for C++ modules is still experimental, incomplete, and often buggy. Also,

in build2, the presence of modules changes the C++ compilation model in ways that would

introduce unnecessary overheads for headers-only code. As a result, a project must explicitly

enable modules using the cxx.features.modules boolean variable. This is what the

relevant root.build fragment could look like for a modularized project:

cxx.std = latest
cxx.features.modules = true

using cxx

mxx{*}: extension = mxx
cxx{*}: extension = cxx

Note that you must explicitly enable modules in your project even if you are only importing

other modules, including standard library modules (std or std.compat).

To support C++ modules the cxx build system module defines several additional target types.

The mxx{} target is a module interface unit. As you can see from the above root.build

fragment, in this project we are using the .mxx extension for our module interface files.

While you can use the same extension as for cxx{} (source files), this is not recommended

since some functionality, such as wildcard patterns, will become unusable.

173Revision 0.18, July 2025 The build2 Build System

16.3.2 Building Modules

The bmi{} group and its bmie{}, bmia{}, and bmis{} members are used to represent

binary module interfaces targets. We normally do not need to mention them explicitly in our

buildfiles except, perhaps, to specify additional, module interface-specific compile

options.

To build a modularized executable or library we simply list the module interfaces as its

prerequisites, just as we do for source files. As an example, let’s build the hello program

that we have started in the introduction (you can find the complete project in the

cxx20-modules-examples repository under hello-module). Specifically, we

assume our project contains the following files:

// file: hello.mxx (module interface)

export module hello;

import std;

export namespace hello
{
 void say_hello (const std::string_view& name);
}

// file: hello.cxx (module implementation)

module hello;

namespace hello
{
 void say_hello (const std::string_view& n)
 {
 std::cout << "Hello, " << n << ’!’ << std::endl;
 }
}

// file: main.cxx

import hello;

int
main ()
{
 hello::say_hello ("World");
}

To build a hello executable from these files we can write the following buildfile:

exe{hello}: cxx{main} {mxx cxx}{hello}

Or, if you prefer to use wildcard patterns:

exe{hello}: {mxx cxx}{*}

Module partitions, both interface and implementation, are compiled to BMIs and as a result

must be listed as mxx{} prerequisites. See hello-partition in the

cxx20-modules-examples repository for a complete example.

Revision 0.18, July 2025174 The build2 Build System

16.3.2 Building Modules

https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std
https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std

Alternatively, we can place the module into a library and then link the library to the

executable (see hello-library-module in the cxx20-modules-examples reposi­

tory):

exe{hello}: cxx{main} lib{hello}
lib{hello}: {mxx cxx}{hello}

Note that a library consisting of only module interface units is by default always binful (see

Library Exportation and Versioning for background) since compiling a module interface

always results in an object file, even if the module interface does not contain any

non-inline/template functions or global variables. However, you can explicitly request for

such a library to be treated as binless:

lib{hello}: mxx{hello}
{
 bin.binless = true
}

Note that if such a binless library has non-inline/template functions or global variables, then

whether it can used in all situations without causing duplicate symbols is platform-dependent.

As you might have surmised from this example, the modules support in build2 automati­

cally resolves imports to module interface units that are specified either as direct prerequisites

or as prerequisites of library prerequisites.

To perform this resolution without a significant overhead, the implementation delays the

extraction of the actual module name from module interface units (since not all available

module interfaces are necessarily imported by all the translation units). Instead, the implemen­

tation tries to guess which interface unit implements each module being imported based on the

interface file path. Or, more precisely, a two-step resolution process is performed: first a best

match between the desired module name and the file path is sought and then the actual

module name is extracted and the correctness of the initial guess is verified.

The practical implication of this implementation detail is that our module interface files must

embed a portion of a module name, or, more precisely, a sufficient amount of "module name

tail" to unambiguously resolve all the modules used in a project. Note that this guesswork is

only performed for direct module interface prerequisites; for those that come from libraries

the module names are known and are therefore matched exactly. And the guesses are always

verified before the actual compilation, so misguesses cannot go unnoticed.

As an example, let’s assume our hello project had two modules: hello.core and

hello.extra. While we could call our interface files hello.core.mxx and

hello.extra.mxx, respectively, this doesn’t look particularly good and may be contrary

to the file naming scheme used in our project. To resolve this issue the match of module

names to file names is made "fuzzy": it is case-insensitive, it treats all separators (dots,

dashes, underscores, etc) as equal, and it treats a case change as an imaginary separator. As a

result, the following naming schemes will all match the hello.core module name:

175Revision 0.18, July 2025 The build2 Build System

16.3.2 Building Modules

https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std

hello-core.mxx
hello_core.mxx
HelloCore.mxx
hello/core.mxx

We also don’t have to embed the full module name. In our case, for example, it would be

most natural to call the files core.mxx and extra.mxx since they are already in the

project directory called hello/. This will work since our module names can still be guessed

correctly and unambiguously.

If a guess turns out to be incorrect, the implementation issues diagnostics and exits with an

error before attempting to build anything. To resolve this situation we can either adjust the

interface file names or we can specify the module name explicitly with the

cxx.module_name variable. The latter approach can be used with interface file names that

have nothing in common with module names, for example:

mxx{foobar}@./: cxx.module_name = hello

Note also that the standard library modules (std and std.compat) are treated specially and

are resolved in a compiler-specific manner.

When C++ modules are enabled and available, the build system makes sure the

__cpp_modules feature test macro is defined. However, if the compiler version being used

does not claim complete modules support, its value may not be 201907.

16.3.3 Module Symbols Exporting

When building a shared library, some platforms (notably Windows) require that we explicitly

export symbols that must be accessible to the library consumers. If you don’t need to support

such platforms, you can thank your lucky stars and skip this section.

When using headers, the traditional way of achieving this is via an "export macro" that is used

to mark exported APIs, for example:

LIBHELLO_EXPORT void say_hello (const string&);

This macro is then appropriately defined (often in a separate "export header") to export

symbols when building the shared library and to import them when building the library’s

consumers (and to nothing when either building or consuming the static library).

The introduction of modules changes this in a number of ways, at least as implemented by

MSVC and Clang. While we still have to explicitly mark exported symbols in our module

interface unit, there is no need (and, in fact, no way) to do the same when said module is

imported. Instead, the compiler automatically treats all such explicitly exported symbols

(note: symbols, not names) as imported.

While the automatic importing may look like the same mechanism as what’s used to support

Automatic DLL Symbol Exporting, it appears not to be since it also works for global vari­

ables, not only functions. However, reportedly, it does appear to incur the same additional

Revision 0.18, July 2025176 The build2 Build System

16.3.3 Module Symbols Exporting

overhead as auto-importing, at least for functions.

One notable aspect of this new model is the locality of the export macro: it is only defined

when compiling the module interface unit and is not visible to the consumers of the module.

This is unlike headers where the macro has to have a unique per-library name (that

LIBHELLO_ prefix) because a header from one library can be included while building

another library.

We can continue using the same export macro and header with modules and, in fact, that’s the

recommended approach if maintaining the dual, header/module arrangement for backwards

compatibility. However, for modules-only codebases, we have an opportunity to improve the

situation in two ways: we can use a single, keyword-like macro instead of a library-specific

one and we can make the build system manage it for us thus getting rid of the export header.

To enable this functionality in build2 we set the cxx.features.symexport boolean

variable to true before loading the cxx module. For example:

cxx.std = latest
cxx.features.modules = true
cxx.features.symexport = true

using cxx

...

Once enabled, build2 automatically defines the __symexport macro to the appropriate

value depending on the platform and the type of library being built. As library authors, all we

have to do is use it in appropriate places in our module interface units, for example:

export module hello;

import std;

export __symexport void say_hello (const std::string&);

You may be wondering why can’t a module export automatically mean a symbol export?

While you will normally want to export symbols of all your module-exported names, you may

also need to do so for some non-module-exported ones. For example:

export module foo;

__symexport void f_impl ();

export __symexport inline void f ()
{
 f_impl ();
}

Furthermore, symbol exporting is a murky area with many limitations and pitfalls (such as

auto-exporting of base classes). As a result, it would not be unreasonable to expect such an

automatic module exporting to only further muddy the matter.

177Revision 0.18, July 2025 The build2 Build System

16.3.3 Module Symbols Exporting

16.3.4 Modules Installation

As discussed in the introduction, binary module interfaces are not a distribution mechanism

and installing module interface sources appears to be the preferred approach.

Module interface units are by default installed in the same location as headers (for example,

/usr/include). However, instead of relying on a header-like search mechanism (-I
paths, etc.), an explicit list of exported modules is provided for each library in its .pc

(pkg-config) file.

Specifically, the library’s .pc file contains the cxx.modules variable that lists all the

exported C++ modules in the <name>=<path> form with <name> being the module’s C++

name and <path> – the module interface file’s absolute path. For example:

Name: libhello
Version: 1.0.0
Cflags:
Libs: -L/usr/lib -lhello

cxx.modules = hello.core=/usr/include/hello/core.mxx hello.extra=/usr/include/hello/extra.mxx

The : character in a module partition name is encoded as ... For example, for hello:core
we would have:

cxx.modules = hello..core=/usr/...

Additional module properties are specified with variables in the cxx.module_<prop­
erty>.<name> form, for example:

cxx.module_symexport.hello.core = true
cxx.module_preprocessed.hello.core = all

Currently, two properties are defined. The symexport property with the boolean value

signals whether the module uses the __symexport support discussed above.

The preprocessed property indicates the degree of preprocessing the module unit requires

and is used to optimize module compilation. Valid values are none (not preprocessed),

includes (no #include directives in the source), modules (as above plus no module

declarations depend on the preprocessor, for example, #ifdef, etc.), and all (the source is

fully preprocessed). Note that for all the source may still contain comments and line contin­

uations.

16.3.5 Modules Design Guidelines

Modules are a physical design mechanism for structuring and organizing our code. Their

explicit exportation semantics combined with the way they are built make many aspects of

creating and consuming modules significantly different compared to headers. This section

provides basic guidelines for designing modules. We start with the overall considerations such

as module granularity and partitioning into translation units then continue with the structure of

typical module interface and implementation units. The following section discusses practical

Revision 0.18, July 2025178 The build2 Build System

16.3.4 Modules Installation

approaches to modularizing existing code.

Unlike headers, the cost of importing modules should be negligible. As a result, it may be

tempting to create "mega-modules", for example, one per library. After all, this is how the

standard library is modularized with its std and std.compat modules.

There is, however, a significant drawback to this choice: every time we make a change, all

consumers of such a mega-module will have to be recompiled, whether the change affects

them or not. And the bigger the module the higher the chance that any given change does not

(semantically) affect a large portion of the module’s consumers. Note also that this is not an

issue for the standard library modules since they are not expected to change often.

Another, more subtle, issue with mega-modules (which does affect the standard library) is the

inability to re-export only specific interfaces, as will be discussed below.

The other extreme in choosing module granularity is a large number of "mini-modules". Their

main drawback is the tediousness of importation by the consumers.

The sensible approach is then to create modules of conceptually-related and commonly-used

entities possibly complemented with aggregate modules for ease of importation. This also

happens to be generally good design.

As an example, let’s consider a JSON library that provides support for both parsing and serial­

ization. Since it is common for applications to only use one of the functionalities, it makes

sense to provide the json.parser and json.serializer modules. Depending on the

representation of JSON we use in our library, it will most likely have some shared types so it

probably makes sense to have the json.types module that is re-exported by the parser and

serializer modules. While it is not too tedious to import both json.parser and

json.serializer if both a needed, for convenience we could also provide the json
module that re-exports the two. Something along these lines:

// types.mxx

export module json.types;

export class json
{
 ...
};

// parser.mxx

export module json.parser;

export import json.types;

export json parse (...);

179Revision 0.18, July 2025 The build2 Build System

16.3.5 Modules Design Guidelines

// serializer.mxx

export module json.serializer;

export import json.types;

export ... serialize (const json&);

// json.mxx

export module json;

export import json.types;
export import json.parser;
export import json.serializer;

Once we are past selecting an appropriate granularity for our modules, the next question is

how to partition them into translation units. A module can consist of just the interface unit

and, as discussed above, such a unit can contain anything an implementation unit can, includ­

ing non-inline function definitions. Some may then view this as an opportunity to get rid of

the header/source separation and have everything in a single file.

There are a number of drawbacks with this approach: Every time we change anything in the

module interface unit, all its consumers have to be recompiled. If we keep everything in a

single file, then every time we change the implementation we trigger recompilations that

would have been avoided had the implementation been factored out into a separate unit. Note

that a build system in cooperation with the compiler could theoretically avoid such unneces­

sary recompilations in certain cases: if the compiler produces identical binary interface files

when the module interface is unchanged, then the build system could detect this and skip

recompiling the module’s consumers.

A related issue with single-file modules is the reduction in the build parallelization opportuni­

ties. If the implementation is part of the interface unit, then the build system cannot start

compiling the module’s consumers until both the interface and the implementation are

compiled. On the other hand, had the implementation been split into a separate file, the build

system could start compiling the module’s consumers (as well as the implementation unit) as

soon as the module interface is compiled.

Another issues with combining the interface with the implementation is the readability of the

interface which could be significantly reduced if littered with implementation details. We

could keep the interface separate by moving the implementation to the bottom of the interface

file but then we might as well move it into a separate file and avoid the unnecessary recompi­

lations or parallelization issues.

The sensible guideline is then to have a separate module implementation unit except perhaps

for modules with a simple implementation that is mostly inline/template. Note that more

complex modules may have several implementation units, however, based on our granularity

guideline, those should be rare.

Revision 0.18, July 2025180 The build2 Build System

16.3.5 Modules Design Guidelines

Once we start writing our first real module the immediate question that normally comes up is

where to put #include directives and import declarations and in what order. To recap, a

module unit, both interface and implementation, is split into two parts: before the module

declaration, called the global module fragment, which obeys the usual or "old" translation unit

rules and after the module declaration which is the module purview. Inside the module

purview all declarations have their symbols invisible to any other module (including the

global module). With this understanding, consider the following module interface:

export module hello;

#include <string>

Do you see the problem? We have included <string> in the module purview which means

all its names (as well as all the names in any headers it might include, recursively) are now

declared as having the hello module linkage. The result of doing this can range from silent

code blot to strange-looking unresolved symbols.

The guideline this leads to should be clear: including a header in the module purview is

almost always a bad idea. There are, however, a few types of headers that may make sense to

include in the module purview. The first are headers that only define preprocessor macros, for

example, configuration or export headers. There are also cases where we do want the included

declarations to end up in the module purview. The most common example is inline/template

function implementations that have been factored out into separate files for code organization

reasons. As an example, consider the following module interface that uses an export header

(which presumably sets up symbols exporting macros) as well as an inline file:

module;

#include <string>

export module hello;

#include <libhello/export.hxx>

export namespace hello
{
 ...
}

#include <libhello/hello.ixx>

A note on inline/template files: in header-based projects we could include additional headers

in those files, for example, if the included declarations are only needed in the implementation.

For the reasons just discussed, this does not work with modules and we have to move all the

includes into the interface file, into the global module fragment. On the other hand, with

modules, it is safe to use namespace-level using-directives (for example, using names­
pace std;) in inline/template files (and, with care, even in the interface file).

What about imports, where should we import other modules? Again, to recap, unlike a header

inclusion, an import declaration only makes exported names visible without redeclaring

them. As result, in module implementation units, it doesn’t really matter where we place

181Revision 0.18, July 2025 The build2 Build System

16.3.5 Modules Design Guidelines

imports, in the module purview or the global module fragment. There are, however, two

differences when it comes to module interface units: only imports in the purview are visible to

implementation units and we can only re-export an imported module from the purview.

The guideline is then for interface units to import in the module purview unless there is a

good reason not to make the import visible to the implementation units. And for implementa­

tion units to always import in the purview for simplicity. For example:

module;

#include <cassert>

export module hello;

import std;

#include <libhello/export.hxx>

export namespace hello
{
 ...
}

#include <libhello/hello.ixx>

By putting all these guidelines together we can then create a module interface unit template:

// Module interface unit.

module; // Start of global module fragment.

<header includes>

export module <name>; // Start of module purview.

<module imports>

<special header includes> // Configuration, export, etc.

<module interface>

<inline/template includes>

As well as the module implementation unit template:

// Module implementation unit.

module; // Start of global module fragment.

<header includes>

module <name>; // Start of module purview.

<extra module imports> // Only additional to interface.

<module implementation>

Revision 0.18, July 2025182 The build2 Build System

16.3.5 Modules Design Guidelines

Let’s now discuss module naming. Module names are in a separate "name plane" and do not

collide with namespace, type, or function names. Also, as mentioned earlier, the standard does

not assign a hierarchical meaning to module names though it is customary to assume module

hello.core is a submodule of hello and, unless stated explicitly otherwise, importing

the latter also imports the former.

It is important to choose good names for public modules (that is, modules packaged into

libraries and used by a wide range of consumers) since changing them later can be costly. We

have more leeway with naming private modules (that is, the ones used by programs or internal

to libraries) though it’s worth coming up with a consistent naming scheme here as well.

The general guideline is to start names of public modules with the library’s namespace name

followed by a name describing the module’s functionality. In particular, if a module is dedi­

cated to a single class (or, more generally, has a single primary entity), then it makes sense to

use that name as the module name’s last component.

As a concrete example, consider libbutl (the build2 utility library): All its components

are in the butl namespace so all its module names start with butl. One of its components

is the small_vector class template which resides in its own module called

butl.small_vector. Another component is a collection of string parsing utilities that are

grouped into the butl::string_parser namespace with the corresponding module

called butl.string_parser.

When is it a good idea to re-export a module? The two straightforward cases are when we are

building an aggregate module out of submodules, for example, json out of json.parser
and json.serializer, or when one module extends or supersedes another, for example,

as json.parser extends json.types. It is also clear that there is no need to re-export a

module that we only use in the implementation. The case when we use a module in our inter­

face is, however, a lot less clear cut.

But before considering the last case in more detail, let’s understand the issue with re-export.

In other words, why not simply re-export any module we import in our interface? In essence,

re-export implicitly injects another module import anywhere our module is imported. If we

re-export std then consumers of our module will also automatically "see" all the names

exported by std. They can then start using names from std without explicitly importing

std and everything will compile until one day they no longer need to import our module or

we no longer need to import std. In a sense, re-export becomes part of our interface and it is

generally good design to keep interfaces minimal.

And so, at the outset, the guideline is then to only re-export the minimum necessary.

Let’s now discuss a few concrete examples to get a sense of when re-export might or might

not be appropriate. Unfortunately, there does not seem to be a hard and fast rule and instead

one has to rely on their good sense of design.

183Revision 0.18, July 2025 The build2 Build System

16.3.5 Modules Design Guidelines

To start, let’s consider a simple module that uses std::string in its interface:

export module hello;

import std;

export namespace hello
{
 std::string format_hello (const std::string&);
}

Should we re-export std in this case? Most likely not. If consumers of our module want to

refer to std::string, then it is natural to expect them to explicitly import the necessary

module. In a sense, this is analogous to scoping: nobody expects to be able to use just

string (without std::) because of using namespace hello;.

So it seems that a mere usage of a name in an interface does not generally warrant a re-export.

The fact that a consumer may not even use this part of our interface further supports this

conclusion.

Let’s now consider a more interesting case (inspired by real events):

export module small_vector;

import std;

template <typename T, std::size_t N>
export class small_vector: public std::vector<T, ...>
{
 ...
};

Here we have the small_vector container implemented in terms of std::vector by

providing a custom allocator and with most of the functions derived as is. Consider now this

innocent-looking consumer code:

import small_vector;

small_vector<int, 1> a, b;

if (a == b) // Error.
 ...

We don’t reference std::vector directly so presumably we shouldn’t need to import its

module. However, the comparison won’t compile: our small_vector implementation

re-uses the comparison operators provided by std::vector (via implicit to-base conver­

sion) but they aren’t visible.

There is a palpable difference between the two cases: the first merely uses std interface

while the second is based on and, in a sense, extends it which feels like a stronger relation­

ship. Re-exporting std (or, better yet, std.vector, if it were available) seems less unrea­

sonable.

Revision 0.18, July 2025184 The build2 Build System

16.3.5 Modules Design Guidelines

Note also that there is no re-export of headers nor header inclusion visibility in the implemen­

tation units. Specifically, in the previous example, if the standard library is not modularized

and we have to use it via headers, then the consumers of our small_vector will always

have to explicitly include <vector>. This suggest that modularizing a codebase that still

consumes substantial components (like the standard library) via headers can incur some devel­

opment overhead compared to the old, headers-only approach.

16.3.6 Modularizing Existing Code

The aim of this section is to provide practical guidelines to modularizing existing codebases.

Predictably, a well modularized (in the general sense) set of headers makes conversion to C++

modules easier. Inclusion cycles will be particularly hard to deal with (C++ modules do not

allow circular interface dependencies). Having a one-to-one header to module mapping will

simplify this task. As a result, it may make sense to spend some time cleaning and re-organiz­

ing your headers prior to attempting modularization.

The recommended strategy for modularizing our own components is to identify and modular­

ize inter-dependent sets of headers one at a time starting from the lower-level components.

This way any newly modularized set will only depend on the already modularized ones. After

converting each set we can switch its consumers to using imports keeping our entire project

buildable and usable.

While ideally we would want to be able to modularize just a single component at a time, this

does not seem to work in practice because we will have to continue consuming some of the

components as headers. Since such headers can only be imported out of the module purview,

it becomes hard to reason (both for us and often the compiler) what is imported/included and

where. For example, it’s not uncommon to end up importing the module in its implementation

unit which is not something that all the compilers can handle gracefully.

If our module needs to "export" macros then the recommended approach is to simply provide

an additional header that the consumer includes. While it might be tempting to also wrap the

module import into this header, some may prefer to explicitly import the module and include

the header, especially if the macros may not be needed by all consumers. This way we can

also keep the header macro-only which means it can be included freely, in or out of module

purviews.

16.4 Objective-C++ Compilation

The cxx module provides the cxx.objcxx submodule which can be loaded in order to

register the mm{} target type and enable Objective-C++ compilation in the C++ compile rule.

Note that cxx.objcxx must be loaded after the cxx module and while the mm{} target

type is registered unconditionally, compilation is only enabled if the C++ compiler supports

Objective-C++ for the target platform. Typical usage:

185Revision 0.18, July 2025 The build2 Build System

16.4 Objective-C++ Compilation

root.build
#
using cxx
using cxx.objcxx

buildfile
#
lib{hello}: {hxx cxx}{*}
lib{hello}: mm{*}: include = ($cxx.target.class == ’macos’)

Note also that while there is support for linking Objective-C++ executables and libraries, this

is done using the C++ compiler driver and no attempt is made to automatically link any neces­

sary Objective-C runtime library (such as -lobjc).

16.5 C++ Compiler Predefined Macro Extraction

The cxx module provides the cxx.predefs submodule which can be loaded in order to

register a rule that generates a C++ header with predefined compiler macros. Note that the

cxx.predefs module must be loaded after the cxx module and the rule will only match

with an explicit rule hint. Typical usage:

root.build
#
using cxx
using cxx.predefs

buildfile
#
[rule_hint=cxx.predefs] hxx{predefs}:

See Compiler Predefined Macro Extraction for details.

17 in Module

The in build system module provides support for .in (input) file preprocessing. Specifi­

cally, the .in file can contain a number of substitutions – build system variable names

enclosed with the substitution symbol ($ by default) – which are replaced with the corre­

sponding variable values to produce the output file. For example:

build/root.build

using in

// config.hxx.in

#define TARGET "$cxx.target$"

buildfile

hxx{config}: in{config}

Revision 0.18, July 2025186 The build2 Build System

17 in Module

The in module defines the in{} target type and implements the in build system rule.

While we can specify the .in extension explicitly, it is not necessary because the in{}
target type implements target-dependent search by taking into account the target it is a

prerequisite of. In other words, the following dependency declarations produce the same

result:

hxx{config}: in{config}
hxx{config.hxx}: in{config}
hxx{config.hxx}: in{config.hxx.in}

By default the in rule uses $ as the substitution symbol. This can be changed using the

in.symbol variable. For example:

// data.cxx.in

const char data[] = "@data@";

buildfile

cxx{data}: in{data}
{
 in.symbol = ’@’
 data = ’Hello, World!’
}

Note that the substitution symbol must be a single character.

The default substitution mode is strict. In this mode every substitution symbol is expected to

start a substitution with unresolved (to a variable value) names treated as errors. The double

substitution symbol (for example, $$) serves as an escape sequence.

The substitution mode can be relaxed using the in.mode variable. Its valid values are

strict (default) and lax. In the lax mode a pair of substitution symbols is only treated as a

substitution if what’s between them looks like a build system variable name (that is, it doesn’t

contain spaces, etc). Everything else, including unterminated substitution symbols, is copied

as is. Note also that in this mode the double substitution symbol is not treated as an escape

sequence.

The lax mode is mostly useful when trying to reuse existing .in files from other build

systems, such as autoconf. Note, however, that the lax mode is still stricter than auto­
conf’s semantics which also leaves unresolved substitutions as is. For example:

buildfile

h{config}: in{config} # config.h.in
{
 in.symbol = ’@’
 in.mode = lax

 CMAKE_SYSTEM_NAME = $c.target.system
 CMAKE_SYSTEM_PROCESSOR = $c.target.cpu
}

187Revision 0.18, July 2025 The build2 Build System

17 in Module

The in rule tracks changes to the input file as well as the substituted variable values and auto­

matically regenerates the output file if any were detected. Substituted variable values are

looked up starting from the target-specific variables. Typed variable values are converted to

string using the corresponding builtin.string() function overload before substitution.

While specifying substitution values as buildfile variables is usually natural, sometimes

this may not be possible or convenient. Specifically, we may have substitution names that

cannot be specified as buildfile variables, for example, because they start with an under­

score (and are thus reserved) or because they refer to one of the predefined variables. Also, we

may need to have different groups of substitution values for different cases, for example, for

different platforms, and it would be convenient to pass such groups around as a single value.

To support these requirements the substitution values can alternatively be specified as

key-value pairs in the in.substitutions variable. Note that entries in this substitution

map take precedence over the buildfile variables. For example:

/* config.h.in */

#define _GNU_SOURCE @_GNU_SOURCE@
#define _POSIX_SOURCE @_POSIX_SOURCE@

buildfile

h{config}: in{config}
{
 in.symbol = ’@’
 in.mode = lax

 in.substitutions = _GNU_SOURCE@0 _POSIX_SOURCE@1
}

In the above example, the @ characters in in.symbol and in.substitutions are unre­

lated.

Using an undefined variable in a substitution is an error. Using a null value in a substitution

is also an error unless the fallback value is specified with the in.null variable. For

example:

buildfile

h{config}: in{config}
{
 in.null = ’’ # Substitute null values with empty string.
}

To specify a null value using the in.substitutions mechanism omit the value, for

example:

in.substitutions = _GNU_SOURCE

A number of other build system modules, for example, autoconf, version, and bash,

are based on the in module and provide extended functionality. The in preprocessing rule

matches any file{}-based target that has the corresponding in{} prerequisite provided

Revision 0.18, July 2025188 The build2 Build System

17 in Module

https://github.com/build2/libbuild2-autoconf/

none of the extended rules match.

18 bash Module

The bash build system module provides modularization support for bash scripts. It is based

on the in build system module and extends its preprocessing rule with support for import

substitutions in the @import <module>@ form. During preprocessing, such imports are

replaced with suitable source builtin calls. For example:

build/root.build

using bash

hello/say-hello.bash

function say_hello ()
{
 echo "Hello, $1!"
}

#!/usr/bin/env bash

hello/hello.in

@import hello/say-hello@

say_hello ’World’

hello/buildfile

exe{hello}: in{hello} bash{say-hello}

By default the bash preprocessing rule uses the lax substitution mode and @ as the substitu­

tion symbol but this can be overridden using the standard in module mechanisms.

In the above example, say-hello.bash is a module. By convention, bash modules have

the .bash extension and we use the bash{} target type (defined by the bash build system

module) to refer to them in buildfiles.

The say-hello.bash module is imported by the hello script with the

@import hello/say-hello@ substitution. The import path (hello/say-hello in

our case) is a path to the module file within the project. Its first component (hello in our

case) must be both the project name and the top-level subdirectory within the project. The

.bash module extension can be omitted. The constraint placed on the first component of the

import path is required to implement importation of installed modules, as discussed below.

During preprocessing, the import substitution will be replaced with a source builtin call and

the import path resolved to one of the bash{} prerequisites from the script’s dependency

declaration. The actual module path used in source depends on whether the script is prepro­

cessed for installation. If it’s not (development build), then the absolute path to the module

file is used. Otherwise, a path relative to the sourcing script’s directory is derived. This allows

installed scripts and their modules to be moved around.

189Revision 0.18, July 2025 The build2 Build System

18 bash Module

The derivation of the sourcing script’s directory works even if the script is executed via a

symbolic link from another directory. Implementing this, however, requires readlink(1)
with support for the -f option. One notable platform that does not provide such read­
link(1) by default is Mac OS. The script, however, can provide a suitable implementation

as a function. See the bash module tests for a sample implementation of such a function.

By default, bash modules are installed into a subdirectory of the bin/ installation directory

named as the project name plus the .bash extension. For instance, in the above example, the

script will be installed as bin/hello and the module as

bin/hello.bash/say-hello.bash with the script sourcing the module relative to the

bin/ directory. Note that currently it is assumed the script and all its modules are installed

into the same bin/ directory.

Naturally, modules can import other modules and modules can be packaged into module

libraries and imported using the standard build system import mechanism. For example, we

could factor the say-hello.bash module into a separate libhello project:

build/export.build

$out_root/
{
 include libhello/
}

export $src_root/libhello/$import.target

libhello/say-hello.bash

function hello_say_hello ()
{
 echo "Hello, $1!"
}

And then import it in a module of our hello project:

hello/hello-world.bash.in

@import libhello/say-hello@

function hello_world ()
{
 hello_say_hello ’World’
}

#!/usr/bin/env bash

hello/hello.in

@import hello/hello-world@

hello_world

Revision 0.18, July 2025190 The build2 Build System

18 bash Module

hello/buildfile

import mods = libhello%bash{say-hello}

exe{hello}: in{hello} bash{hello-world}
bash{hello-world}: in{hello-world} $mods

The bash preprocessing rule also supports importation of installed modules by searching in

the PATH environment variable.

By convention, bash module libraries should use the lib name prefix, for example,

libhello. If there is also a native library (that is, one written in C/C++) that provides the

same functionality (or the bash library is a language binding for the said library), then it is

customary to add the .bash extension to the bash library name, for example,

libhello.bash. Note that in this case the top-level subdirectory within the project is

expected to be called without the bash extension, for example, libhello.

Modules can be private or public. Private modules are implementation details of a specific

project and are not expected to be imported from other projects. The

hello/hello-world.bash.in module above is an example of a private module. Public

modules are meant to be used by other projects and are normally packaged into libraries, like

the libhello/say-hello.bash module above.

Public modules must take care to avoid name clashes. Since bash does not have a notion of

namespaces, the recommended way is to prefix all module functions (and global variables, if

any) with the library name (without the lib prefix), like in the

libhello/say-hello.bash module above.

While using such decorated function names can be unwieldy, it is relatively easy to create

wrappers with shorter names and use those instead. For example:

@import libhello/say-hello@

function say_hello () { hello_say_hello "$@"; }

A module should normally also prevent itself from being sourced multiple times. The recom­

mended way to achieve this is to begin the module with a source guard. For example:

libhello/say-hello.bash

if ["$hello_say_hello"]; then
 return 0
else
 hello_say_hello=true
fi

function hello_say_hello ()
{
 echo "Hello, $1!"
}

191Revision 0.18, July 2025 The build2 Build System

18 bash Module

The bash preprocessing rule matches exe{} targets that have the corresponding in{} and

one or more bash{} prerequisites as well as bash{} targets that have the corresponding

in{} prerequisite (if you need to preprocess a script that does not depend on any modules,

you can use the in module’s rule).

19 Appendix A – JSON Dump Format

This appendix describes the machine-readable, JSON-based build system state dump format

that can be requested with the --dump-format=json-v0.1 build system driver option

(see b(1) for details).

The format is specified in terms of the serialized representation of C++ struct instances.

See JSON OUTPUT for details on the overall properties of this format and the semantics of

the struct serialization.

This format is currently unstable (thus the temporary -v0.1 suffix) and may be changed in

ways other than as described in JSON OUTPUT. In case of such changes the format version

will be incremented to allow detecting incompatibilities but no support for older versions is

guaranteed.

The build system state can be dumped after the load phase (--dump=load), once the build

state has been loaded, and/or after the match phase (--dump=match), after rules have been

matched to targets to execute the desired action. The JSON format differs depending on after

which phase it is produced. After the load phase the format aims to describe the action-inde­

pendent state, essentially as specified in the buildfiles. While after the match phase it

aims to describe the state for executing the specified action, as determined by the rules that

have been matched. The former state would be more appropriate, for example, for an IDE that

tries to use buildfiles as project files. While the latter state could be used to determine

the actual build graph for a certain action, for example, in order to infer which executable

targets are considered tests by the test operation.

While it’s possible to dump the build state as a byproduct of executing an action (for example,

performing an update), it’s often desirable to only dump the build state and do it as quickly as

possible. For such cases the recommended option combinations are as follows (see the

--load-only and --match-only documentation for details):

$ b --load-only --dump=load --dump-format=json-v0.1 .../dir/

$ b --match-only --dump=match --dump-format=json-v0.1 .../dir/
$ b --match-only --dump=match --dump-format=json-v0.1 .../dir/type{name}

Note that a match dump for a large project can produce a large amount of data, especially for

the update operation (tens and even hundreds of megabytes is not uncommon). To reduce

this size it is possible to limit the dump to specific scopes and/or targets with the

--dump-scope and --dump-target options.

Revision 0.18, July 2025192 The build2 Build System

19 Appendix A – JSON Dump Format

The complete dump (that is, not of a specific scope or target) is a tree of nested scope objects

(see Output Directories and Scopes for background). The scope object has the serialized

representation of the following C++ struct scope. It is the same for both load and match

dumps except for the type of the targets member:

struct scope
{
 string out_path;
 optional<string> src_path;

 vector<variable> variables; // Non-type/pattern scope variables.

 vector<scope> scopes; // Immediate children.

 vector<loaded_target|matched_target> targets;
};

For example (parts of the output are omitted for brevity):

The actual output is produced unindented to reduce the size.

$ cd /tmp
$ bdep new hello
$ cd hello
$ bdep new -C @gcc cc
$ b --load-only --dump=load --dump-format=json-v0.1
{
 "out_path": "",
 "variables": [...],
 "scopes": [
 {
 "out_path": "/tmp/hello-gcc",
 "variables": [...],
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello",
 "variables": [...],
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "variables": [...],
 "targets": [...]
 }
],
 "targets": [...]
 }
],
 "targets": [...]
 }
]
}

The out_path member is relative to the parent scope. It is empty for the special global

scope, which is the root of the tree. The src_path member is absent if it is the same as

out_path (in source build or scope outside of project).

193Revision 0.18, July 2025 The build2 Build System

19 Appendix A – JSON Dump Format

For the match dump, targets that have not been matched for the specified action are omitted.

In the load dump, the target object has the serialized representation of the following C++

struct loaded_target:

struct loaded_target
{
 string name; // Relative quoted/qualified name.
 string display_name; // Relative display name.
 string type; // Target type.
 optional<string> group; // Absolute quoted/qualified group target.

 vector<variable> variables; // Target variables.

 vector<prerequisite> prerequisites;
};

For example (continuing with the previous hello setup):

{
 "out_path": "",
 "scopes": [
 {
 "out_path": "/tmp/hello-gcc",
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello",
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "targets": [
 {
 "name": "exe{hello}",
 "display_name": "exe{hello}",
 "type": "exe",
 "prerequisites": [
 {
 "name": "cxx{hello}",
 "type": "cxx"
 },
 {
 "name": "testscript{testscript}",
 "type": "testscript"
 }
]
 }
]
 }
]
 }
]
 }
]
}

Revision 0.18, July 2025194 The build2 Build System

19 Appendix A – JSON Dump Format

The target name member is the target name that is qualified with the extension (if applicable

and known) and, if required, is quoted so that it can be passed back to the build system driver

on the command line. The display_name member is unqualified and unquoted. Note that

both the target name and display_name members are normally relative to the containing

scope (if any).

The prerequisite object has the serialized representation of the following C++ struct

prerequisite:

struct prerequisite
{
 string name; // Quoted/qualified name.
 string type;
 vector<variable> variables; // Prerequisite variables.
};

The prerequisite name member is normally relative to the containing scope.

In the match dump, the target object has the serialized representation of the following C++

struct matched_target:

struct matched_target
{
 string name;
 string display_name;
 string type;
 optional<string> group;

 optional<path> path; // Absent if not path target, not assigned.

 vector<variable> variables;

 optional<operation_state> outer_operation; // null if not matched.
 operation_state inner_operation; // null if not matched.
};

For example (outer scopes removed for brevity):

$ b --match-only --dump=match --dump-format=json-v0.1
{
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "targets": [
 {
 "name": "/tmp/hello/hello/cxx{hello.cxx}@./",
 "display_name": "/tmp/hello/hello/cxx{hello}@./",
 "type": "cxx",
 "path": "/tmp/hello/hello/hello.cxx",
 "inner_operation": {
 "rule": "build.file",
 "state": "unchanged"
 }
 },
 {
 "name": "obje{hello.o}",
 "display_name": "obje{hello}",
 "type": "obje",

195Revision 0.18, July 2025 The build2 Build System

19 Appendix A – JSON Dump Format

 "group": "/tmp/hello-gcc/hello/hello/obj{hello}",
 "path": "/tmp/hello-gcc/hello/hello/hello.o",
 "inner_operation": {
 "rule": "cxx.compile",
 "prerequisite_targets": [
 {
 "name": "/tmp/hello/hello/cxx{hello.cxx}@./",
 "type": "cxx"
 },
 {
 "name": "/usr/include/c++/12/h{iostream.}",
 "type": "h"
 },
 ...
]
 }
 },
 {
 "name": "exe{hello.}",
 "display_name": "exe{hello}",
 "type": "exe",
 "path": "/tmp/hello-gcc/hello/hello/hello",
 "inner_operation": {
 "rule": "cxx.link",
 "prerequisite_targets": [
 {
 "name": "/tmp/hello-gcc/hello/hello/obje{hello.o}",
 "type": "obje"
 }
]
 }
 }
]
}

The first four members in matched_target have the same semantics as in

loaded_target.

The outer_operation member is only present if the action has an outer operation. For

example, when performing update-for-test, test is the outer operation while

update is the inner operation.

The operation state object has the serialized representation of the following C++ struct

operation_state:

struct operation_state
{
 string rule; // null if direct recipe match.

 optional<string> state; // One of unchanged|changed|group.

 vector<variable> variables; // Rule variables.

 vector<prerequisite_target> prerequisite_targets;
};

Revision 0.18, July 2025196 The build2 Build System

19 Appendix A – JSON Dump Format

The rule member is the matched rule name. The state member is the target state, if

known after match. The prerequisite_targets array is a subset of prerequisites

resolved to targets that are in effect for this action. The matched rule may add additional

targets, for example, dynamically extracted additional dependencies, like

/usr/include/c++/12/h{iostream.} in the above listing.

The prerequisite target object has the serialized representation of the following C++ struct

prerequisite_target:

struct prerequisite_target
{
 string name; // Absolute quoted/qualified target name.
 string type;
 bool adhoc;
};

The variables array in the scope, target, prerequisite, and prerequisite target objects

contains scope, target, prerequisite, and rule variables, respectively.

The variable object has the serialized representation of the following C++ struct vari­
able:

struct variable
{
 string name;
 optional<string> type;
 json_value value; // null|boolean|number|string|object|array
};

For example:

{
 "out_path": "",
 "variables": [
 {
 "name": "build.show_progress",
 "type": "bool",
 "value": true
 },
 {
 "name": "build.verbosity",
 "type": "uint64",
 "value": 1
 },
 ...
],
 "scopes": [
 {
 "out_path": "/tmp/hello-gcc",
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello",
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",

197Revision 0.18, July 2025 The build2 Build System

19 Appendix A – JSON Dump Format

 "variables": [
 {
 "name": "out_base",
 "type": "dir_path",
 "value": "/tmp/hello-gcc/hello/hello"
 },
 {
 "name": "src_base",
 "type": "dir_path",
 "value": "/tmp/hello/hello"
 },
 {
 "name": "cxx.poptions",
 "type": "strings",
 "value": [
 "-I/tmp/hello-gcc/hello",
 "-I/tmp/hello"
]
 },
 {
 "name": "libs",
 "value": "/tmp/hello-gcc/libhello/libhello/lib{hello}"
 }
]
 }
]
 }
]
 }
]
}

The type member is absent if the variable value is untyped.

The value member contains the variable value in a suitable JSON representation. Specifi­

cally:

null values are represented as JSON null.

bool values are represented as JSON boolean.

int64 and uint64 values are represented as JSON number.

string, path, dir_path values are represented as JSON string.

Untyped simple name values are represented as JSON string.

Pairs of above values are represented as JSON objects with the first and second
members corresponding to the pair elements.

Untyped complex name values are serialized as target names and represented as JSON

string.

Containers of above values are represented as JSON arrays corresponding to the

container elements.

An empty value is represented as an empty JSON object if it’s a typed pair, as an empty

JSON array if it’s a typed container or is untyped, and as an empty string otherwise.

One expected use-case for the match dump is to determine the set of targets for which a given

action is applicable. For example, we may want to determine all the executables in a project

that can be tested with the test operation in order to present this list to the user in an IDE

Revision 0.18, July 2025198 The build2 Build System

19 Appendix A – JSON Dump Format

plugin or some such. To further illuminate the problem, consider the following buildfile
which declares a number of executable targets, some are tests and some are not:

exe{hello1}: ... testscript # Test because of testscript prerequisite.

exe{hello2}: test = true # Test because of test=true.

exe{hello3}: ... testscript # Not a test because of test=false.
{
 test = false
}

As can be seen, trying to infer this information is not straightforward and doing so manually

by examining prerequisites, variables, etc., while possible, will be complex and likely brittle.

Instead, the recommended approach is to use the match dump and base the decision on the

state target object member. Specifically, a rule which matched the target but determined

that nothing needs to be done for this target, returns the special noop recipe. The build2
core recognizes this situation and sets such target’s state to unchanged during match. Here

is what the match dump will look like for the above three executables:

$ b --match-only --dump=match --dump-format=json-v0.1 test
{
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "targets": [
 {
 "name": "exe{hello1.}",
 "display_name": "exe{hello1}",
 "type": "exe",
 "path": "/tmp/hello-gcc/hello/hello/hello1",
 "inner_operation": {
 "rule": "test"
 }
 },
 {
 "name": "exe{hello2.}",
 "display_name": "exe{hello2}",
 "type": "exe",
 "path": "/tmp/hello-gcc/hello/hello/hello2",
 "inner_operation": {
 "rule": "test"
 }
 },
 {
 "name": "exe{hello3}",
 "display_name": "exe{hello3}",
 "type": "exe",
 "inner_operation": {
 "rule": "test",
 "state": "unchanged"
 }
 }
]
}

199Revision 0.18, July 2025 The build2 Build System

19 Appendix A – JSON Dump Format

	Preface
	1 Introduction
	1.1 Hello, World
	1.2 Project Structure
	1.3 Output Directories and Scopes
	1.4 Operations
	1.4.1 Configuring
	1.4.2 Testing
	1.4.3 Installing
	1.4.4 Distributing

	1.5 Target Importation
	1.6 Library Exportation and Versioning
	1.7 Subprojects and Amalgamations
	1.8 Buildfile Language
	1.8.1 Expansion and Quoting
	1.8.2 Conditions (if-else)
	1.8.3 Pattern Matching (switch)
	1.8.4 Repetitions (for)

	1.9 Implementing Unit Testing
	1.10 Diagnostics and Debugging

	2 Project Configuration
	2.1 config Directive
	2.2 Configuration Report
	2.3 Configuration Propagation

	3 Targets and Target Types
	3.1 Target Types
	3.1.1 target{}
	3.1.2 alias{} and dir{}
	3.1.3 fsdir{}
	3.1.4 mtime_target{} and path_target{}
	3.1.5 group{}
	3.1.6 file{}
	3.1.7 doc{}, legal{}, and man{}
	3.1.8 exe{}
	3.1.9 json{}

	4 Variables
	5 Functions
	5.1 Builtin Functions
	5.1.1 $builtin.defined()
	5.1.2 $builtin.visibility()
	5.1.3 $builtin.type()
	5.1.4 $builtin.null()
	5.1.5 $builtin.empty()
	5.1.6 $builtin.first(), $builtin.second()
	5.1.7 $builtin.quote()
	5.1.8 $builtin.getenv()

	5.2 String Functions
	5.2.1 $string.icasecmp()
	5.2.2 $string.contains()
	5.2.3 $string.starts_with()
	5.2.4 $string.ends_with()
	5.2.5 $string.replace()
	5.2.6 $string.trim()
	5.2.7 $string.lcase(), $string.ucase()
	5.2.8 $string.size()
	5.2.9 $string.sort()
	5.2.10 $string.find()
	5.2.11 $string.find_index()
	5.2.12 $string.keys()

	5.3 Integer Functions
	5.3.1 $integer.string()
	5.3.2 $integer.integer_sequence()
	5.3.3 $integer.size()
	5.3.4 $integer.sort()
	5.3.5 $integer.find()
	5.3.6 $integer.find_index()

	5.4 Bool Functions
	5.4.1 $bool.string()

	5.5 Path Functions
	5.5.1 $path.string()
	5.5.2 $path.posix_string()
	5.5.3 $path.representation()
	5.5.4 $path.posix_representation()
	5.5.5 $path.absolute()
	5.5.6 $path.simple()
	5.5.7 $path.sub_path()
	5.5.8 $path.super_path()
	5.5.9 $path.directory()
	5.5.10 $path.root_directory()
	5.5.11 $path.leaf()
	5.5.12 $path.relative()
	5.5.13 $path.base()
	5.5.14 $path.extension()
	5.5.15 $path.complete()
	5.5.16 $path.canonicalize()
	5.5.17 $path.normalize(), $path.try_normalize()
	5.5.18 $path.actualize(), $path.try_actualize()
	5.5.19 $path.size()
	5.5.20 $path.sort()
	5.5.21 $path.find()
	5.5.22 $path.find_index()
	5.5.23 $path.match()

	5.6 Name Functions
	5.6.1 $name.name()
	5.6.2 $name.extension()
	5.6.3 $name.directory()
	5.6.4 $name.target_type()
	5.6.5 $name.project()
	5.6.6 $name.is_a()
	5.6.7 $name.filter(), $name.filter_out()
	5.6.8 $name.size()
	5.6.9 $name.sort()
	5.6.10 $name.find()
	5.6.11 $name.find_index()

	5.7 Target Functions
	5.7.1 $target.path()
	5.7.2 $target.process_path()

	5.8 Regex Functions
	5.8.1 $regex.match()
	5.8.2 $regex.find_match()
	5.8.3 $regex.filter_match(), $regex.filter_out_match()
	5.8.4 $regex.search()
	5.8.5 $regex.find_search()
	5.8.6 $regex.filter_search(), $regex.filter_out_search()
	5.8.7 $regex.replace()
	5.8.8 $regex.replace_lines()
	5.8.9 $regex.split()
	5.8.10 $regex.merge()
	5.8.11 $regex.apply()

	5.9 JSON Functions
	5.9.1 $json.value_type()
	5.9.2 $json.value_size()
	5.9.3 $json.member_name()
	5.9.4 $json.member_value()
	5.9.5 $json.object_names()
	5.9.6 $json.array_size()
	5.9.7 $json.array_find()
	5.9.8 $json.array_find_index()
	5.9.9 $json.load()
	5.9.10 $json.parse()
	5.9.11 $json.serialize()
	5.9.12 $json.size()
	5.9.13 $json.keys()

	5.10 Process Functions
	5.10.1 $process.run()
	5.10.2 $process.run_regex()

	5.11 Filesystem Functions
	5.11.1 $filesystem.file_exists()
	5.11.2 $filesystem.directory_exists()
	5.11.3 $filesystem.path_search()

	5.12 Project Name Functions
	5.12.1 $project_name.string()
	5.12.2 $project_name.base()
	5.12.3 $project_name.extension()
	5.12.4 $project_name.variable()

	5.13 Process Path Functions
	5.13.1 $process_path.recall()
	5.13.2 $process_path.effect()
	5.13.3 $process_path.name()
	5.13.4 $process_path.checksum()
	5.13.5 $process_path.env_checksum()

	5.14 Target Triplet Functions
	5.14.1 $target_triplet.string()
	5.14.2 $target_triplet.representation()

	6 Directives
	6.1 define
	6.2 include
	6.3 source
	6.4 update

	7 Attributes
	8 Name Patterns
	9 config Module
	9.1 Hermetic Build Configurations

	10 test Module
	11 install Module
	11.1 Relocatable Installation
	11.2 Installation Filtering

	12 version Module
	13 bin Module
	13.1 Binary Target Types
	13.1.1 lib{}, liba{}, libs{}
	13.1.2 libul{}, libue{}, libua{}, libus{}
	13.1.3 obj{}, obje{}, obja{}, objs{}
	13.1.4 bmi{}, bmie{}, bmia{}, bmis{}
	13.1.5 hbmi{}, hbmie{}, hbmia{}, hbmis{}
	13.1.6 def{}

	14 cc Module
	14.1 C-Common Configuration Variables
	14.2 C-Common Target Types
	14.2.1 pc{}, pca{}, pcs{}

	14.3 Compilation Internal Scope
	14.4 Automatic DLL Symbol Exporting
	14.5 Compiler Predefined Macro Extraction
	14.6 Importation of Installed Libraries
	14.6.1 Rewriting Installed Libraries System Root (sysroot)

	14.7 Compilation Database
	14.8 GCC Compiler Toolchain
	14.9 Clang Compiler Toolchain
	14.9.1 Clang Targeting MSVC

	14.10 MSVC Compiler Toolchain

	15 c Module
	15.1 C Configuration Variables
	15.2 C Target Types
	15.2.1 c{}, h{}

	15.3 Objective-C Compilation
	15.4 Assembler with C Preprocessor Compilation
	15.5 C Compiler Predefined Macro Extraction

	16 cxx Module
	16.1 C++ Configuration Variables
	16.2 C++ Target Types
	16.2.1 cxx{}, hxx{}, ixx{}, txx{}, mxx{}

	16.3 C++ Modules Support
	16.3.1 Modules Introduction
	16.3.2 Building Modules
	16.3.3 Module Symbols Exporting
	16.3.4 Modules Installation
	16.3.5 Modules Design Guidelines
	16.3.6 Modularizing Existing Code

	16.4 Objective-C++ Compilation
	16.5 C++ Compiler Predefined Macro Extraction

	17 in Module
	18 bash Module
	19 Appendix A š JSON Dump Format

