The build2 Package Manager

Copyright © 2014-2025 the build2 authors.
Permission is granted to copy, distribute and/or modify this document under the terms of the
MIT License.

Revision 0. 18, July 2025
This revision of the document describes the build2 package manager 0.18 . x series.

Table of Contents

Table of Contents
1
(1 Package Namel 1
[2 Package Version| . e 1
[3 Package Version Constraint| 4
{4 Package Build System Skeleton|) e 6
[5 Dependency Configuration Negotiationf 8
[5.1 Prefer X but AcceptXorY| 11
[5.2 Use If Enabled]. . . . |
[5. 3 Disable If Enabled by Defauld S 1)
[6.1 Mamfest Formatl S 1)
[6.2 Package Manifesd 16
6.2.2 version| 18
[6.2.3 type, lanquage| 18
6.2.4 project| 19
6.2.5priorityl 19
6.2.6 summary| 19
6.2.7 license| 20
6.2.8 topics|22
[6.2.9 keywords|)0
[6.2.10 description, package— descrlptlonl ... 22
[6.2.11 changes| 23
6.2.13 doc-urd| 24
6.2.14 src-url2| 24
[6.2.15 package—url| .
6.2.16 email . .
[6.2.17 package— emalll .
[6.2.18 build—emaill .
[6.2.19 build-warning-email| 25
[6.2.20 build—error—email] 25
[6.2.21 depends| 25
[6.2.22 requires]| .. . 2
[6.2.23 tests, examples, benchmarksl 33
[6.2.24 builds| 35
[6.2.25 build—{include, exclude }| 36
[6.2.26 build-auxiliary] 37
[6.2.27 build-bot| 38
[6.2.28 *—build—config| e [
[6.2.29 build-file| 43
[6.2.30 *—{name, version, to-downstream-version}| . . . 44
[6.3 Package List Manifest for pkg Repositoriesf 45
[6.3.1 sha256sum (list manifest)f 45

Revision 0.18, July 2025 The build2 Package Manager i

Table of Contents

[6.3.2 1ocation (package manifest)|
[6.3.3 sha256sum (package manifest)|
[6.4 Package List Manifest for dir Repositories|
[6.4.1 1ocation| .
[6.4.2 fragment| .
[6.5 Repository Manifest|.
[6.5.1 location| .
5.2 type
S3role
5.4 trust
S.5urll.
S.6email

[SN|[S[S
e
N
0]
-
3
=
m
5]
<q- -

[6.5.8 description| .
[6.5.9 certificate| .
[6.5.10 fragment].
[6.6 Repository List Manifest|.
[6.6.1 min-bpkg-—version|
[6.6.2 compression| . ..
[6.7 Signature Manifest for pkg Repositories|
[6.7.1 sha256sum|.
[6.7.2 signature|l. . .
[7 Binary Distribution Package Mapping|
[7.1 Debian Package Mapping] . . .

[7.1.1 Debian Package Mapping for Consumption| .

[7.1.2 Debian Package Mapping for Production|
[7.2 Fedora Package Mappingl

[7.2.1 Fedora Package Mapping for Consumption|

[7.2.2 Fedora Package Mapping for Production|

ii The build2 Package Manager

46
46
46
47
47
47
47
48
48
48
48
49
49
49
30
30
30
31
31
31
32
32
32
32
32
34
36
36
38

Revision 0.18, July 2025

Preface

Preface

This document describes bpkg, the build2 package dependency manager. For the package
manager command line interface refer to the bpkg (1) man pages.

1 Package Name

The bpkg package name can contain ASCII alphabetic characters ([a-zA-Z]), digits
([0-91), underscores (_), plus/minus (+-), and dots/periods (.). The name must be at least
two characters long with the following additional restrictions:

1. It must start with an alphabetic character.
2. It must end with an alphabetic, digit, or plus character.
3. It must not be any of the following illegal names:

build

con prn aux nul

coml com2 com3 com4 com5 com6 com7 com8 com9
lptl 1pt2 1lpt3 1lpt4 lpt5 1lpt6 lpt7 1lpt8 1lpt9

The use of the plus (+) character in package names is discouraged. Pluses are used in URL
encoding which makes specifying packages that contain pluses in URLs cumbersome.

The use of the dot (.) character in package names is discouraged except for distinguishing the
implementations of the same functionality for different languages. For example, 1ibfoo and
libfoo.bash.

Package name comparison is case-insensitive but the original case must be preserved for
display, in file names, etc. The reason for case-insensitive comparison is Windows file names.

If the package is a library then it is strongly recommended that you start its package name
with the 1ib prefix, for example, 1ibfoo. Some package repositories may make this a
requirement as part of their submission policy.

If a package (normally a library) supports usage of multiple major versions in the same
project, then it is recommended to append the major version number to the package name
starting from version 2.0. 0, for example, 1ibfoo (before 2.0.0), 1ibfoo2 (2.Y.7Z),
libfoo3(3.Y.72),etc.

2 Package Version

The bpkg package version format tries to balance the need of accommodating existing soft-
ware versions on one hand and providing a reasonably straightforward comparison semantics
on another. For some background on this problem see deb-version (1) and the

Versioning| specification.

Revision 0.18, July 2025 The build2 Package Manager 1

http://semver.org/
http://semver.org/

2 Package Version

Note also that if you are starting a new project that will use the build2 toolchain, then it is
strongly recommended that you use the standard versioning scheme which is a more strictly
defined subset of semantic versioning that allows automation of many version management
tasks. See version Module for details.

The bpkg package version has the following form:

[+<epoch>-]<upstream>[-<prerel>] [+<revision>] [#<iteration>]

The epoch part should be an integer. It can be used to change to a new versioning scheme that
would be incompatible with the old one. If not specified, then epoch defaults to 1 except for a
stub version (see below) in which case it defaults to 0. The explicit zero epoch can be used if
the current versioning scheme (for example, date-based) is known to be temporary.

The upstream part is the upstream software version that this package is based on. It can only
contain alpha-numeric characters and .. The . character is used to separate the version into
components.

The prerel part is the upstream software pre-release marker, for example, alpha, beta, candi-
date, etc. Its format is the same as for upstream except for two special values: the absent
prerel (for example, 1.2 . 3) signifies the maximum or final release while the empty prerel
(for example, 1.2.3-) signifies the minimum or earliest possible release. The minimum
release is intended to be used for version constraints (for example, 1ibfoo < 1.2.3-)
rather than actual releases.

The revision part should be an integer. It is used to version package releases that are based on
the same upstream versions. If not specified, then revision defaults to 0.

The iteration part is an integer. It is used internally by bpkg to automatically version modifi-
cations to the packaging information (specifically, to package manifest and lockfile) in exter-
nal packages that have the same upstream version and revision. As a result, the iteration
cannot not be specified by the user and is only shown in the bpkg output (for example, by
pkg-status command) in order to distinguish between package iterations with otherwise
identical versions. Note also that iteration is relative to the bpkg configuration. Or, in other
words, it is an iteration number of a package as observed by a specific configuration. As a
result, two configurations can "see" the same package state as two different iterations.

Package iterations are used to support package development during which requiring the devel-
oper to manually increment the version or revision after each modification would be impracti-
cal. This mechanism is similar to the automatic commit versioning provided by the standard
version except that it is limited to the packaging information but works for uncommitted
changes.

Version +0-0- (least possible version) is reserved and specifying it explicitly is illegal.
Explicitly specifying this version does not make much sense since 1ibfoo < +0-0- is
always false and 1ibfoo > +0-0- is always true. In the implementation this value is used
as a special empty version.

2 The build2 Package Manager Revision 0.18, July 2025

2 Package Version

Version 0 (with a potential revision, for example, 0+1, 0+2) is used to signify a stub
package. A stub is a package that does not contain source code and can only be "obtained"
from other sources, for example, a system package manager. Note that at some point a stub
may be converted into a full-fledged package at which point it will be assigned a "real"
version. It is assumed that this version will always be greater than the stub version.

When displaying the package version or when using the version to derive the file name, the
default epoch value as well as zero revision and iteration values are omitted (even if they
were explicitly specified, for instance, in the package manifest). For example, +1-1.2.3+0
will be used as 1ibfoo-1.2.3.

This versioning scheme and the choice of delimiter characters (.—+) is meant to align with
semantic versioning.

Some examples of versions:

0+1
+0-20180112
1.2.3
1.2.3-al
1.2.3-b2
1.2.3-rcl
1.2.3-alphal
1.2.3-alpha.l
1.2.3-beta.l
1.2.3+1
+2-1.2.3
+2-1.2.3-alpha.1+3
+2.2.3#1
1.2.3+1#1

+2-1.2.3+1#2

The version sorting order is epoch, upstream, prerel, revision, and finally, iteration. The
upstream and prerel parts are compared from left to right, one component at a time, as
described next.

To compare two components, first the component types are determined. A component that
only consists of digits is an integer. Otherwise, it is a string. If both components are integers,
then they are compared as integers. Otherwise, they are compared lexicographically and
case-insensitively. The reason for case-insensitive comparison is Windows file names.

A non-existent component is considered 0O if the other component is an integer and an empty
string if the other component is a string. For example, in 1.2 vs 1. 2. 0, the third component
in the first version is 0 and the two versions are therefore equal. As a special exception to this
rule, an absent prerel part is always greater than any non-absent part. And thus making the
final release always older than any pre-release.

This algorithm gives correct results for most commonly-used versioning schemes, for
example:

Revision 0.18, July 2025 The build2 Package Manager 3

3 Package Version Constraint

1.2.3 < 12.2

l.alpha < l.beta
20151128 < 20151228
2015.11.28 < 2015.12.28

One notable versioning scheme where this approach gives an incorrect result is hex numbers
(consider A vs 12). The simplest work around is to convert such numbers to decimal. Alterna-
tively, one can fix the width of the hex number and pad all the values with leading zeros, for
example: 00A vs 01A.

It is also possible to convert the upstream and prerel parts into a canonical representation that
will produce the correct comparison result when always compared lexicographically and as a
whole. This can be useful, for example, when storing versions in the database which would
otherwise require a custom collation implementation to obtain the correct sort order.

To convert one of these parts to its canonical representation, all its string components are
converted to the lower case while all its integer components are padded with leading zeros to
the fixed length of 16 characters, with all trailing zero-only components removed. Note that
this places an implementation limit on the length of integer components which should be
checked by the implementation when converting to the canonical representation. The 16 char-
acters limit was chosen to still be able to represent (with some spare) components in the
YYYYMMDDhhmmss form while not (visually) bloating the database too much. As a special
case, the absent prerel part is represented as ~. Since the ASCII code for ~ is greater than any
other character that could appear in prerel, such a string will always be greater than any other
representation. The empty prerel part is represented as an empty string.

Note that because it is not possible to perform a reverse conversion without the possibility of
loss (consider 01 .AA.BB), the original parts may also have to be stored, for example, for
display, to derive package archive names, etc.

In quite a few contexts the implementation needs to ignore the revision and/or iteration parts.
For example, this is needed to implement the semantics of newer revisions/iterations of pack-
ages replacing their old ones since we do not keep multiple revisions/iterations of the same
upstream version in the same repository. As a result, in the package object model, we have a
version key as just {epoch, upstream, prerel} but also store the package revision and iteration
so that it can be shown to the user, etc.

3 Package Version Constraint

The bpkg package version constraint may follow the package name in certain contexts, such
as the manifest values and bpkg command line, to restrict the allowed package version set. It
can be specified using comparison operators, shortcut (to range) operators, or ranges and has
the following form:

<version-constraint> = <comparison> | <shortcut> | <range>
<comparison> = ('==" | '>' | r<’ | '>=" | '<='") <version>
<shortcut> = ('~ | ’~’) <version>

<range> = (' (' | "[’) <version> <version> (')’ | ’1")

4 The build2 Package Manager Revision 0.18, July 2025

3 Package Version Constraint

The shortcut operators can only be used with standard versions (a semantic version without
the pre-release part is a standard version). They are equivalent to the following ranges. The
X.Y.Z- version signifies the earliest pre-release in the X.Y.Z series; see [Package Version|
for details.

~X.Y.Z [X.Y.Z X.Y+1.0-)

AX.Y.Z [X.Y.Z X+1.0.0-) if X >
~0.Y.Z [0.Y.Z 0.Y+1.0-) if X ==

0
0

That is, the tilde (~) constraint allows upgrades to any further patch version while the caret
(") constraint — also to any further minor version.

Zero major version component is customarily used during early development where the minor
version effectively becomes major. As a result, the tilde constraint has special semantics for
this case.

Note that the shortuct operators can only be used with the complete, three-component versions
(X.Y.Zz with the optional pre-release part per the standard version). Specifically, there is no
support for special *X.Y or ~X semantics offered by some package manager — if desired,
such functionality can be easily achieved with ranges. Also, the 0.0 . Z version is not consid-
ered special except as having zero major component for the tilde semantics discussed above.

Note also that pre-releases do not require any special considerations when used with the short-
cut operators. For example, if package 1ibfoo is usable starting with the second beta of the
2.0.0 release, then our constraint could be expressed as:

libfoo 72.0.0-b.2

Internally, shortcuts and comparisons can be represented as ranges (that is, [v, v] for ==,
(v, 1inf) for >, etc). However, for display and serialization such representations should be
converted back to simple operators. While it is possible that the original manifest specified
equality or shortucts as full ranges, it is acceptable to display/serialize them as simpler opera-
tors.

Instead of a concrete value, the version in the constraint can be specified in terms of the
dependent package’s version (that is, the version of the package placing the constraint) using
the special $ value. For example:

libfoo == $

A constraint that contains $ is called incomplete. This mechanism is primarily useful when
developing related packages that should track each other’s versions exactly or closely.

In comparison operators and ranges the $ value is replaced with the dependent version ignor-
ing the revision. For shortcut operators, the dependent version must be a standard version and
the following additional processing is applied depending on whether the version is a release,
final pre-release, or a snapshot pre-release.

Revision 0.18, July 2025 The build2 Package Manager 5

4 Package Build System Skeleton

1. For a release we set the min version patch to zero. For © we also set the minor version to
zero, unless the major version is zero (reduces to ~). The max version is set according to
the standard shortcut logic. For example, ~$ is completed as follows:

|
2

[
[
[

=
NN
Lo
|
\%
I
NS
ooo
=
w w w
o oo

.3.0-)
.3.0-)
.3.0-)

|
2

And ~$ is completed as follows:

0.0 —> [
1.1 —> [

o O

1. 1.0.0 2.0.0-)

1. 1.0.0 2.0.0-)

2. For a final pre-release the key observation is that if the patch component for ~ or minor
and patch components for ~ are not zero, then that means there has been a compatible
release and we treat this case the same as release, ignoring the pre-release part. If,
however, it/they are zero, then that means there may yet be no final release and we have

to start from the first alpha. For example, for the ~$ case:

1.2.0-a.1 -> [1.2.0-a.1 1.3.0-)
1.2.0-b.2 -> [1.2.0-a.1 1.3.0-)
1.2.1-a.1 -> [1.2.0 1.3.0-)
1.2.2-b.2 -=> [1.2.0 1.3.0-)
And for the ~$ case:

1.0.0-a.1 -> [1.0.0-a.1 2.0.0-)
1.0.0-b.2 -> [1.0.0-a.1 2.0.0-)
1.0.1-a.1 -> [1.0.0 2.0.0-)
1.1.0-b.2 -=> [1.0.0 2.0.0-)

3. For a snapshot pre-release we distinguish two cases: a patch snapshot (the patch compo-
nent is not zero) and a major/minor snapshot (the patch component is zero). For the patch
snapshot case we assume that it is (most likely) developed independently of the depen-
dency and we treat it the same as the final pre-release case. For example, if the dependent
version is 1.2.1-a.0.nnn, the dependency could be 1.2.0 or 1.2.2 (or some-
where in-between).

For the major/minor snapshot we assume that all the packages are developed in the lock-
step and have the same X.Y. 0 version. In this case we make the range start from the
earliest possible version in this "snapshot series" and end before the final pre-release. For
example (in this case ~ and * are treated the same):

-a.0.1 1.2.0-a.1)
-b.2.1 2.0.0-b.3)

4 Package Build System Skeleton

There are situations where bpkg may need to evaluate buildfile expressions and frag-
ments before committing to a particular version of the package and therefore before actually
unpacking anything. For example, bpkg may need to evaluate a condition in the conditional
dependency or it may need to negotiate a configuration among several dependents of a

6 The build2 Package Manager Revision 0.18, July 2025

4 Package Build System Skeleton

package which requires it to know this package’s configuration variable types and default
values.

To solve this chicken and egg kind of problem, bpkg includes a minimal subset of the build
system files along with the package’s standard metadata (name, version, etc) into the reposi-
tory metadata (packages.manifest). This subset is called the package build system
skeleton, or just package skeleton for short, and includes the build/bootstrap.build
and build/root .build files (or their alternative naming scheme variants) as well as any
files that may be sourced by root .build.

The inclusion of build/bootstrap.build and build/root.build (if present) as
well as any build/config/*.build (or their alternative naming scheme variants) is
automatic. However, if root .build sources any files other than
build/config/*.build, then they must be specified explicitly in the package manifest
using thepuild—file|value.

Inside these buildfiles the skeleton load can be distinguished from normal load by examining
the build.mode variable, which is set to skeleton during the skeleton load. In particular,
this variable must be used to omit loading of build system modules that are neither built-in nor
standard pre-installed and which are therefore listed as package dependencies. Such modules
are not yet available during the skeleton load. For example:

root.build

using cxx # Ok, built-in module.
using autoconf # Ok, standard pre-installed module.

if (Sbuild.mode != ’skeleton’)
using hello

The build.mode variable can also be used to omit parts of root .build that are expen-
sive to evaluate and which are only necessary during the actual build. Here is a realistic
example:

root.build

using cxx

Determine the GCC plugin directory. But omit doing it during the
skeleton load.
#
if (Sbuild.mode != ’skeleton’)
{
if ($cxx.id != ’'gcc’)
fail ’"this project can only be built with GCC’

If plugin support is disabled, then -print-file-name will print
the name we have passed (the real plugin directory will always
be absolute).
#
plugin_dir = [dir_path] \

Sprocess.run ($Scxx.path -print-file-name=plugin)

Revision 0.18, July 2025 The build2 Package Manager 7

5 Dependency Configuration Negotiation

if ("S$plugin_dir" == plugin)
fail "$recall ($cxx.path) does not support plugins"

plugin_dir = $normalize ($plugin_dir)

}

5 Dependency Configuration Negotiation

In bpkg, a dependent package may specify a desired configuration for a dependency package.
Because there could be multiple such dependents, bpkg needs to come up with a dependency
configuration that is acceptable to all of them. This process is called the dependency configu-
ration negotiation.

The desired dependency configuration is specified as part of the manifest value and
can be expressed as either a single require clause or as a pair of prefer/accept clauses.

The require clause is essentially a shortcut for specifying the prefer/accept clauses
where the accept condition simply verifies all the variable values assigned in the prefer
clause. It is, however, further restricted to the common case of only setting bool variables
and only to t rue to allow additional optimizations during the configuration negotiation. The
remainder of this section only deals with the general prefer/accept semantics.

While the exact format of prefer/accept is described as part of the manifest
value, for this section it is sufficient to know that the prefer clause is an arbitrary build-
file fragment that is expected to set one or more dependency configuration variables to the
values preferred by this dependent while the accept clause is a buildfile eval context
expression that should evaluate to true or false indicating whether the dependency
configuration values it is evaluated on are acceptable to this dependent. For example:

libfoo 71.0.0
{
We prefer the cache but can work without it.
We need the buffer of at least 4KB.
#
prefer

{

config.libfoo.cache = true

config.libfoo.buffer = ($config.libfoo.buffer < 4096 \
? 4096 \
: $config.libfoo.buffer)
}

accept ($config.libfoo.buffer >= 4096)
}

The configuration negotiation algorithm can be summarized as cooperative refinement.
Specifically, whenever a prefer clause of a dependent changes any configuration value, all
other dependents’ prefer clauses are re-evaluated. This process continues until there are no
more changes (success), one of the accept clauses returned false (failure), or the process
starts "yo-yo’ing" between two or more configurations (failure).

8 The build2 Package Manager Revision 0.18, July 2025

5 Dependency Configuration Negotiation

The dependents are expected to cooperate by not overriding "better" values that were set by
other dependents. Consider the following two prefer clauses:

prefer
{

config.libfoo.buffer = 4096
}

prefer
{
config.libfoo.buffer = ($Sconfig.libfoo.buffer < 4096 \
? 4096 \
$config.libfoo.buffer)

The first version is non-cooperative and should only be used if this dependent requires the
buffer to be exactly 4KB. The second version is cooperative: it will increase the buffer to the
minimum required by this dependent but will respect values above 4KB.

One case where we don’t need to worry about this is when setting the configuration variable
to the "best" possible value. One common example of this is setting a bool configuration to
true.

With a few exceptions discussed below, a dependent must always re-set the configuration
variable, even if to the better value. For example, the following is an incorrect attempt at the
above cooperative prefer clause:

prefer

{
if ($Sconfig.libfoo.buffer < 4096) # Incorrect.
config.libfoo.buffer = 4096

The problem with the above attempt is that the default value could be greater than 4KB, in
which case bpkg will have no idea that there is a dependent relying on this configuration
value.

Before each prefer clause re-evaluation, variables that were first set to their current values
by this dependent are reset to their defaults thus allowing the dependent to change its mind,
for instance, in response to other configuration changes. For example:

While we have no preference about the cache, if enabled/disabled,
we need a bigger/smaller buffer.

#

prefer

{
min_buffer = ($Sconfig.libfoo.cache ? 8192 : 4096)
config.libfoo.buffer = ($Sconfig.libfoo.buffer < $min_buffer \

? Smin_buffer \
$config.libfoo.buffer)
}

accept ($config.libfoo.buffer >= ($config.libfoo.cache ? 8192 : 4096))

Revision 0.18, July 2025 The build2 Package Manager 9

5 Dependency Configuration Negotiation

The interesting case to consider in the above example is when config.libfoo.cache
changes from true to false: without the reset to defaults semantics the prefer clause
would have kept the buffer at 8KB (since it’s greater than the 4KB minimum).

Currently accept is always evaluated after prefer and temporary variables (like
min_buffer in the above example) set in prefer are visible in accept. But it’s best not
to rely on this in case it changes in the future. For example, we may try harder to resolve the
"yo-yo’ing" case mentioned above by checking if one of the alternating configurations are
acceptable to everyone without re-evaluation.

This is also the reason why we need a separate accept in the first place. Plus, it allows for
more advanced configuration techniques where we may need to have an acceptance criteria
but no preferences.

Configuration variables that are set by the dependent in the pre fer clause are visible in the
subsequent clauses as well as in the subsequent depends values of this dependent. Configu-
ration variables that are not set, however, are only visible until the immediately following
reflect clause. For example, in the above listing, config.libfoo.cache would still
be visible in the reflect clause if it were to follow accept but no further. As a result, if
we need to make decisions based on configuration variables that we have no preference about,
they need to be saved in the reflect clause. For example:

depends:
\
libfoo 71.0.0
{
We have no preference about the cache but need to
observe its value.
#
prefer
{
}

accept (true)

reflect

{
config.hello.libfoo_cache = $config.libfoo.cache
}
}
\

depends: libbar 71.0.0 ? (S$config.hello.libfoo_cache)

It is possible to determine the origin of the configuration variable value using the
Sconfig.origin () function. It returns either undefined if the variable is undefined
(only possible if it has no default value), default if the variable has the default value from
the config directive in root .build, buildfile if the value is from a buildfile,
normally config.build, or override if the value is a command line override (that is,
user configuration). For example, this is how we could use it if we only wanted to change the
default value (notice that it’s the variable’s name and not its $-expansion that we pass to
Sconfig.origin()):

10 The build2 Package Manager Revision 0.18, July 2025

5.1 Prefer X but Accept X or Y

prefer
{
config.libfoo.buffer = (\
$config.origin(config.libfoo.buffer) == ’"default’ \
? 4096 \

$config.libfoo.buffer)

The following sub-sections discuss a number of more advanced configuration techniques that
are based on the functionality described in this section.

5.1 Prefer X but Accept Xor Y

Consider a configuration variable that is a choice between several mutually exclusive values,
for example, user interface backends that could be, say, c1i, gui, or none. In such situa-
tions it’s common to prefer one value but being able to work with some subset of them. For
example, we could prefer gui but were also able to make do with c1i but not with none.
Here is how we could express such a configuration:

libfoo 71.0.0
{

\

We prefer ‘gui‘', can also work with ‘cli‘ but not ‘none‘.

#
prefer
{
config.libfoo.ui = (\
$config.origin(config.libfoo.ui) == ’'default’ || \
($config.libfoo.ui != 'gui’ && S$config.libfoo.ui != ’"cli’) \
? 'gui’ \
$config.libfoo.ui)
}
accept ($config.libfoo.ui == ’gui’ || $config.libfoo.ui == ’cli’)

}

5.2 Use If Enabled

Sometimes we may want to use a feature if it is enabled by someone else but not enable it
ourselves. For example, the feature might be expensive and our use of it tangential, but if it’s
enabled anyway, then we might as well take advantage of it. Here is how we could express
such a configuration:

libfoo 71.0.0
{

Use config.libfoo.x only if enabled by someone else.
#

prefer

{

}

accept (true)

reflect

Revision 0.18, July 2025 The build2 Package Manager 11

6 Manifests

{
config.hello.libfoo_x = $config.libfoo.x

}
}

5.3 Disable If Enabled by Default

Sometimes we may want to disable a feature that is enabled by default provided that nobody
else needs it. For example, the feature might be expensive and we would prefer to avoid
paying the cost if we are the only ones using this dependency. Here is how we could express
such a configuration:

libfoo 71.0.0
{

prefer
{
if ($Sconfig.origin(config.libfoo.x) == ’default’)
config.libfoo.x = false

}

accept (true)

}

6 Manifests

This chapter describes the general manifest file format as well as the concrete manifests used
by bpkg.

Currently, three manifests are defined: package manifest, repository manifest, and signature
manifest. The former two manifests can also be combined into a list of manifests to form the
list of available packages and the description of a repository, respectively.

6.1 Manifest Format

A manifest is a UTF-8 encoded text restricted to the Unicode graphic characters, tabs (\t),
carriage returns (\r), and line feeds (\n). It contains a list of name-value pairs in the form:

<name>: <value>

For example:

name: libfoo
version: 1.2.3

If a value needs to be able to contain other Unicode codepoints, they should be escaped in a
value-specific manner. For example, the backslash (\) escaping described below can be
extended for this purpose.

12 The build2 Package Manager Revision 0.18, July 2025

6.1 Manifest Format

The name can contain any characters except : and whitespaces. Newline terminates the pair
unless escaped with \ (see below). Leading and trailing whitespaces before and after name
and value are ignored except in the multi-line mode (see below).

If the first non-whitespace character on the line is #, then the rest of the line is treated as a
comment and ignored except if the preceding newline was escaped or in the multi-line mode
(see below). For example:

This is a comment.

short: This is #not a comment
long: Also \

#not a comment

The first name-value pair in the manifest file should always have an empty name. The value
of this special pair is the manifest format version. The version value shall use the default (that
is, non-multi-line) mode and shall not use any escape sequences. Currently it should be 1, for
example:

: 1
name: libfoo
version: 1.2.3

Any new name that is added without incrementing the version must be optional so that it can
be safely ignored by older implementations.

The special empty name pair can also be used to separate multiple manifests. In this case the
version may be omitted in the subsequent manifests, for example:

: 1
name: libfoo
version: 1.2.3

name: libbar
version: 2.3.4

To disable treating of a newline as a name-value pair terminator we can escape it with \. Note
that \ is only treated as an escape sequence when followed by a newline and both are simply
removed from the stream (as opposed to being replaced with a space). To enter a literal \ at
the end of the value, use the \\ sequence. For example:

description: Long text that doesn’t fit into one line \
so it is continued on the next line.

windows—-path: C:\foo\bar\\

Notice that in the final example only the last \ needs special handling since it is the only one
that is followed by a newline.

One may notice that in this newline escaping scheme a line consisting of just \ followed by a
newline has no use, except, perhaps, for visual presentation of, arguably, dubious value. For
example, this representation:

Revision 0.18, July 2025 The build2 Package Manager 13

6.1 Manifest Format

description: First line. \
\

Second line.

Is semantically equivalent to:

description: First line. Second line.

As a result, such a sequence is "overloaded" to provide more useful functionality in two ways:
Firstly, if : after the name is followed on the next line by just \ and a newline, then it signals
the start of the multi-line mode. In this mode all subsequent newlines and # are treated as
ordinary characters rather than value terminators or comments until a line consisting of just \
and a newline (the multi-line mode terminator). For example:

description:

\

First paragraph.
#

Second paragraph.
\

Expressed as a C-string, the value in the above example is:

"First paragraph.\n#\nSecond paragraph."

Originally, the multi-line mode was entered if : after the name were immediately followed by
\ and a newline but on the same line. While this syntax is still recognized for backwards
compatibility, it is deprecated and will be discontinued in the future.

Note that in the multi-line mode we can still use newline escaping to split long lines, for
example:

description:

\

First paragraph that doesn’t fit into one line \
so it is continued on the next line.

Second paragraph.

\

And secondly, in the simple (that is, non-multi-line) mode, the sole \ and newline sequence is
overloaded to mean a newline. So the previous example can also be represented like this:

description: First paragraph that doesn’t fit into one \
line so it is continued on the next line.\
\

Second paragraph.

Note that the multi-line mode can be used to capture a value with leading and/or trailing
whitespaces, for example:

description:

\
test

14 The build2 Package Manager Revision 0.18, July 2025

6.1 Manifest Format

The C-string representing this value is:

" test\n"

EOF can be used instead of a newline to terminate both simple and multi-line values. For
example the following representation results in the same value as in the previous example.

description:

\
test

<EOF>

By convention, names are all in lower case and multi-word names are separated with —. Note
that names are case-sensitive.

Also by convention, the following name suffixes are used to denote common types of values:

—-file
-url
—email

For example:

description: Inline description
description-file: README
package-url: http://www.example.com
package-email: john@example.com

Other common name suffixes (such as -feed) could be added later.

Generally, unless there is a good reason not to, we keep values lower-case (for example,
requires values such as c++11 or 1inux). An example where we use upper/mixed case
would be 1icense; it seems unlikely gplv2 would be better than GPLv 2.

A number of name-value pairs described below allow for the value proper to be optionally
followed by ; and a comment. Such comments serve as additional documentation for the user
and should be one or more full sentences, that is start with a capital letter and end with a
period. Note that unlike #-style comments which are ignored, these comments are considered
to be part of the value. For example:

email: foo-users@example.com ; Public mailing list.

It is recommended that you keep comments short, single-sentence. Note that non-comment
semicolons in such values have to be escaped with a backslash, for example:

url: http://git.example.com/?p=foo\;a=tree

The only other recognized escape sequence in such values is \\, which is replaced with a
single backslash. If a backslash is followed by any other character, then it is treated literally.

Revision 0.18, July 2025 The build2 Package Manager 15

6.2 Package Manifest

If a value with a comment is multi-line, then ; must appear on a separate line, for example:

url:

\
http://git.example.com/?p=foo;a=tree
7

Git repository tree.

\

In this case, only lines that consist of a sole non-comment semicolon need escaping, for
example:

license:

\

other: strange
\;

license

\

The only other recognized escape sequence in such multi-line values is lines consisting of two
or more backslashes followed by a semicolon.

In the manifest specifications described below optional components are enclosed in square
brackets ([]). If the name is enclosed in [] then the name-value pair is optional, otherwise —
required. For example:

name: <name>
license: <licenses> [; <comment>]
[description]: <text>

In the above example name is required, 1icense has an optional component (comment),
and description is optional.

In certain situations (for example, shell scripts) it can be easier to parse the binary manifest
representation. The binary representation does not include comments and consists of a
sequence of name-value pairs in the following form:

<name>:<value>\0

That is, the name and the value are separated by a colon and each pair (including the last) is
terminated with the NUL character. Note that there can be no leading or trailing whitespace
characters around the name and any whitespaces after the colon and before the NUL termina-
tor are part of the value. Finally, the manifest format versions are always explicit (that is, not
empty) in binary manifest lists.

6.2 Package Manifest

The package manifest (the manifest file found in the package’s root directory) describes a
bpkg package. The manifest synopsis is presented next followed by the detailed description
of each value in subsequent sections.

16 The build2 Package Manager Revision 0.18, July 2025

6.2 Package Manifest

The subset of the values up to and including license constitute the package manifest
header. Note that the header is a valid package manifest since all the other values are optional.
There is also no requirement for the header values to appear first or to be in a specific order.
In particular, in a full package manifest they can be interleaved with non-header values.

name: <name>

version: <version>
[upstream-version]: <string>

[type] : <type>

[language] : <lang>

[project]: <name>

[priority]: <priority> [; <comment>]
summary: <text>

license: <licenses> [; <comment>]

[topics]: <topics>

[keywords]: <keywords>

[description]: <text>
[description-file]: <path> [; <comment>]
[description-type]: <text-type>
[package—-description]: <text>
[package—-description-file]: <path> [; <comment>]
[package—-description-type]: <text-type>
[changes]: <text>

[changes—-file]: <path> [; <comment>]
[changes—-type]: <text-type>

[url]: <url> [; <comment>]
[doc—url]: <url> [; <comment>]
[src—url]: <url> [; <comment>]
[package-url]: <url> [; <comment>]

[email]: <email> [; <comment>]
[package-email]: <email> [; <comment>]
[build-email]: <email> [; <comment>]
[build-warning-email]: <email> [; <comment>]
[build-error-email]: <email> [; <comment>]

[depends]: [*] <alternatives> [; <comment>]
[requires]: [*] <alternatives> [; <comment>]

[tests]: [*] <name> [<version-constraint>]
[examples]: [*] <name> [<version-constraint>]
[benchmarks]: [*] <name> [<version-constraint>]

[builds]: <class—-expr> [; <comment>]
[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]
[build-auxiliary]: <config> [; <comment>]
[build-auxiliary—-<name>]: <config> [; <comment>]
[build-bot]: <pub-key>

[*-build-config]: <args> [; <comment>]

[*-builds]: <class-expr> [; <comment>]
[*-build-include]: <config>[/<target>] [; <comment>]
[*-build-exclude]: <config>[/<target>] [; <comment>]
[*-build-auxiliary]: <config> [; <comment>]
[*-build-auxiliary—-<name>]: <config> [; <comment>]
[*-build-bot]: <pub-key>

Revision 0.18, July 2025 The build2 Package Manager 17

6.2.1 name

[*-build-email]: <email> [; <comment>]
[*-build-warning-email]: <email> [; <comment>]
[*~build-error-email]: <email> [; <comment>]

[build-file]: <path>
[bootstrap-build]: <text>
[root-build]: <text>

[*-build]: <text>
[bootstrap-build2]: <text>
[root-build2]: <text>

[*-build2]: <text>

[*-name] : <name> [<name>...]
[*~version]: <string>
[*~to-downstream-version]: <regex>

6.2.1 name

name: <name>

The package name. See [Package Name|for the package name format description. Note that the
name case is preserved for display, in file names, etc.

6.2.2 version

version: <version>
[upstream-version]: <string>

The package version. See [Package Version| for the version format description. Note that the
version case is preserved for display, in file names, etc.

When packaging existing projects, sometimes you may want to deviate from the upstream
versioning scheme because, for example, it may not be representable as a bpkg package
version or simply be inconvenient to work with. In this case you would need to come up with
an upstream-to-downstream version mapping and use the upstream-version value to
preserve the original version for information.

6.2.3 type, language

[type]l: <type>

[language] : <lang>
<type> = <name>|[,<sub-options>]
<lang> = <name>[=impl]

The package type and programming language(s).

The currently recognized package types are exe, 1ib, and other. If the type is not speci-
fied, then if the package name starts with 1ib, then it is assumed to be 1ib and exe other-
wise (see [Package Name] for details). Other package types may be added in the future and
code that does not recognize a certain package type should treat it as other. The type name

18 The build2 Package Manager Revision 0.18, July 2025

6.2.4 project

can be followed by a comma-separated list of sub-options. Currently, the only recognized
sub-option is binless which applies to the 1ib type indicating a header-only (or equiva-
lent) library. For example:

type: lib,binless

The package language must be in the lower case, for example, c, c++, rust, bash. If the
language is not specified, then if the package name has an extension (as in, for example,
libbutl.bash; see [Package Name| for details) the extension is assumed to name the
package language. Otherwise, cc (unspecified c-common language) is assumed. If a package
uses multiple languages, then multiple 1anguage values must be specified. The languages
which are only used in a library’s implementation (as opposed to also in its interface) should
be marked as such. For example, for a C library with C++ implementation:

type: lib
language: c
language: c++=impl

If the use of a language, such as C++, also always implies the use of another language, such as
C, then such an implied language need not be explicitly specified.

6.2.4 project
[project]: <name>
The project this package belongs to. The project name has the same restrictions as the package

name (see [Package Name| for details) and its case is preserved for display, in directory names,
etc. If unspecified, then the project name is assumed to be the same as the package name.

Projects are used to group related packages together in order to help with organization and
discovery in repositories. For example, packages hello, 1libhello, and l1ibhello?2
could all belong to project hello. By convention, projects of library packages are named
without the 1ib prefix.

6.2.5 priority
[priority]: <priority> [; <comment>]
<priority> = security | high | medium | low

The release priority (optional). As a guideline, use security for security fixes, high for
critical bug fixes, medium for important bug fixes, and 1ow for minor fixes and/or feature
releases. If not specified, 1ow is assumed.

6.2.6 summary

summary: <text>

Revision 0.18, July 2025 The build2 Package Manager 19

6.2.7 license

The short description of the package.

6.2.7 license

license: <licenses> [; <comment>]
<licenses> = <license> [, <license>]*
<license> = [<scheme>:] <name>
<scheme> = other

The package license. The default license name scheme is [SPDX License Expression| In its
simplest form, it is just an ID of the license under which this package is distributed. An
optional comment normally gives the full name of the license, for example:

license: MPL-2.0 ; Mozilla Public License 2.0
The following table lists the most commonly used free/open source software licenses and their

SPDX license IDs:

MIT ; MIT License.

BSD-2-Clause ; BSD 2-Clause "Simplified" License

BSD-3-Clause ; BSD 3-Clause "New" or "Revised" License
BSD-4-Clause ; BSD 4-Clause "Original" or "Old" License
GPL-2.0-only ; GNU General Public License v2.0 only
GPL-2.0-or-later ; GNU General Public License v2.0 or later
GPL-3.0-only ; GNU General Public License v3.0 only
GPL-3.0-or-later ; GNU General Public License v3.0 or later
LGPL-2.0-only ; GNU Library General Public License v2 only
LGPL-2.0-or-later ; GNU Library General Public License v2 or later
LGPL-2.1l-only ; GNU Lesser General Public License v2.1 only
LGPL-2.1l-or-later ; GNU Lesser General Public License v2.l1 or later
LGPL-3.0-only ; GNU Lesser General Public License v3.0 only
LGPL-3.0-or—-later ; GNU Lesser General Public License v3.0 or later
AGPL-3.0-only ; GNU Affero General Public License v3.0 only
AGPL-3.0-or-later ; GNU Affero General Public License v3.0 or later
Apache-1.0 Apache License 1.0

Apache-1.1 Apache License 1.1

Apache-2.0 Apache License 2.0

MPL-1.0 Mozilla Public License 1.0

MPL-1.1 Mozilla Public License 1.1

MPL-2.0 Mozilla Public License 2.0

BSL-1.0 Boost Software License 1.0

Unlicense ; The Unlicense (public domain)

If the package is licensed under multiple licenses, then an SPDX license expression can be
used to specify this, for example:

20 The build2 Package Manager Revision 0.18, July 2025

https://spdx.org/licenses/

6.2.7 license

license: Apache-2.0 OR MIT
license: MIT AND BSD-2-Clause

A custom license or extra conditions can be expressed either using the license reference mech-
anism of the SPDX license expression or using the other scheme (described below). For
example:

license: LicenseRef-My-MIT-Like; Custom MIT-alike license
license: other: MIT with extra attribution requirements

The other license name scheme can be used to specify licenses that are not defined by
SPDX. The license names in this scheme are free form with case-insensitive comparison. The
following names in this scheme have predefined meaning:

other: public domain ; Released into the public domain

other: available source ; Not free/open source with public source code
other: proprietary ; Not free/open source

other: TODO ; License is not yet decided

For new projects [The Unlicense| disclaimer with the Unlicense SPDX ID is recommended
over other: public domain.

To support combining license names that use different schemes, the 1icense manifest value
can contain a comma-separated list of license names. This list has the AND semantics, that is,
the user must comply with all the licenses listed. To capture alternative licensing options (the
OR semantics), multiple 1icense manifest values are used, for example:

license: GPL-2.0-only, other: available source
license: other: proprietary

For complex licensing situations it is recommended to add comments as an aid to the user, for
example:

license: LGPL-2.l-only AND MIT ; If linking with GNU TLS.
license: BSD-3-Clause ; If linking with OpenSSL.

For backwards compatibility with existing packages, the following (deprecated) scheme-less
values on the left are recognized as aliases for the new values on the right:

BSD2 BSD-2-Clause
BSD3 BSD-3-Clause
BSD4 BSD-4-Clause
GPLv2 GPL-2.0-only
GPLv3 GPL-3.0-only
LGPLv2 LGPL-2.0-only
LGPLv2.1 LGPL-2.1-only
LGPLv3 LGPL-3.0-only
AGPLv3 AGPL-3.0-only
ASLvl Apache-1.0
ASLvl.1l Apache-1.1
ASLv2 Apache-2.0
MPLv2 MPL-2.0

Revision 0.18, July 2025 The build2 Package Manager 21

https://unlicense.org/

6.2.8 topics

public domain other: public domain
available source other: available source
proprietary other: proprietary

TODO other: TODO

6.2.8 topics

[topics]: <topics>

<topics> = <topic> [, <topic>]*

The package topics (optional). The format is a comma-separated list of up to five potentially
multi-word concepts that describe this package. For example:

topics: xml parser, xml serializer

6.2.9 keywords
[keywords]: <keywords>
<keywords> = <keyword> [<keyword>]*

The package keywords (optional). The format is a space-separated list of up to five words that
describe this package. Note that the package and project names as well as words from its
summary are already considered to be keywords and need not be repeated in this value.

6.2.10 description, package—description

[description]: <text>

[description-file]: <path> [; <comment>]
[description-type]: <text-type>
[package-description]: <text>
[package-description-file]: <path> [; <comment>]
[package-description-type]: <text-type>

The detailed description of the project (description) and package
(package—description). If the package description is not specified, it is assumed to be
the same as the project description. It only makes sense to specify the package-descrip-
tion value if the project and package are maintained separately. A description can be
provided either inline as a text fragment or by referring to a file within a package (for
example, README), but not both. For package—-description-file the recommended
file name is PACKAGE—-README or README-PACKAGE.

In the web interface (brep) the description is displayed according to its type. Currently,
pre-formatted plain text, (GitHub-Flavored Markdown| and [CommonMark] are supported with
the following * -t ype values, respectively:

text/plain
text/markdown; variant=GFM
text/markdown; variant=CommonMark

22 The build2 Package Manager Revision 0.18, July 2025

https://github.github.com/gfm
https://spec.commonmark.org/current

6.2.11 changes

If just text/markdown is specified, then the GitHub-Flavored Markdown (which is a
superset of CommonMark) is assumed.

If a description type is not explicitly specified and the description is specified as *-file,
then an attempt to derive the type from the file extension is made. Specifically, the .md and
.markdown extensions are mapped to text /markdown, the .txt and no extension are
mapped to text /plain, and all other extensions are treated as an unknown type, similar to
unknown *-type values. And if a description is not specified as a file, text/plain is
assumed.

6.2.11 changes

[changes]: <text>
[changes—-file]: <path> [; <comment>]
[changes—type]: <text-type>

The description of changes in the release.

The tricky aspect is what happens if the upstream release stays the same (and has, say, a
NEWS file to which we point) but we need to make another package release, for example, to
apply a critical patch.

Multiple changes values can be present which are all concatenated in the order specified,
that is, the first value is considered to be the most recent (similar to ChangeLog and NEWS
files). For example:

changes: 1.2.3-2: applied upstream patch for critical bug bar
changes: 1.2.3-1: applied upstream patch for critical bug foo
changes—file: NEWS

Or:

changes:

\

1.2.3-2
- applied upstream patch for critical bug bar
- regenerated documentation

1.2.3-1
- applied upstream patch for critical bug foo

\
changes—file: NEWS

In the web interface (brep) the changes are displayed according to their type, similar to the
package description (see the [description| value for details). If the changes type is not
explicitly specified, then the types deduced for individual changes values must all be the
same.

Revision 0.18, July 2025 The build2 Package Manager 23

6.2.12 url

6.2.12 url

[url]: <url> [; <comment>]

The project home page URL.

6.2.13 doc—url

[doc—url]: <url> [; <comment>]
The project documentation URL.
6.2.14 src—url

[src—url]: <url> [; <comment>]
The project source repository URL.
6.2.15 package-url
[package-url]: <url> [; <comment>]

The package home page URL. If not specified, then assumed to be the same as url. It only
makes sense to specify this value if the project and package are maintained separately.

6.2.16 email

[email]: <email> [; <comment>]

The project email address. For example, a support mailing list.
6.2.17 package—email

[package-email]: <email> [; <comment>]

The package email address. If not specified, then assumed to be the same as email. It only
makes sense to specify this value if the project and package are maintained separately.

6.2.18 build-email

[build-email]: <email> [; <comment>]

The build notification email address. It is used to send build result notifications by automated
build bots. If unspecified, then no build result notifications for this package are sent by email.

For backwards compatibility with existing packages, if it is specified but empty, then this is
the same as unspecified.

24 The build2 Package Manager Revision 0.18, July 2025

6.2.19 build-warning-email

6.2.19 build-warning—-email

[build-warning-email]: <email> [; <comment>]

The build warning notification email address. Unlike build-email, only build warning
and error notifications are sent to this email.

6.2.20 build-error-email
[build-error-email]: <email> [; <comment>]

The build error notification email address. Unlike build-email, only build error notifica-
tions are sent to this email.

6.2.21 depends

[depends]: [*] <alternatives> [; <comment>]

Single-line form:

<alternatives> = <alternative> [' |’ <alternative>]*
<alternative> = <dependencies> [’?’ <enable-cond>] [<reflect-var>]
<dependencies> = <dependency> | \

"{’ <dependency> [<dependency>]* '}’ [<version-constraint>]
<dependency> = <name> [<version-—-constraint>]
<enable-cond> = '’ (’ <buildfile-eval-expr> ')’
<reflect-var> = <config-var> =’ <value>

Multi-line form:

<alternatives> =
<alternative>[
r|r

<alternative>]*

<alternative> =

<dependencies>
I{I
[

"enable’ <enable-cond>

"require’

I{I
<buildfile-fragment>

I}I

1]

"prefer’

I{I
<buildfile-fragment>

l}l

"accept’ <accept-cond>

Revision 0.18, July 2025 The build2 Package Manager 25

6.2.21 depends

[

"reflect’
I{I
<buildfile-fragment>
I}I
1
I}I
<accept-cond> = '’ (’ <buildfile-eval-expr> ')’

The dependency packages. The most common form of a dependency is a package name
followed by the optional version constraint. For example:

depends: libhello 71.0.0

See [Package Version Constraint| for the format and semantics of the version constraint.
Instead of a concrete value, the version in the constraint can also be specified in terms of the
dependent package’s version (that is, its value) using the special $ value. This
mechanism is primarily useful when developing related packages that should track each
other’s versions exactly or closely. For example:

name: sqglite3
version: 3.18.2
depends: libsglite3 == $

If multiple packages are specified within a single depends value, they must be grouped with
{ }. This can be useful if the packages share a version constraint. The group constraint applies
to all the packages in the group that do not have their own constraint. For example:

depends: { libboost-any libboost-log libboost-uuid ~1.77.1 } ~1.77.0

If the depends value starts with *, then it is a build-time dependency. Otherwise it is
run-time. For example:

depends: * byacc >= 20210619

Most of the build-time dependencies are expected to be tools such as code generators, so you
can think of * as the executable mark printed by 1s. An important difference between the two
kinds of dependencies is that in case of cross-compilation a build-time dependency must be
built for the host machine, not the target. Build system modules are also build-time dependen-
cies.

Two special build-time dependency names are recognized and checked in an ad hoc manner:
build2 (the build2 build system) and bpkg (the build2 package manager). This allows
us to specify the minimum required build system and package manager versions, for example:

depends: * build2 >= 0.15.0
depends: * bpkg >= 0.15.0

26 The build2 Package Manager Revision 0.18, July 2025

6.2.21 depends

If you are developing or packaging a project that uses features from the not yet released
(staged) version of the build?2 toolchain, then you can use the pre-release version in the
constraint. For example:

depends: * build2 >= 0.16.0-
depends: * bpkg >= 0.16.0-

A dependency can be conditional, that is, it is only enabled if a certain condition is met. For
example:

depends: libposix-getopt 71.0.0 ? (S$cxx.target.class == ’'windows’)

The condition after ? inside () is abuildfile eval context expression that should evaluate
to true or false, as if it were specified in the buildfile if directive (see Expansion
and Quoting and Conditions (1 f-else) for details).

The condition expression is evaluated after loading the package build system skeleton, that is,
after loading its root .build (see [Package Build System Skeleton| for details). As a result,
variable values set by build system modules that are loaded in root .build as well as the
package’s configuration (including previously reflected; see below) or computed values can
be referenced in dependency conditions. For example, given the following root .build:

root.build

using cxx

MinGW ships POSIX <getopt.h>.

#

need_getopt = ($cxx.target.class == ’'windows’ && \
Scxx.target.system != ‘mingw32’)

config [bool] config.hello.regex ?= false

We could have the following conditional dependencies:

depends: libposix-getopt 71.0.0 ? ($need_getopt) ; Windows && !MinGW.
depends: libposix-regex ~1.0.0 ? (S$config.hello.regex && \
Scxx.target.class == ’'windows’)

The first depends value in the above example also shows the use of an optional comment.
It’s a good idea to provide it if the condition is not sufficiently self-explanatory.

A dependency can "reflect" configuration variables to the subsequent depends values and to
the package configuration. This can be used to signal whether a conditional dependency is
enabled or which dependency alternative was selected (see below). The single-line form of
depends can only reflect one configuration variable. For example:

depends: libposix-regex 71.0.0 \

? ($cxx.target.class == ’‘windows’) \
config.hello.external_regex=true

Revision 0.18, July 2025 The build2 Package Manager 27

6.2.21 depends

root.build

using cxx

config [bool] config.hello.external_regex ?= false
buildfile

libs =

if $Sconfig.hello.external_regex
import libs += libposix-regex%lib{posix-regex}

exe{hello}: ... $libs

In the above example, if the hello package is built for Windows, then the dependency on
libposix-regex will be enabled and the package will be configured with
config.hello.external_regex=true. This is used in the buildfile to decide
whether to import 1ibposix-regex. While in this example it would have probably been
easier to just duplicate the check for Windows in the buildfile (or, better yet, factor this
check to root .build and share the result via a computed variable between manifest and
buildfile), the reflect mechanism is the only way to communicate the selected depen-
dency alternative (discussed next).

An attempt to set a reflected configuration variable that is overridden by the user is an error.
In a sense, configuration variables that are used to reflect information should be treated as the
package’s implementation details if the package management is involved. If, however, the
package is configured without bpkg’s involvement, then these variables could reasonably be
provided as user configuration.

If you feel the need to allow a reflected configuration variable to also potentially be supplied
as user configuration, then it’s probably a good sign that you should turn things around: make
the variable only user-configurable and use the enable condition instead of reflect. Alterna-
tively, you could try to recognize and handle user overrides with the help of the
$config.origin () function discussed in|[Dependency Configuration Negotiation|

While multiple depends values are used to specify multiple packages with the AND seman-
tics, inside depends we can specify multiple packages (or groups of packages) with the OR
semantics, called dependency alternatives. For example:

depends: libmysglclient >= 5.0.3 | libmariadb 710.2.2

When selecting an alternative, bpkg only considers packages that are either already present
in the build configuration or are selected as dependencies by other packages, picking the first
alternative with a satisfactory version constraint and an acceptable configuration. As a result,
the order of alternatives expresses a preference. If, however, this does not yield a suitable
alternative, then bpkg fails asking the user to make the selection.

28 The build2 Package Manager Revision 0.18, July 2025

6.2.21 depends

For example, if the package with the above dependency is called 1ibhello and we build it
in a configuration that already has both 1ibmysglclient and 1ibmariadb, then bpkg
will select 1ibmysglclient, provided the existing version satisfies the version constraint.
If, however, there are no existing packages in the build configuration and we attempt to build
just 1ibhello, then bpkg will fail asking the user to pick one of the alternatives. If we
wanted to make bpkg select 1ibmariadb we could run:

$ bpkg build libhello ?libmariadb

While bpkg’s refusal to automatically pick an alternative that would require building a new
package may at first seem unfriendly to the user, practical experience shows that such extra
user-friendliness would rarely justify the potential confusion that it may cause.

Also note that it’s not only the user that can pick a certain alternative but also a dependent
package. Continuing with the above example, if we had hello that depended on 1ibhello
but only supported MariaDB (or provided a configuration variable to explicitly select the
database), then we could have the following in its manifest:

depends: libmariadb ; Select MariaDB in libhello.
depends: libhello 71.0.0

Dependency alternatives can be combined with all the other features discussed above: groups,
conditional dependencies, and reflect. As mentioned earlier, reflect is the only way to commu-
nicate the selection to subsequent depends values and the package configuration. For
example:

depends: libmysglclient >= 5.0.3 config.hello.db="mysqgl’ | \
libmariadb 710.2.2 ? ($cxx.target.class != ’'windows’) \
config.hello.db='mariadb’

depends: libz 71.2.1100 ? ($config.hello.db == 'mysqgl’)

If an alternative is conditional and the condition evaluates to false, then this alternative is
not considered. If all but one alternative are disabled due to conditions, then this becomes an
ordinary dependency. If all the alternatives are disabled due to conditions, then the entire
dependency is disabled. For example:

depends: libmysglclient >= 5.0.3 ? ($config.hello.db == "mysqgl’) | \
libmariadb ~10.2.2 ? ($config.hello.db == 'mariadb’)

While there is no need to use the dependency alternatives in the above example (since the
alternatives are mutually exclusive), it makes for good documentation of intent.

Besides as a single line, the depends value can also be specified in a multi-line form which,
besides potentially better readability, provides additional functionality. In the multi-line form,
each dependency alternative occupies a separate line and | can be specified either at the end
of the dependency alternative line or on a separate line. For example:

Revision 0.18, July 2025 The build2 Package Manager 29

6.2.21 depends

depends:

\

libmysglclient >= 5.0.3 ? ($Sconfig.hello.db == 'mysqgl’) |
libmariadb 710.2.2 ? ($config.hello.db == 'mariadb’)
\

A dependency alternative can be optionally followed by a block containing a number of
clauses. The enable clause is the alternative way to specify the condition for a conditional
dependency while the reflect clause is the alternative way to specify the reflected configu-
ration variable. The block may also contain #-style comments, similar to buildfile. For
example:

depends:
\
libmysglclient >= 5.0.3
{
reflect
{
config.hello.db = 'mysqgl’

}
|

libmariadb ~10.2.2

{
TODO: MariaDB support on Windows.

#
enable ($cxx.target.class != 'windows’)
reflect
{
config.hello.db = ’'mariadb’

—

While the enable clause is essentially the same as its inline ? variant, the reflect clause
is an arbitrary buildfile fragment that can have more complex logic and assign multiple
configuration variables. For example:

libmariadb ~10.2.2
{

reflect
{
if ($cxx.target.class == 'windows’)
config.hello.db = 'mariadb-windows’
else
config.hello.db = "mariadb-posix’

The multi-line form also allows us to express our preferences and requirements for the depen-
dency configuration. If all we need is to set one or more bool configuration variables to
true (which usually translates to enabling one or more features), then we can use the
require clause. For example:

30 The build2 Package Manager Revision 0.18, July 2025

6.2.21 depends

libmariadb 710.2.2
{

require

{

config.libmariadb.cache = true

if ($cxx.target.class != 'windows’)
config.libmariadb.tls = true

For more complex dependency configurations instead of require we can use the prefer
and accept clauses. The prefer clause can set configuration variables of any type and to
any value in order to express the package’s preferred configuration while the accept condi-
tion evaluates whether any given configuration is acceptable. If used instead of require,
both prefer and accept must be present. For example:

libmariadb 710.2.2
{
We prefer the cache but can work without it.
We need the buffer of at least 4KB.
#
prefer
{

config.libmariadb.cache = true

config.libmariadb.buffer = ($config.libmariadb.buffer < 4096 \
? 4096 \
$config.libmariadb.buffer)
}

accept ($Sconfig.libmariadb.buffer >= 4096)
}

The require clause is essentially a shortcut for specifying the prefer/accept clauses
where the accept condition simply verifies all the variable values assigned in the prefer
clause. It is, however, further restricted to the common case of only setting bool variables
and only to t rue to allow additional optimizations during the configuration negotiation.

The require and prefer clauses are arbitrary buildfile fragments similar to
reflect while the accept clause is a buildfile eval context expression that should
evaluate to true or false, similar to enable.

Given the require and prefer/accept clauses of all the dependents of a particular
dependency, bpkg tries to negotiate a configuration acceptable to all of them as described in
[Dependency Configuration Negotiation|

All the clauses are evaluated in the specified order, that is, enable, then require or
prefer/accept, and finally reflect, with the (negotiated, in case of prefer) configu-
ration values set by preceding clauses available for examination by the subsequent clauses in
this depends value as well as in all the subsequent ones. For example:

Revision 0.18, July 2025 The build2 Package Manager 31

6.2.22 requires

depends:

\

libmariadb 710.2.2
{

prefer

{

config.libmariadb.cache = true
config.libmariadb.buffer = ($config.libmariadb.buffer < 4096 \
? 4096 \
$config.libmariadb.buffer)
accept ($Sconfig.libmariadb.buffer >= 4096)
reflect

{
config.hello.buffer = $Sconfig.libmariadb.buffer

depends: liblru 71.0.0 ? ($config.libmariadb.cache)

The above example also highlights the difference between the require/prefer and
reflect clauses that is easy to mix up: in require/prefer we set the dependency’s
while in reflect we set the dependent’s configuration variables.

6.2.22 requires

[requires]: [*] <alternatives> [; <comment>]
<alternatives> = <alternative> [' |’ <alternative>]*
<alternative> = <requirements> [’?’ [<enable-cond>]] [<reflect-var>]
<requirements> = [<requirement>] | \
"{’ <requirement> [<requirement>]* '}’ [<version-constraint>]
<requirement> = <name> [<version-constraint>]
<enable-cond> = '’ (’ <buildfile-eval-expr> ')’
<reflect-var> = <config-var> ’'=’ <value>

The package requirements other than other packages. Such requirements are normally
checked in an ad hoc way during package configuration by its buildfiles and the primary
purpose of capturing them in the manifest is for documentation. However, there are some
special requirements that are recognized by the tooling (see below). For example:

requires: c++11
requires: linux | windows | macos
requires: libc++ ? ($macos) ; libc++ if using Clang on Mac OS.

The format of the requires value is similar to with the following differences.
The requirement name (with or without version constraint) can mean anything (but must still
be a valid package name). Only the enable and reflect clauses are permitted. There is a
simplified syntax with either the requirement or enable condition or both being empty and
where the comment carries all the information (and is thus mandatory). For example:

32 The build2 Package Manager Revision 0.18, July 2025

6.2.23 tests, examples, benchmarks

requires: ; X11 libs.

requires: ? ($windows) ; Only 64-bit.
requires: ? ; Only 64-bit if on Windows.
requires: x86_64 ? ; Only if on Windows.

Note that requires can also be used to specify dependencies on system libraries, that is, the
ones not to be packaged. In this case it may make sense to also specify the version constraint.
For example:

requires: libxll >= 1.7.2

To assist potential future automated processing, the following pre-defined requirement names
should be used for the common requirements:

c++98
c++03
c++11
c++14
c++17
c++20
c++23

posix
linux
macos
freebsd
openbsd
netbsd
windows

gcc[_X.Y.Z] ; For example: gcc_6, gcc_4.9, gcc_5.0.0
clang[_X.Y] ; For example: clang 6, clang 3.4, clang 3.4.1
msvc[_N.U] ; For example: msvc_14, msvc_15.3

The following pre-defined requirement names are recognized by automated build bots:

bootstrap
host

The boot strap value should be used to mark build system modules that require bootstrap-
ping. The host value should be used to mark packages, such source code generators, that are
normally specified as build-time dependencies by other packages and therefore should be built
in a host configuration. See the bbot documentation for details.

6.2.23 tests, examples, benchmarks

[tests]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]
[examples]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]
[benchmarks]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]
<package> = <name> [<version—-constraint>]

<enable—-cond> " (" <buildfile-eval-expr> ")’
<reflect-var> = <config-var> ’'=’ <value>

Revision 0.18, July 2025 The build2 Package Manager 33

6.2.23 tests, examples, benchmarks

Separate tests, examples, and benchmarks packages. If the value starts with *, then the
primary package is a build-time dependency for the specified package. Otherwise it is
run-time. See the [depends|value for details on build-time dependencies.

These packages are built and tested by automated build bots together with the primary
package (see the bbot documentation for details). This, in particular, implies that these pack-
ages must be available from the primary package’s repository or its complement repositories,
recursively. The recommended naming convention for these packages is the primary package
name followed by —tests, —examples, or -benchmarks, respectively. For example:

name: hello
tests: hello-tests
examples: hello-examples

See [Package Version Constraint| for the format and semantics of the optional version
constraint. Instead of a concrete value, it can also be specified in terms of the primary
package’s version (see the [depends]value for details), for example:

tests: hello-tests ~$

Note that normally the tests, etc., packages themselves (we’ll call them all test packages for
short) do not have an explicit dependency on the primary package (in a sense, the primary
package has a special test dependency on them). They are also not built by automated build
bots separately from their primary package but may have their own build constraints, for
example, to be excluded from building on some platforms where the primary package is still
built, for example:

name: hello-tests
builds: -windows

Also note that a test package may potentially be used as a test dependency for multiple
primary packages. In this case a primary package normally needs to reflect to the test package
the fact that it is the one being tested. This can be achieved by setting the test package’s
configuration variable (see the value for details on reflection). For example:

name: hello-foo
tests: hello-tests config.hello_tests.test=hello-foo

name: hello-bar
tests: hello-tests config.hello_tests.test=hello-bar

If it is plausible that the test package may also be built explicitly, for example, to achieve a
more complicated setup (test multiple main packages simultaneously, etc), then the test
dependencies need to be made conditional in the primary packages so that the explicit config-
uration is preferred over the reflections (see the value for details on conditional
dependencies). For example:

34 The build2 Package Manager Revision 0.18, July 2025

6.2.24 builds

name: hello-foo
tests: hello-tests \
? (!$defined(config.hello_tests.test)) config.hello_tests.test=hello-foo

name: hello-bar
tests: hello-tests \
? (!$defined(config.hello_tests.test)) config.hello_tests.test=hello-bar

Note that in contrast to the value, both the reflection and condition refer to the vari-
ables defined not by the package which specifies the test dependency (primary package), but
the package such a dependency refers to (test package).

6.2.24 builds

[builds]: [<class-uset> ’':’] [<class-expr>] [; <comment>]
<class-uset> = <class—-name> [<class-name>]*

<class—expr> = <class—-term> [<class—-term>]*

<class-term> = (’+’|’—’|’&’)[’!’](<class—name> | " (" <class-expr> ")’)

The common package build target configurations. They specify the target configuration
classes the package should or should not be built for by automated build bots, unless overrid-
den by a package configuration-specific value (see [*—build-config| for details). For
example:

builds: -windows

Build target configurations can belong to multiple classes with their names and semantics
varying between different build bot deployments. However, the pre-defined none,
default, all, host, and build2 classes are always provided. If no builds value is
specified in the package manifest, then the default class is assumed.

A target configuration class can also derive from another class in which case configurations
that belong to the derived class are treated as also belonging to the base class (or classes,
recursively). See the Build Configurations page of the build bot deployment for the list of
available target configurations and their classes.

The builds value consists of an optional underlying class set (<class-uset>) followed
by a class set expression (<class—-expr>). The underlying set is a space-separated list of
class names that define the set of build target configurations to consider. If not specified, then
all the configurations belonging to the default class are assumed. The class set expression
can then be used to exclude certain configurations from this initial set.

The class expression is a space-separated list of terms that are evaluated from left to right. The
first character of each term determines whether the build target configuration that belong to its
set are added to (+), subtracted from (-), or intersected with (&) the current set. If the second
character in the term is !, then its set of configuration is inverted against the underlying set.
The term itself can be either the class name or a parenthesized expression. Some examples

(based on the deployment):

Revision 0.18, July 2025 The build2 Package Manager 35

https://ci.cppget.org/?build-configs

6.2.25 build-{include, exclude}

builds: none ; None.

builds: all ; All (suitable for libraries).
builds: all : &host ; All host (suitable for tools).
builds: default ; All default.

builds: default : &host ; Default host.

builds: default legacy ; All default and legacy.
builds: default legacy : &host ; Default and legacy host.
builds: -windows ; Default except Windows.
builds: all : -windows ; All except Windows.

builds: all : -mobile ; All except mobile.

builds: all : &gcc ; All with GCC only.

builds: all : &gcc—-8+ ; All with GCC 8 and up only.
builds: all : &gcc -optimized ; All GCC without optimization.

builds: all : &gcc &(+linux +macos) ; All GCC on Linux and Mac OS.

Notice that the colon and parentheses must be separated with spaces from both preceding and
following terms.

Multiple builds values are evaluated in the order specified and as if they were all part of a
single expression. Only the first value may specify the underlying set. The main reason for
having multiple values is to provide individual reasons (as the builds value comments) for
different parts of the expression. For example:

builds: default experimental ; Only modern compilers are supported.
builds: -gcc ; GCC is not supported.
builds: -clang ; Clang is not supported.

builds: default
builds: - (+macos &gcc) ; Homebrew GCC is not supported.

The builds value comments are used by the web interface (brep) to display the reason for
the build target configuration exclusion.

After evaluating all the builds values, the final configuration set can be further fine-tuned
using thefouild-{include, exclude }|patterns.

6.2.25build-{include, exclude}

[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]

The common package build inclusions and exclusions. The build-include and
build-exclude values further reduce the configuration set produced by evaluating the
values. The config and target values are filesystem wildcard patterns which are
matched against the build target configuration names and target names (see the bbot docu-
mentation for details). In particular, the * wildcard matches zero or more characters within the
name component while the ** sequence matches across the components. Plus, wildcard-only
pattern components match absent name components. For example:

build-exclude: windows** # matches windows_10-msvc_15
build-exclude: macos*-gcc** # matches macos_10.13-gcc_8.1-03
build-exclude: linux-gcc*-* # matches linux-gcc_8.1 and linux-gcc_8.1-03

36 The build2 Package Manager Revision 0.18, July 2025

6.2.26 build-auxiliary

The exclusion and inclusion patterns are applied in the order specified with the first match
determining whether the package will be built for this configuration and target. If none of the
patterns match (or none we specified), then the package is built.

As an example, the following value will exclude 32-bit builds for the MSVC 14 compiler:

build-exclude: *-msvc_14**/i?86-** ; Linker crash.

As another example, the following pair of values will make sure that a package is only built
on Linux:

build-include: linux**
build-exclude: ** ; Only supported on Linux.

Note that the comment of the matching exclusion is used by the web interface (brep) to
display the reason for the build target configuration exclusion.

6.2.26 build—-auxiliary

[build-auxiliary]: <config> [; <comment>]
[build-auxiliary-<name>]: <config> [; <comment>]

The common package build auxiliary configurations. The build-auxiliary values can
be used to specify auxiliary configurations that provide additional components which are
required for building or testing a package and that are impossible or impractical to provide as
part of the build configuration itself. For example, a package may need access to a suitably
configured database, such as PostgreSQL, in order to run its tests. Currently no more than 9
auxiliary configurations can be specified.

The config value is a filesystem wildcard patterns which is matched against the auxiliary
configuration names (which are in turn derived from auxiliary machine names; see the bbot
documentation for details). In particular, the * wildcard matches zero or more characters
within the name component while the ** sequence matches across the components. Plus,
wildcard-only pattern components match absent name components. For example:

build-auxiliary: linux_debian_1l2-postgresqgl_16

build-auxiliary: linux_*-postgresqgl_*
build-auxiliary: *-postgresqgl**

If multiple auxiliary configurations match the specified pattern, then one is picked at random
for every build.

If multiple auxiliary configurations are required, then they must be given distinct names with
the name component. For example:

build-auxiliary-pgsgl: *-postgresqgl_*
build-auxiliary-mysqgl: *-mysqgl_*

Another example:

Revision 0.18, July 2025 The build2 Package Manager 37

6.2.27 build-bot

build-auxiliary-primary: *-postgresqgl_*
build-auxiliary-secondary: *-postgresqgl_*

Auxiliary machines communicate information about their setup to the build machine using
environment variables (see auxiliary—-environment for details). For example, an auxil-
iary machine that provides a test PostgreSQL database may need to communicate the host 1P
address and port on which it can be accessed as well as the user to login as and the database
name to use. For example:

DATABASE_HOST=192.168.0.1
DATABASE_PORT=5432
DATABASE_USER=test
DATABASE_NAME=test

If the auxiliary configuration is specified as build-auxiliary-<name>, then capitalized
and sanitized name_ is used as a prefix in the environment variables corresponding to the
machine. For example, for the auxiliary configurations specified as:

build-auxiliary-pg-sgl: *-postgresqgl_*
build-auxiliary-my-sgl: *-mysqgl_*

The environment variables could be:

PG_SQL_DATABASE_HOST=192.168.0.1
PG_SQL_DATABASE_PORT=5432

MY_SQL_DATABASE_HOST=192.168.0.2
MY_SQL_DATABASE_PORT=3306

The auxiliary environment variables are in effect for the entire build. The recommended place
to propagate them to the package configuration is the *-build-config value. For
example:

build-auxiliary: *-postgresqgl_*
default-build-config:

\

config.hello.pgsgl_host=$getenv (DATABASE_HOST)
config.hello.pgsgl_port=$getenv (DATABASE_PORT)

\

6.2.27 build-bot

[build-bot]: <pub-key>

The common package build custom bot public key (see build2 build bot manual for back-
ground). Multiple build-bot values can be specified to list several custom build bots. If
specified, then such custom bots will be used instead of (note: not in addition to) the default
bots to build this package. Custom bots can be used, for example, to accommodate packages
that have special requirements, such as proprietary dependencies, and which cannot be
fulfilled using the default bots. The public key should be in the PEM format. For example:

38 The build2 Package Manager Revision 0.18, July 2025

6.2.28 *-build-config

build-bot:

MIICIJjANBgkghkiG9w0OBAQEFAAOCAG8AMIICCKCAGEAWS1iP5pyU9ebC/nD3d]z
1H2d1KmUyiX0Z8POVKhLREAOB3rM59bPcnbRB4HMIhj0J0hUBvS8xb4u5udCPToa
x0A/LMWZ6claiivNtJ3CdLVI8ek1WANUg5WXOuaqIQDKXw2 ZpGbwDwCOh6aHSWVg
98N9AQx0ZMmMWz 3ghRyxPfh+GeJ05uj20hU9FeUdxeqUcgdT/UcMZ3+7KYbwr+Uqg
/HCoX1BmN6nvzhQGHVJIIZ2IcjvOQOAUrPmpSZN01Zr3ZEpkHM3hJWNLu3nt JLGBQ
0aT5kG31igFyr9g3M3c4J8cOAWrnDjvi0gnCy jNwgW+gIpatmCNT43DmgYr9£fQLWO
UHusburz53AbXsl12zu3gzzkb0irlShatkMagQaqaU0/+zwllnoZ+rvmn2XvV97UuK
LFKMKXCnyi22G65IZHGk JBVAPuvsX6RgLNyner/QtkDJTbfhkt InbG08dCPqv1EF
10t cYKMTn8I5P2VmMMO6SXXDLMSAUSb5DASEY6Ca6JBB8g06S9sgGaXgQFysAnZsl
VEgMopf8WZqj23x+DX+9KKT2pVn jbwRVBANtuCDoO75gWoETDNCOXEei /PbyamPg
9+NjNsTDn67iJTGncZbII+eci¥2YiFHM6GMzBPsUY1Qcxiu04X36jWem2rwuw37K
oFDbGI3uY4LnhwmDFLb jtk8CAWEAAQ==

Note that such custom build bots must offer the same set of machines (or a subset thereof) as
the default bots. In other words, you cannot invent new build configuration names (and the
corresponding machines) with custom build bots — for that you would need to run your own
brep deployment. Note also that the list of machines offered by custom bots should be
consistent with the build configurations enabled by the package (see for details). For
example, if the package enables a configuration that is not offered by any of the custom bots
listed, then this configuration will remain unbuilt forever.

Note that custom build bot public keys are publicly known and nothing prevents someone else
from specifying your bot’s public key in their own package and thus triggering a build on
your bot of a potentially rogue package. As a result, carefully consider the information that
you make available in your custom machines (which will be easy to exfiltrate) as well as the
environment in which you run your custom bots (which can potentially be compromised). In
the future, bbot may offer mechanisms to restrict the names and locations of packages that it
is allowed to build.

6.2.28 *~build-config

[*~build-config]: <args> [; <comment>]

<args> [[[+]|-1<prefix>:] (<option>|<config-var>|<hook>)]*
[<global-var-override>]*

[(+|—)<prefix>:]*

[<dependency-spec>]*

[

<package-specific-vars>]*

<hook> = <hook-script>|<hook-script-arg>

<global-var-override> = !<var>

<dependency-spec> = [{ <config-var> [<config-var>]* }+] <dependency>
<dependency> = (?[sys:]|sys:)<name>[<version—spec>]

<version-spec> = /<version> | <version-constraint>
<package-specific-vars> = { <config-var> [<config-var>]* }+ <name>

[*~builds]: <class—-expr> [; <comment>]
[*~build-include]: <config>[/<target>] [; <comment>]
[*~build-exclude]: <config>[/<target>] [; <comment>]
[*~build-auxiliary]: <config> [; <comment>]
[*~build-auxiliary—-<name>]: <config> [; <comment>]

Revision 0.18, July 2025 The build2 Package Manager 39

6.2.28 *-build-config

[*-build-bot]: <pub-key>

[*-build-email]: <email> [; <comment>]
[*-build-warning-email]: <email> [; <comment>]
[*~build-error-email]: <email> [; <comment>]

The package build configurations where the substring matched by * in *~build-config
denotes the configuration name. If specified, then the package is built in these configurations
by automated build bots in addition to the default configuration (which is called default).

The *-build-config values contain whitespace separated lists of potentially
double/single-quoted package configuration arguments. The global (as opposed to
package-specific) options and configuration variables can be prefixed with the build bot
worker script step ids or a leading portion thereof to restrict it to a specific step, operation,
phase, or tool (see bbot worker step ids). The prefix can optionally begin with the + or -
character (in this case the argument can be omitted) to enable or disable the respective step
(see the list of worker steps which can be enabled or disabled). Unprefixed global options,
configuration variables, and dependencies are passed to the bpkg-pkg-build (1)
command at the bpkg.configure.build step.

The always unprefixed global variable overrides are set as a value of the BUILD2_VAR_OVR
environment variable, one override per line (see b (1) for details), at the very beginning of
the build.

The BUILD2_VAR_OVR environment variable is in effect for all the underlying build2
process invocations and, thus, these globally overridden variables can, in particular, be used in
bootstrap.build.

The package-specific configuration variables for this and/or the separate test packages are
passed to bpkg-pkg-build(l) at the Dbpkg.configure.build and
bpkg.test-separate-installed.configure.build steps. The dependencies of
these packages can be configured at these steps in various configurations by specifying the
package-specific ——config-uuid option(s) and configuration variables or the [?]sys:
prefix (see configuration UUIDs). For example:

network-build-config: config.libfoo.network=true; Enable networking API.

cache-build-config:

\
config.libfoo.cache=true
config.libfoo.buffer=4096

14
Enable caching.

\

libbar-network-build-config:
\

{ config.libbar.network=true }+ ?libbar

’

Enable networking API in libbar.
\

older-libz-build-config: "?libz ~1.0.0"; Test with older libz version.

40 The build2 Package Manager Revision 0.18, July 2025

6.2.28 *-build-config

sys—-build-config:

\

?sys:libbar ?sys:libz

7

Test with system dependencies.

\

bindist-build-config:

\

+bpkg.bindist.debian:--recursive=full

—-bbot.sys-install:

+bbot .bindist.upload:

4

Generate and upload binary distribution package but don’t test its installation.

\

load-tests-build-config:

\

{ config.libfoo_tests.load=true }+ libfoo-tests
7

Enable load testing.

\

default-build-config:
Configure libbar-tests package’s dependency libfoo as system on the
bpkg.test-separate-installed.configure.build step, since it is

already installed as a dependency of libbar.

——config-uuid=00000000-0000-0000-0000-000000000005 }+ ?sys:libfoo/*

e e e HE

extra-tests—-config:

\
!config.libfoo.extra_tests=true
7

Enable extra test subprojects.

\

Note that options with values can only be specified using the single argument notation, for
example, ——verbose=4.

Also note that the build bot worker may set some environment variables either for the entire
build or for specific commands (see the list of environment variables which may be set or
modified). Some of these environment variables may be useful in package build configura-
tions. For example:

bindist-build-config:
\

{ config.import.build2=$getenv (BBOT_MAIN_PACKAGE_CONFIG) }+ \
?libbuild2-autoconf
\

The *-build-config values prefixed with a hook step id specify the hook script and
optional script arguments to be executed at the specified step. Such hook scripts are written in
the build2 Shellscript language and normally used to amend the outcome of the commands

Revision 0.18, July 2025 The build2 Package Manager 41

6.2.28 *-build-config

executed on the previous or subsequent step. The first hook value should specify the path
(relative to the package’s source root directory) to the Shellscript file. The remaining hook
values specify the script arguments to be passed during the execution. The build bot worker
executes the script in the temporary directory as its working directory and, depending on the
step semantics, may pass additional arguments and/or set some environment variables (see the
list of bbot hooks for details). Note that since the hook steps are disabled by default, one of
the prefixes needs to begin with + to enable the respective hook (see above for details on
enabling the build bot worker script steps). For example:

windows-bindist-build-config:
\

+bpkg.bindist.archive:

+bbot .bindist.upload:

Bundle extra data into the generated archive.

#
+bpkg.bindist.archive.post:build/bindist-archive-post.bx
+bpkg.bindist.archive.post:-—type=windows

\

The package build configuration can override the common build target configurations set
(specified with ouilds|andouild-{include, exclude}] by specifying the matching
*~pbuilds and/or *~build-{include, exclude} values. For example:

network-builds: linux; Only supported on Linux.
network-build-config: config.libfoo.network=true; Enable networking API.

Note that the common build target configurations set is overridden hierarchically meaning that
the *~build-{include, exclude} overrides don’t discard the common builds
values.

The package build configuration can override the common build auxiliary machines. Note that
the auxiliary machine set 1is overridden entirely, meaning that specifying one
*—pbuild-auxiliary value discard all the common build-auxiliary values for this
package configuration.

The package build configuration can override the common build custom bots. Note that the
custom bot set is overridden entirely, meaning that specifying one *-build-bot value
discards all the common build-bot values for this package configuration.

The package build configuration can override the common build notification email addresses
(specified with ouild-emaillpuild-warning-email} and puild-error—emaill
by specifying the matching *-build-email and/or *-build-{warning,
error}-email values. For example:

bindist-build-config:

\

+bpkg.bindist.debian:--recursive=full

+bbot .bindist.upload:

7

Generate and upload binary distribution package.
\

bindist-build-error-email: builds@example.org

42 The build2 Package Manager Revision 0.18, July 2025

6.2.29 build-file

Note that to disable all the build notification emails for a specific package build configuration,
specify the empty *~build-email value. For example:

sys-build-config: ?sys:libz; Test with system dependencies.
sys—-build-email:

The default configuration should normally build the package with no configuration arguments
and for the common target build configurations set. While not recommended, this can be over-
ridden by using the special default configuration name. For example:

default-build-config: config.libfoo.cache=true

6.2.29 build-file
[build-file]: <path>

[bootstrap-build]: <text>
[root-build]: <text>
[*-build]: <text>

[bootstrap-build2]: <text>
[root-build2]: <text>
[*-build2]: <text>

The contents of the mandatory bootstrap.build file, optional root .build file, and
additional files included by root.build, or their alternative naming scheme variants
(bootstrap.build2, etc). Packages with the alternative naming scheme should use the
*-build2 values instead of *—build. See|Package Build System Skeleton|for background.

These files must reside in the package’s build/ subdirectory and have the .build exten-
sion (or their alternative names). They can be provided either inline as text fragments or, for
additional files, by referring to them with a path relative to this subdirectory, but not both. The
-~build/-build2 manifest value name prefixes must be the file paths relative to this
subdirectory with the extension stripped.

As an example, the following values correspond to the build/config/common.build
file:

build-file: config/common.build

config/common-build:

\

config [bool] config.libhello.fancy ?= false
\

And the following values correspond to the build2/config/common.build2 file in a
package with the alternative naming scheme:

build-file: config/common.build2
config/common-build2:
\

config [bool] config.libhello.fancy ?= false
\

Revision 0.18, July 2025 The build2 Package Manager 43

6.2.30 *-{name, version, to-downstream-version}

If unspecified, then the package’s bootstrap.build, root.build, and
build/config/*.build files (or their alternative names) will be automatically added,
for example, when the [package list manifest|is created.

6.2.30 *—{name, version, to—-downstream-version}

[<distribution>-name]: <name> [<name>...]
[<distribution>-version]: <string>
[<distribution>-to-downstream-version]: <regex>

<distribution> = <name>|[_<version>]
<regex> = /<pattern>/<replacement>/

The binary distribution package name and version mapping. The —name value specifies the
distribution package(s) this bpkg package maps to. If unspecified, then appropriate name(s)
are automatically derived from the bpkg package name (name). Similarly, the —~version
value specifies the distribution package version. If unspecified, then the
upstream-version value is used if specified and the bpkg version other-
wise. While the —~to-downstream-version values specify the reverse mapping, that is,
from the distribution version to the bpkg version. If unspecified or none match, then the
appropriate part of the distribution version is used. For example:

name: libssl

version 1.1.1+18

debian-name: libssll.l libssl-dev

debian-version: 1.1.1n

debian-to-downstream-version: /1\.1\.1l[a-z]/1.1.1/
debian-to-downstream-version: /([3-9]1)\. ([0-9]+)\. ([0-9]+4)/\1.\2.\3/

If upstream—version is specified but the the distribution package version should be the
same as the bpkg package version, then the special $ —version value can be used. For
example:

debian-version: $

The <distribution> name prefix consists of the distribution name followed by the
optional distribution version. If the version is omitted, then the value applies to all versions.
Some examples of distribution names and versions:

debian
debian_10
ubuntu_16.04
fedora_32
rhel_8.5
freebsd_12.1
windows_10
macos_10
macos_10.15
macos_12

Note also that some distributions are like others (for example, ubuntu is like debian) and
the corresponding "base" distribution values are considered if no "derived" values are speci-
fied.

44 The build2 Package Manager Revision 0.18, July 2025

6.3 Package List Manifest for pkg Repositories

The —name value is used both during package consumption as a system package and produc-
tion with the bpkg—pkg-bindist (1) command. During production, if multiple mappings
match, then the value with the highest matching distribution version from the package mani-
fest with the latest version is used. If it’s necessary to use different names for the generated
binary packages (called "non-native packages" in contrast to "native packages" that come
from the distribution), the special 0 distribution version can be used to specify such a
mapping. For example:

name: libsqglite3
debian_9-name: libsglite3-0 libsglite3-dev
debian_O-name: libsglite3 libsglite3-dev

Note that this special non-native mapping is ignored during consumption and a deviation in
the package names that it introduces may make it impossible to use native and non-native
binary packages interchangeably, for example, to satisfy dependencies.

The exact format of the -name and —version values and the distribution version part that
is matched against the —to—-downstream-version pattern are distribution-specific. For
details, see|[Debian Package Mapping|and [Fedora Package Mapping]

6.3 Package List Manifest for pkg Repositories

The package list manifest (the packages.manifest file found in the pkg repository root
directory) describes the list of packages available in the repository. First comes a manifest that
describes the list itself (referred to as the list manifest). The list manifest synopsis is presented
next:

sha256sum: <sum>

After the list manifest comes a (potentially empty) sequence of package manifests. These
manifests shall not contain any *—file or incomplete values (such values should
be converted to their inline versions or completed, respectively) but must contain the
*—puild values (unless the corresponding files are absent) and the following additional (to
package manifest) values:

location: <path>
sha256sum: <sum>

The detailed description of each value follows in the subsequent sections.

6.3.1 sha256sum (list manifest)

sha256sum: <sum>

The SHA256 checksum of the repositories.manifest file (described below) that
corresponds to this repository. The sum value should be 64 characters long (that is, just the
SHA256 value, no file name or any other markers), be calculated in the binary mode, and use
lower-case letters.

Revision 0.18, July 2025 The build2 Package Manager 45

6.4 Package List Manifest for dir Repositories

This checksum is used to make sure that the repositories.manifest file that was
fetched is the same as the one that was used to create the packages.manifest file. This
also means that if repositories.manifest is modified in any way, then pack-
ages.manifest must be regenerated as well.

6.3.2 location (package manifest)

location: <path>

The path to the package archive file relative to the repository root. It should be in the POSIX
representation.

if the repository keeps multiple versions of the package and places them all into the repository
root directory, it can get untidy. With locat ion we allow for sub-directories.

6.3.3 sha256sum (package manifest)
sha256sum: <sum>
The SHA256 checksum of the package archive file. The sum value should be 64 characters

long (that is, just the SHA256 value, no file name or any other markers), be calculated in the
binary mode, and use lower-case letters.

6.4 Package List Manifest for dir Repositories

The package list manifest (the packages.manifest file found in the dir repository root
directory) describes the list of packages available in the repository. It is a (potentially empty)
sequence of manifests with the following synopsis:

location: <path>
[fragment]: <string>

The detailed description of each value follows in the subsequent sections. The fragment
value can only be present in a merged packages.manifest file for a multi-fragment
repository.

As an example, if our repository contained the src/ subdirectory that in turn contained the
libfoo and foo packages, then the corresponding packages.manifest file could look
like this:

: 1
location: src/libfoo/

location: src/foo/

46 The build2 Package Manager Revision 0.18, July 2025

6.5 Repository Manifest

6.4.1 location

location: <path>

The path to the package directory relative to the repository root. It should be in the POSIX
representation.

6.4.2 fragment

[fragment]: <string>

The repository fragment id this package belongs to.

6.5 Repository Manifest

The repository manifest (only used as part of the repository manifest list described below)
describes a pkg, dir, or git repository. The manifest synopsis is presented next followed
by the detailed description of each value in subsequent sections.

[location]: <uri>

[typel: pkg|dir|git

[role]: base|prerequisite|complement
[trust]: <fingerprint>

[url]: <url>

[email]: <email> [; <comment>]
[summary] : <text>

[description]: <text>

[certificate]: <pem>

[fragment]: <string>

See also the Repository Chaining documentation for further information @ @ TODO.

6.5.1 location

[location]: <uri>

The repository location. The location can and must only be omitted for the base repository.
Since we got hold of its manifest, then we presumably already know the location of the base
repository. If the location is a relative path, then it is treated as relative to the base repository
location.

For the git repository type the relative location does not inherit the URL fragment from the
base repository. Note also that the remote git repository locations normally have the .git
extension that is stripped when a repository is cloned locally. To make the relative locations
usable in both contexts, the . git extension should be ignored if the local prerequisite reposi-
tory with the extension does not exist while the one without the extension does.

While POSIX systems normally only support POSIX paths (that is, forward slashes only),
Windows is generally able to handle both slash types. As a result, it is recommended that
POSIX paths are always used in the location values, except, perhaps, if the repository is
explicitly Windows-only by, for example, having a location that is an absolute Windows path

Revision 0.18, July 2025 The build2 Package Manager 47

6.5.2 type

with the drive letter. The bpkg package manager will always try to represent the location as a
POSIX path and only fallback to the native representation if that is not possible (for example,
there is a drive letter in the path).

6.5.2 type

[typel: pkg | dir | git

The repository type. The type must be omitted for the base repository. If the type is omitted
for a prerequisite/complement repository, then it is guessed from its location value as
described in bpkg-rep—add (1) .

6.5.3 role

[role]: base | prerequisite | complement

The repository role. The role value can be omitted for the base repository only.

6.5.4 trust

[trust]: <fingerprint>

The repository fingerprint to trust. The trust value can only be specified for prerequisite
and complement repositories and only for repository types that support authentication
(currently only pkg). The fingerprint value should be an SHA256 repository fingerprint
represented as 32 colon-separated hex digit pairs. The repository in question is only trusted
for use as a prerequisite or complement of this repository. If it is also used by other reposito-
ries or is added to the configuration by the user, then such uses cases are authenticated inde-
pendently.

6.5.5url
[url]: <url>

The repository’s web interface (brep) URL. It can only be specified for the base repository
(the web interface URLs for prerequisite/complement repositories can be extracted from their
respective manifests).

For example, given the following url value:

url: https://example.org/hello/

The package details page for libfoo located in this repository will be
https://example.org/hello/libfoo.

The web interface URL can also be specified as relative to the repository location (the Loca-
tion value). In this case url should start with two path components each being either . or
. .. If the first component is . ., then the www, pkg or bpkg domain component, if any, is
removed from the 1ocation URL host, just like when deriving the repository name.

48 The build2 Package Manager Revision 0.18, July 2025

6.5.6 email

Similarly, if the second component is . ., then the pkg or bpkg path component, if any, is
removed from the 1ocation URL path, again, just like when deriving the repository name.

Finally, the version component is removed from the 1ocation URL path, the rest (after the

two ./.

ized with all remaining . .

. components) of the url value is appended to it, and the resulting path is normal-
and . applied normally.

For example, assuming repository location is:

https://pkg.example.org/test/pkg/1l/hello/stable

The following listing shows some of the possible combinations (the <> marker is used to

highlight the changes):

VR -> https://pkg.example.org/test/pkg/hello/stable

VAR -> https://< >example.org/test/pkg/hello/stable

VAR -> https://pkg.example.org/test/< >hello/stable

VAN -> https://< >example.org/test/< >hello/stable

VANV -> https://pkg.example.org/test/pkg/hello< >
/o) -> https://< >example.org/test< >

The rationale for the relative web interface URLSs is to allow deployment of the same reposi-
tory to slightly different configuration, for example, during development, testing, and public
use. For instance, for development we may use the https://example.org/pkg/ setup
while in production it becomes https://pkg.example.org/. By specifying the web
interface location as, say, ../ ., we can run the web interface at these respective locations
using a single repository manifest.

6.5.6 email

[email]: <email> [; <comment>]

The repository email address. It must and can only be specified for the base repository. The
email address is displayed by the web interface (brep) in the repository about page and could
be used to contact the maintainers about issues with the repository.

6.5.7 summary

[summary]: <text>

The short description of the repository. It must and can only be specified for the base reposi-
tory.

6.5.8 description

[description]: <text>

The detailed description of the repository. It can only be specified for the base repository.

Revision 0.18, July 2025 The build2 Package Manager 49

6.6 Repository List Manifest

In the web interface (brep) the description is formatted into one or more paragraphs using
blank lines as paragraph separators. Specifically, it is not represented as <pre> so any kind
of additional plain text formatting (for example, lists) will be lost and should not be used in
the description.

6.5.9 certificate

[certificate]: <pem>

The X.509 certificate for the repository. It should be in the PEM format and can only be spec-
ified for the base repository. Currently only used for the pkg repository type.

The certificate should contain the CN and O components in the subject as well as the email:
component in the subject alternative names. The CN component should start with name : and
continue with the repository name prefix/wildcard (without trailing slash) that will be used to
verify the repository name(s) that are authenticated with this certificate. See bpkg—reposi-
tory-signing (1) for details.

If this value is present then the packages.manifest file must be signed with the corre-
sponding private key and the signature saved in the signature.manifest file. See
[Signature Manifest| for details.

6.5.10 fragment

[fragment]: <string>

The repository fragment id this repository belongs to.

6.6 Repository List Manifest

@@ TODO See the Repository Chaining document for more information on the terminology
and semantics.

The repository list manifest (the repositories.manifest file found in the repository
root directory) describes the repository. It starts with an optional header manifest optionally
followed by a sequence of repository manifests consisting of the base repository manifest
(that is, the manifest for the repository that is being described) as well as manifests for its
prerequisite and complement repositories. The individual repository manifests can appear in
any order and the base repository manifest can be omitted.

The fragment values can only be present in a merged repositories.manifest file
for a multi-fragment repository.

As an example, a repository manifest list for the math/testing repository could look like
this:

50 The build2 Package Manager Revision 0.18, July 2025

6.7 Signature Manifest for pkg Repositories

math/testing

#

1

min-bpkg-version: 0.14.0

email: math-pkg@example.org
summary: Math package repository

role: complement
location: ../stable

role: prerequiste
location: https://pkg.example.org/l/misc/testing

Here the first manifest describes the base repository itself, the second manifest — a comple-
ment repository, and the third manifest — a prerequisite repository. Note that the complement
repository’s location is specified as a relative path. For example, if the base repository loca-
tion were:

https://pkg.example.org/l/math/testing

Then the completement’s location would be:

https://pkg.example.org/l/math/stable

The header manifest synopsis is presented next followed by the detailed description of each
value in subsequent sections.

[min-bpkg-version]: <ver>
[compression]: <compressions>

6.6.1 min-bpkg-version

[min-bpkg-version]: <ver>

The earliest version of bpkg that is compatible with this repository. Note that if specified, it
must be the first value in the header.

6.6.2 compression
[compression]: <compressions>

<compressions> = <compression> [<compression>]*

Available compressed variants of the packages.manifest file. The format is a
space-separated list of the compression methods. The none method means no compression.
Absent compression value is equivalent to specifying it with the none value.

6.7 Signature Manifest for pkg Repositories
The signature manifest (the signature.manifest file found in the pkg repository root

directory) contains the checksum of the repository’s packages.manifest file. If the
repositories.manifest file contains the certificate value, then the signa-

Revision 0.18, July 2025 The build2 Package Manager 51

7 Binary Distribution Package Mapping

ture.manifest file also contains the signature of the packages.manifest file (which
is the encrypted checksum). The checksum is used to detect the situation where the down-
loaded signature.manifest and packages.manifest files belong to different
updates. We cannot rely on just the signature since a mismatch could mean either a split
update or tampering. The manifest synopsis is presented next followed by the detailed
description of each value in subsequent sections.

sha256sum: <sum>
[signature]: <sig>

6.7.1 sha256sum

sha256sum: <sum>

The SHA256 checksum of the packages.manifest file. The sum value should be 64
characters long (that is, just the SHA256 value, no file name or any other markers), be calcu-
lated in the binary mode, and use lower-case letters.

6.7.2 signature

[signature]: <sig>

The signature of the packages.manifest file. It should only be present if the reposi-
tories.manifest file contains the certificate value. It should be calculated by
encrypting the above sha256sum value with the repository certificate’s private key and then
base64-encoding the result.

7 Binary Distribution Package Mapping
7.1 Debian Package Mapping

This section describes the distribution package mapping for Debian and alike (Ubuntu, etc).

7.1.1 Debian Package Mapping for Consumption

A library in Debian is normally split up into several packages: the shared library package
(e.g., libfool where 1 is the ABI version), the development files package (e.g.,
libfoo-dev), the documentation files package (e.g., 1ibfoo-doc), the debug symbols
package (e.g., libfool-dbg), and the architecture-independent files (e.g.,
libfool-common). All the packages except —dev are optional and there is quite a bit of
variability. Here are a few examples:

libsglite3-0 libsqglite3-dev

libssll.l libssl-dev libssl-doc
libssl3 libssl-dev libssl-doc

libcurlé4 libcurl4-openssl-dev libcurlé4-doc
libcurl3—-gnutls libcurl4-gnutls-dev libcurl4-doc

52 The build2 Package Manager Revision 0.18, July 2025

7.1.1 Debian Package Mapping for Consumption

Note that while most library package names in Debian start with 1ib (per the policy), there
are exceptions (e.g., z1iblg zliblg—-dev). The header-only library package names may
or may not start with 1ib and end with —dev (e.g., 1libeigen3-dev, rapidjson-dev,
catch2). Also note that manual -dbg packages are obsolete in favor of automatic
—dbgsym packages from Debian 9.

For executable packages there is normally no -dev packages but -dbg, -doc, and
—common are plausible.

Based on that, our approach when trying to automatically map a bpkg library package name
to Debian package names is to go for the —dev package first and figure out the shared library
package from that based on the fact that the —dev package should have the == dependency
on the shared library package with the same version and its name should normally start with
the —dev package’s stem.

The format of the debian-name (or alike) manifest value is a comma-separated list of one
or more package groups:

<package—-group> [, <package-group>...]

Where each <package—group> is the space-separated list of one or more package names:

<package—name> [<package-name>...]

All the packages in the group should be "package components" (for the lack of a better term)
of the same "logical package", such as —dev, —doc, —common packages. They normally
have the same version.

The first group is called the main group and the first package in the group is called the main
package. Note that all the groups are consumed (installed) but only the main group is
produced (packaged).

We allow/recommend specifying the —dev package instead of the main package for libraries
(see for details), seeing that we are capable of detecting the main package automatically
(see above). If the library name happens to end with —dev (which poses an ambiguity), then
the —dev package should be specified explicitly as the second package to disambiguate this
situation.

The Debian package version has the [<epoch>:]<upstream>[-<revision>] form
(see deb—version (5) for details). If no explicit mapping to the bpkg version is specified
with the debian-to-downstream—version (or alike) manifest values or none match,
then we fallback to using the <upstream> part as the bpkg version. If explicit mapping is
specified, then we match it against the [<epoch>:]<upstream> parts ignoring <revi-
sion>.

Revision 0.18, July 2025 The build2 Package Manager 53

7.1.2 Debian Package Mapping for Production

7.1.2 Debian Package Mapping for Production

The same debian-name (or alike) manifest values as used for consumption are also used to
derive the package names for production except here we have the option to specify alternative
non-native package names using the special debian_0O-name (or alike) value. If only the
—dev package is specified, then the main package name is derived from that by removing the
—dev suffix. Note that regardless of whether the main package name is specified or not, the
bpkg-pkg-bindist (1) command may omit generating the main package for a binless
library.

The generated binary package version can be specified with the debian-version (or
alike) manifest value. If it’s not specified, then the upstream-version is used if speci-
fied. Otherwise, the bpkg version is translated to the Debian version as described next.

To recap, a Debian package version has the following form:

[<epoch>:]<upstream>[-<revision>]

For details on the ordering semantics, see the Version control file field documentation
in the Debian Policy Manual. While overall unsurprising, one notable exception is ~, which
sorts before anything else and is commonly used for upstream pre-releases. For example,
1.0~betal~svnl245 sorts earlier than 1. 0~betal, which sorts earlier than 1. O.

There are also various special version conventions (such as all the revision components in
1.4-5+debl0ul~bpo9ul) but they all appear to express relationships between native
packages and/or their upstream and thus do not apply to our case.

To recap, the bpkg version has the following form (see [Package Version|for details):

[+<epoch>-]<upstream>[-<prerel>] [+<revision>]

Let’s start with the case where neither distribution (debian-version) nor upstream
version (upstream-version) is specified and we need to derive everything from the
bpkg version (what follows is as much description as rationale).

<epoch>
On one hand, if we keep our (as in, bpkg) epoch, it won’t necessarily match Debian’s
native package epoch. But on the other it will allow our binary packages from different
epochs to co-exist. Seeing that this can be easily overridden with a custom distribution
version (see below), we keep it.

Note that while the Debian start/default epoch is 0, ours is 1 (we use the 0 epoch for stub
packages). So we shift this value range.

<upstream>[—-<prerel>]
Our upstream version maps naturally to Debian’s. That is, our upstream version
format/semantics is a subset of Debian’s.

54 The build2 Package Manager Revision 0.18, July 2025

7.1.2 Debian Package Mapping for Production

If this is a pre-release, then we could fail (that is, don’t allow pre-releases) but then we
won’t be able to test on pre-release packages, for example, to make sure the name
mapping is correct. Plus sometimes it’s useful to publish pre-releases. We could ignore
it, but then such packages will be indistinguishable from each other and the final release,
which is not ideal. On the other hand, Debian has the mechanism (~) which is essentially
meant for this, so we use it. We will use <prerel> as is since its format is the same as
upstream and thus should map naturally.

<revision>
Similar to epoch, our revision won’t necessarily match Debian’s native package revision.
But on the other hand it will allow us to establish a correspondence between source and
binary packages. Plus, upgrades between binary package revisions will be handled natu-
rally. Seeing that we allow overriding the revision with a custom distribution version (see
below), we keep it.

Note also that both Debian and our revision start/default is 0. However, it is Debian’s
convention to start revision from 1. But it doesn’t seem worth it for us to do any shifting
here and so we will use our revision as is.

Another related question is whether we should also include some metadata that identifies
the distribution and its version that this package is for. The strongest precedent here is
probably Ubuntu’s PPA. While there doesn’t appear to be a consistent approach, one can
often see versions like these:

0-1~ppaO~ubuntul4.04.1,
5-1.2.1~ubuntu20.04.1~ppal
2.2-0ubuntul~ubuntu23.04~ppal

.1
.4

2.1

Seeing that this is a non-sortable component (what in semver would be called "build
metadata"), using ~ is probably not the worst choice.

So we follow this lead and add the ~<ID><VERSION_ID> os—-release (5) compo-
nent to revision. Note that this also means we will have to make the O revision explicit.
For example:

l~debianl0
0~ubuntu20.04

1.2.3-

1.2.3-
The next case to consider is when we have the upstream version (upstream-version
manifest value). After some rumination it feels correct to use it in place of the
<epoch>-<upstream> components in the above mapping (upstream version itself cannot
have epoch). In other words, we will add the pre-release and revision components from the
bpkg version. If this is not the desired semantics, then it can always be overridden with the
distribution version (see below).

Finally, we have the distribution version. The Debian <epoch> and <upstream> compo-
nents are straightforward: they should be specified by the distribution version as required.
This leaves pre-release and revision. It feels like in most cases we would want these copied
over from the bpkg version automatically — it’s too tedious and error-prone to maintain them

Revision 0.18, July 2025 The build2 Package Manager 55

7.2 Fedora Package Mapping

manually. However, we want the user to have the full override ability. So instead, if empty
revision is specified, as in 1.2 . 3—, then we automatically add the bpkg revision. Similarly,
if empty pre-release is specified, as in 1.2.3~, then we add the bpkg pre-release. To add
both automatically, we would specify 1.2 .3~- (other combinations are 1.2.3~b.1- and
1.2.3~=1).

Note also that per the Debian version specification, if upstream contains : and/or —, then
epoch and/or revision must be specified explicitly, respectively. Note that the bpkg upstream
version may not contain either.

7.2 Fedora Package Mapping

This section describes the distribution package mapping for Fedora and alike (Red Hat Enter-
prise Linux, Centos, etc).

7.2.1 Fedora Package Mapping for Consumption

A library in Fedora is normally split up into several packages: the shared library package (e.g.,
libfoo), the development files package (e.g., 1ibfoo—-devel), the static library package
(e.g., libfoo-static; may also be placed into the —devel package), the documentation
files package (e.g., 1ibfoo-doc), the debug symbols and source files packages (e.g.,
libfoo-debuginfo and libfoo-debugsource), and the common or architec-
ture-independent files (e.g., 1ibfoo-common). All the packages except —devel are
optional and there is quite a bit of variability. In particular, the 1ib prefix in 1ibfoo is not a
requirement (unlike in Debian) and is normally present only if upstream name has it (see
some examples below).

For application packages there is normally no —devel packages but —debug*, —doc, and
—common are plausible.

For mixed packages which include both applications and libraries, the shared library package
normally has the —-1ibs suffix (e.g., foo-1ibs).

A package name may also include an upstream version based suffix if multiple versions of the
package can be installed simultaneously (e.g., libfool.l 1libfool.l-devel,
libfoo2 libfoo2-devel).

Terminology-wise, the term "base package" (sometime also "main package") normally refers
to either the application or shared library package (as decided by the package maintainer in
the spec file) with the suffixed packages (-devel, —doc, etc) called "subpackages".

Here are a few examples:
libpg libpg-devel
zlib zlib-devel zlib-static

catch-devel

56 The build2 Package Manager Revision 0.18, July 2025

7.2.1 Fedora Package Mapping for Consumption

eigen3-devel eigen3-doc
xerces—c xerces-c-devel xerces-c-doc

libsigc++20 libsigc++20-devel libsigc++20-doc
libsigc++30 libsigc++30-devel libsigc++30-doc

icu libicu libicu-devel libicu-doc

openssl openssl-libs openssl-devel openssl-static
openssll.l openssll.l-devel

curl libcurl libcurl-devel
sglite sglite-libs sqglite-devel sqglite-doc

community-mysgl community-mysgl-libs community-mysgl-devel
community-mysgl-common community-mysgl-server

ncurses ncurses-libs ncurses-c++-1ibs ncurses-devel ncurses-static

keyutils keyutils-1libs keyutils-libs-devel

Note that while we support arbitrary —debug* sub-package names for consumption, we only
generate <main-package>-debug*.

Based on that, our approach when trying to automatically map a bpkg library package name
to Fedora package names is to go for the —~devel package first and figure out the shared
library package from that based on the fact that the —devel package should have the ==
dependency on the shared library package with the same version and its name should
normally start with the —devel package’s stem and potentially end with the —1ibs suffix. If
failed to find the —devel package, we re-try but now using the bpkg project name instead of
the package name (see, for example, openssl, sglite).

The format of the fedora—name (or alike) manifest value value is a comma-separated list of
one or more package groups:

<package—-group> [, <package-group>...]
Where each <package—group> is the space-separated list of one or more package names:
<package—name> [<package-name>...]

All the packages in the group should belong to the same "logical package", such as —devel,
—doc, —common packages. They normally have the same version.

The first group is called the main group and the first package in the group is called the main
package. Note that all the groups are consumed (installed) but only the main group is
produced (packaged).

(Note that above we use the term "logical package" instead of "base package" since the main
package may not be the base package, for example being the —1ibs subpackage.)

Revision 0.18, July 2025 The build2 Package Manager 57

7.2.2 Fedora Package Mapping for Production

We allow/recommend specifying the —devel package instead of the main package for
libraries (see for details), seeing that we are capable of detecting the main package
automatically (see above). If the library name happens to end with —devel (which poses an
ambiguity), then the —devel package should be specified explicitly as the second package to
disambiguate this situation.

The Fedora package version has the [<epoch>:]<version>-<release> form (see
Fedora Package Versioning Guidelines for details). If no explicit mapping to the bpkg
version is specified with the fedora-to-downstream-version (or alike) manifest
values or none match, then we fallback to using the <version> part as the bpkg version. If
explicit mapping is specified, then we match it against the [<epoch>:]<version> parts
ignoring <release>.

7.2.2 Fedora Package Mapping for Production

The same fedora-name (or alike) manifest values as used for consumption are also used to
derive the package names for production except here we have the option to specify alternative
non-native package names using the special fedora_0O-name (or alike) value. If only the
—devel package is specified, then the main package name is derived from that by removing
the —devel suffix. Note that regardless of whether the main package name is specified or
not, the bpkg—pkg-bindist (1) command may omit generating the main package for a
binless library.

The generated binary package version can be specified with the fedora-version (or
alike) manifest value. If it’s not specified, then the upstream-version is used if speci-
fied. Otherwise, the bpkg version is translated to the Fedora version as described next.

To recap, a Fedora package version has the following form:

[<epoch>:]<version>-<release>

Where <release> has the following form:

<release—-number>[.<distribution-tag>]

For details on the ordering semantics, see the Fedora Versioning Guidelines. While overall
unsurprising, the only notable exceptions are ~, which sorts before anything else and is
commonly used for upstream pre-releases, and ~, which sorts after anything else and is
supposedly used for upstream post-release snapshots. For example,
0.1.0~alpha.l-1.fc35sortsearlierthan 0.1.0-1.£fc35.

To recap, the bpkg version has the following form (see [Package Version|for details):

[+<epoch>-]<upstream>[-<prerel>] [+<revision>]

Let’s start with the case where neither distribution (fedora-version) nor upstream
version (upstream-version) is specified and we need to derive everything from the
bpkg version (what follows is as much description as rationale).

58 The build2 Package Manager Revision 0.18, July 2025

7.2.2 Fedora Package Mapping for Production

<epoch>
On one hand, if we keep our (as in, bpkg) epoch, it won’t necessarily match Fedora’s
native package epoch. But on the other it will allow our binary packages from different
epochs to co-exist. Seeing that this can be easily overridden with a custom distribution
version (see below), we keep it.

Note that while the Fedora start/default epoch is 0, ours is 1 (we use the O epoch for stub
packages). So we shift this value range.

<upstream>[—-<prerel>]
Our upstream version maps naturally to Fedora’s <version>. That is, our upstream
version format/semantics is a subset of Fedora’s <version>.

If this is a pre-release, then we could fail (that is, don’t allow pre-releases) but then we
won’t be able to test on pre-release packages, for example, to make sure the name
mapping is correct. Plus sometimes it’s useful to publish pre-releases. We could ignore
it, but then such packages will be indistinguishable from each other and the final release,
which is not ideal. On the other hand, Fedora has the mechanism (~) which is essentially
meant for this, so we use it. We will use <prerel> as is since its format is the same as
<upstream> and thus should map naturally.

<revision>
Similar to epoch, our revision won’t necessarily match Fedora’s native package release
number. But on the other hand it will allow us to establish a correspondence between
source and binary packages. Plus, upgrades between binary package releases will be
handled naturally. Also note that the revision is mandatory in Fedora. Seeing that we
allow overriding the releases with a custom distribution version (see below), we use it.

Note that the Fedora start release number is 1 and our revision is 0. So we shift this value
range.

Also we automatically add the trailing distribution tag (. £c35, .e18, etc) to the Fedora
release. The tag is deduced automatically unless overridden on the command line (see
bpkg-pkg-bindist (1) command for details).

The next case to consider is when we have the upstream version (upstream-version
manifest value). After some rumination it feels correct to use it in place of the
<epoch>-<upstream> components in the above mapping (upstream version itself cannot
have epoch). In other words, we will add the pre-release and revision components from the
bpkg version. If this is not the desired semantics, then it can always be overridden with the
distribution version (see below).

Finally, we have the distribution version. The Fedora <epoch> and <version> compo-
nents are straightforward: they should be specified by the distribution version as required.
This leaves pre-release and release. It feels like in most cases we would want these copied
over from the bpkg version automatically — it’s too tedious and error-prone to maintain them
manually. However, we want the user to have the full override ability. So instead, if empty
release is specified, as in 1.2 . 3—, then we automatically add the bpkg revision. Similarly, if

Revision 0.18, July 2025 The build2 Package Manager 59

7.2.2 Fedora Package Mapping for Production

empty pre-release is specified, as in 1.2 . 3~, then we add the bpkg pre-release. To add both
automatically, we would specify 1.2.3~- (other combinations are 1.2.3~b.1- and
1.2.3~-1). If specified, the release must not contain the distribution tag, since it is deduced
automatically unless overridden on the command line (see bpkg-pkg-bindist (1)
command for details). Also, since the release component is mandatory in Fedora, if it is
omitted together with the separating dash we will add the release 1 automatically.

Note also that per the RPM spec file format documentation neither version nor release compo-
nents may contain : or —. Note that the bpkg upstream version may not contain either.

60 The build2 Package Manager Revision 0.18, July 2025

	Preface
	1 Package Name
	2 Package Version
	3 Package Version Constraint
	4 Package Build System Skeleton
	5 Dependency Configuration Negotiation
	5.1 Prefer X but Accept X or Y
	5.2 Use If Enabled
	5.3 Disable If Enabled by Default

	6 Manifests
	6.1 Manifest Format
	6.2 Package Manifest
	6.2.1 name
	6.2.2 version
	6.2.3 type, language
	6.2.4 project
	6.2.5 priority
	6.2.6 summary
	6.2.7 license
	6.2.8 topics
	6.2.9 keywords
	6.2.10 description, package-description
	6.2.11 changes
	6.2.12 url
	6.2.13 doc-url
	6.2.14 src-url
	6.2.15 package-url
	6.2.16 email
	6.2.17 package-email
	6.2.18 build-email
	6.2.19 build-warning-email
	6.2.20 build-error-email
	6.2.21 depends
	6.2.22 requires
	6.2.23 tests, examples, benchmarks
	6.2.24 builds
	6.2.25 build-{include, exclude}
	6.2.26 build-auxiliary
	6.2.27 build-bot
	6.2.28 *-build-config
	6.2.29 build-file
	6.2.30 *-{name, version, to-downstream-version}

	6.3 Package List Manifest for pkg Repositories
	6.3.1 sha256sum (list manifest)
	6.3.2 location (package manifest)
	6.3.3 sha256sum (package manifest)

	6.4 Package List Manifest for dir Repositories
	6.4.1 location
	6.4.2 fragment

	6.5 Repository Manifest
	6.5.1 location
	6.5.2 type
	6.5.3 role
	6.5.4 trust
	6.5.5 url
	6.5.6 email
	6.5.7 summary
	6.5.8 description
	6.5.9 certificate
	6.5.10 fragment

	6.6 Repository List Manifest
	6.6.1 min-bpkg-version
	6.6.2 compression

	6.7 Signature Manifest for pkg Repositories
	6.7.1 sha256sum
	6.7.2 signature

	7 Binary Distribution Package Mapping
	7.1 Debian Package Mapping
	7.1.1 Debian Package Mapping for Consumption
	7.1.2 Debian Package Mapping for Production

	7.2 Fedora Package Mapping
	7.2.1 Fedora Package Mapping for Consumption
	7.2.2 Fedora Package Mapping for Production

