
The build2 Build System

Copyright © 2014-2025 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.18, March 2025

This revision of the document describes the build2 build system 0.18.x series.

Table of Contents

................... 1Preface

................. 11 Introduction

................ 21.1 Hello, World

............... 81.2 Project Structure

............ 161.3 Output Directories and Scopes

................ 271.4 Operations

.............. 281.4.1 Configuring

............... 321.4.2 Testing

............... 371.4.3 Installing

.............. 411.4.4 Distributing

.............. 431.5 Target Importation

.......... 481.6 Library Exportation and Versioning

........... 531.7 Subprojects and Amalgamations

.............. 581.8 Buildfile Language

............ 601.8.1 Expansion and Quoting

............ 651.8.2 Conditions (if-else)

........... 661.8.3 Pattern Matching (switch)

............. 691.8.4 Repetitions (for)

............ 701.9 Implementing Unit Testing

............ 731.10 Diagnostics and Debugging

............... 782 Project Configuration

.............. 812.1 config Directive

.............. 872.2 Configuration Report

............. 892.3 Configuration Propagation

.............. 943 Targets and Target Types

................ 943.1 Target Types

.............. 963.1.1 target{}

............ 963.1.2 alias{} and dir{}

............... 973.1.3 fsdir{}

....... 973.1.4 mtime_target{} and path_target{}

............... 983.1.5 group{}

............... 983.1.6 file{}

.......... 983.1.7 doc{}, legal{}, and man{}

............... 993.1.8 exe{}

.................. 1004 Variables

.................. 1015 Functions

............... 1015.1 Builtin Functions

........... 1015.1.1 $builtin.defined()

.......... 1025.1.2 $builtin.visibility()

............ 1025.1.3 $builtin.type()

iRevision 0.18, March 2025 The build2 Build System

Table of Contents

............. 1025.1.4 $builtin.null()

............. 1025.1.5 $builtin.empty()

....... 1025.1.6 $builtin.first(), $builtin.second()

............. 1035.1.7 $builtin.quote()

............. 1035.1.8 $builtin.getenv()

................ 1035.2 String Functions

............ 1035.2.1 $string.icasecmp()

............ 1035.2.2 $string.contains()

........... 1045.2.3 $string.starts_with()

............ 1045.2.4 $string.ends_with()

............. 1045.2.5 $string.replace()

.............. 1055.2.6 $string.trim()

........ 1055.2.7 $string.lcase(), $string.ucase()

.............. 1055.2.8 $string.size()

.............. 1055.2.9 $string.sort()

............. 1055.2.10 $string.find()

........... 1065.2.11 $string.find_index()

............. 1065.2.12 $string.keys()

................ 1065.3 Integer Functions

............. 1065.3.1 $integer.string()

......... 1065.3.2 $integer.integer_sequence()

............. 1075.3.3 $integer.size()

............. 1075.3.4 $integer.sort()

............. 1075.3.5 $integer.find()

........... 1075.3.6 $integer.find_index()

................ 1075.4 Bool Functions

.............. 1075.4.1 $bool.string()

................. 1075.5 Path Functions

.............. 1085.5.1 $path.string()

............ 1085.5.2 $path.posix_string()

........... 1085.5.3 $path.representation()

......... 1085.5.4 $path.posix_representation()

............. 1085.5.5 $path.absolute()

.............. 1085.5.6 $path.simple()

............. 1095.5.7 $path.sub_path()

............ 1095.5.8 $path.super_path()

............. 1095.5.9 $path.directory()

........... 1095.5.10 $path.root_directory()

.............. 1095.5.11 $path.leaf()

............. 1105.5.12 $path.relative()

.............. 1105.5.13 $path.base()

............ 1105.5.14 $path.extension()

............. 1105.5.15 $path.complete()

Revision 0.18, March 2025ii The build2 Build System

Table of Contents

........... 1105.5.16 $path.canonicalize()

..... 1115.5.17 $path.normalize(), $path.try_normalize()

..... 1115.5.18 $path.actualize(), $path.try_actualize()

.............. 1115.5.19 $path.size()

.............. 1125.5.20 $path.sort()

.............. 1125.5.21 $path.find()

............ 1125.5.22 $path.find_index()

.............. 1125.5.23 $path.match()

................ 1135.6 Name Functions

.............. 1135.6.1 $name.name()

............. 1135.6.2 $name.extension()

............. 1135.6.3 $name.directory()

............ 1135.6.4 $name.target_type()

............. 1135.6.5 $name.project()

.............. 1145.6.6 $name.is_a()

....... 1145.6.7 $name.filter(), $name.filter_out()

.............. 1145.6.8 $name.size()

.............. 1145.6.9 $name.sort()

.............. 1145.6.10 $name.find()

............ 1145.6.11 $name.find_index()

................ 1155.7 Target Functions

.............. 1155.7.1 $target.path()

........... 1155.7.2 $target.process_path()

................ 1155.8 Regex Functions

.............. 1165.8.1 $regex.match()

............ 1165.8.2 $regex.find_match()

... 1165.8.3 $regex.filter_match(), $regex.filter_out_match()

............. 1165.8.4 $regex.search()

............ 1175.8.5 $regex.find_search()

.. 1175.8.6 $regex.filter_search(), $regex.filter_out_search()

............. 1185.8.7 $regex.replace()

........... 1185.8.8 $regex.replace_lines()

.............. 1185.8.9 $regex.split()

............. 1195.8.10 $regex.merge()

............. 1195.8.11 $regex.apply()

................ 1205.9 JSON Functions

............ 1205.9.1 $json.value_type()

............ 1205.9.2 $json.value_size()

............ 1205.9.3 $json.member_name()

............ 1215.9.4 $json.member_value()

............ 1215.9.5 $json.object_names()

............ 1215.9.6 $json.array_size()

............ 1215.9.7 $json.array_find()

iiiRevision 0.18, March 2025 The build2 Build System

Table of Contents

.......... 1215.9.8 $json.array_find_index()

.............. 1215.9.9 $json.load()

.............. 1225.9.10 $json.parse()

............ 1225.9.11 $json.serialize()

.............. 1225.9.12 $json.size()

.............. 1225.9.13 $json.keys()

................ 1225.10 Process Functions

............. 1225.10.1 $process.run()

........... 1235.10.2 $process.run_regex()

............... 1235.11 Filesystem Functions

.......... 1235.11.1 $filesystem.file_exists()

........ 1235.11.2 $filesystem.directory_exists()

.......... 1235.11.3 $filesystem.path_search()

.............. 1245.12 Project Name Functions

........... 1245.12.1 $project_name.string()

........... 1245.12.2 $project_name.base()

.......... 1245.12.3 $project_name.extension()

.......... 1245.12.4 $project_name.variable()

.............. 1245.13 Process Path Functions

........... 1255.13.1 $process_path.recall()

........... 1255.13.2 $process_path.effect()

........... 1255.13.3 $process_path.name()

.......... 1255.13.4 $process_path.checksum()

......... 1255.13.5 $process_path.env_checksum()

.............. 1255.14 Target Triplet Functions

.......... 1255.14.1 $target_triplet.string()

....... 1265.14.2 $target_triplet.representation()

................... 1266 Directives

.................. 1266.1 define

.................. 1266.2 include

.................. 1266.3 source

................... 1267 Attributes

.................. 1278 Name Patterns

.................. 1319 config Module

............. 1319.1 Hermetic Build Configurations

.................. 13410 test Module

................. 13511 install Module

.............. 13711.1 Relocatable Installation

............... 13811.2 Installation Filtering

................. 13912 version Module

.................. 14713 bin Module

............... 14713.1 Binary Target Types

............ 14713.1.1 lib{}, liba{}, libs{}

Revision 0.18, March 2025iv The build2 Build System

Table of Contents

........ 14813.1.2 libul{}, libue{}, libua{}, libus{}

.......... 14813.1.3 obj{}, obje{}, obja{}, objs{}

.......... 14813.1.4 bmi{}, bmie{}, bmia{}, bmis{}

........ 14913.1.5 hbmi{}, hbmie{}, hbmia{}, hbmis{}

................ 14913.1.6 def{}

................... 14914 cc Module

........... 14914.1 C-Common Configuration Variables

.............. 15014.2 C-Common Target Types

............. 15114.2.1 pc{}, pca{}, pcs{}

............. 15114.3 Compilation Internal Scope

............ 15314.4 Automatic DLL Symbol Exporting

............ 15414.5 Importation of Installed Libraries

....... 15614.5.1 Rewriting Installed Libraries System Root (sysroot)

............... 15714.6 Compilation Database

.............. 16214.7 GCC Compiler Toolchain

.............. 16214.8 Clang Compiler Toolchain

............. 16314.8.1 Clang Targeting MSVC

............. 16414.9 MSVC Compiler Toolchain

................... 16515 c Module

.............. 16515.1 C Configuration Variables

................ 16615.2 C Target Types

................ 16715.2.1 c{}, h{}

.............. 16715.3 Objective-C Compilation

.......... 16715.4 Assembler with C Preprocessor Compilation

.......... 16915.5 C Compiler Predefined Macro Extraction

.................. 16916 cxx Module

............. 17016.1 C++ Configuration Variables

............... 17116.2 C++ Target Types

......... 17116.2.1 cxx{}, hxx{}, ixx{}, txx{}, mxx{}

............... 17116.3 C++ Modules Support

............. 17116.3.1 Modules Introduction

.............. 17916.3.2 Building Modules

............ 18216.3.3 Module Symbols Exporting

............. 18316.3.4 Modules Installation

............ 18416.3.5 Modules Design Guidelines

............ 19116.3.6 Modularizing Existing Code

............. 19216.4 Objective-C++ Compilation

.......... 19216.5 C++ Compiler Predefined Macro Extraction

................... 19317 in Module

.................. 19518 bash Module

............. 19919 Appendix A – JSON Dump Format

vRevision 0.18, March 2025 The build2 Build System

Table of Contents

Preface

This document describes the build2 build system. For the build system driver command line

interface refer to the b(1) man pages. For other tools in the build2 toolchain (package and

project managers, etc) see the Documentation index.

1 Introduction

The build2 build system is a native, cross-platform build system with a terse, mostly declara­

tive description language, a conceptual model of build, and a uniform interface with consistent

behavior across platforms and compilers.

Those familiar with make will see many similarities, though mostly conceptual rather than

syntactic. This is not by accident since build2 borrows the fundamental DAG-based build

model from original make and many of its conceptual extensions from GNU make. We believe,

paraphrasing a famous quote, that those who do not understand make are condemned to reinvent

it, poorly. So our goal with build2 was to reinvent make well while handling the demands and

complexity of modern cross-platform software development.

Like make, build2 is an "honest" build system without magic or black boxes. You can expect

to understand what’s going on underneath and be able to customize most of its behavior to suit

your needs. This is not to say that it’s not an opinionated build system and if you find yourself

"fighting" some of its fundamental design choices, it would probably be wiser to look for alterna­

tives.

We believe the importance and complexity of the problem warranted the design of a new

purpose-built language and will hopefully justify the time it takes for you to master it. In the end

we hope build2 will make creating and maintaining build infrastructure for your projects a

pleasant task.

Also note that build2 is not specific to C/C++ or even to compiled languages; its build model is

general enough to handle any DAG-based operations. See the bash module for a good example.

While the build system is part of a larger, well-integrated build toolchain that includes the

package and project dependency managers, it does not depend on them and its standalone usage

is the only subject of this manual.

We begin with a tutorial introduction that aims to show the essential elements of the build system

on real examples but without getting into too much detail. Specifically, we want to quickly get to

the point where we can build useful executable and library projects.

1Revision 0.18, March 2025 The build2 Build System

Preface

https://build2.org/doc.xhtml

1.1 Hello, World

Let’s start with the customary "Hello, World" example: a single source file from which we would

like to build an executable:

$ tree hello/
hello/
·-- hello.cxx

$ cat hello/hello.cxx

#include <iostream>

int main ()
{
 std::cout << "Hello, World!" << std::endl;
}

While this very basic program hardly resembles what most software projects look like today, it is

useful for introducing key build system concepts without getting overwhelmed. In this spirit we

will also use the build2 simple project structure, which, similarly, should only be used for basic

needs.

To turn our hello/ directory into a simple project all we need to do is add a buildfile:

$ tree hello/
hello/
|-- hello.cxx
·-- buildfile

$ cat hello/buildfile

using cxx

exe{hello}: cxx{hello.cxx}

Let’s start from the bottom: the second line is a dependency declaration. On the left hand side of

: we have a target, the hello executable, and on the right hand side – a prerequisite, the

hello.cxx source file. Those exe and cxx in exe{...} and cxx{...} are called target

types. In fact, for clarity, target type names are always mentioned with trailing {}, for example,

"the exe{} target type denotes an executable".

Notice that the dependency declaration does not specify how to build an executable from a C++

source file – this is the job of a rule. When the build system needs to update a target, it tries to

match a suitable rule based on the types of the target and its prerequisites. The build2 core has

a number of predefined fundamental rules with the rest coming from build system modules. For

example, the cxx module defines a number of rules for compiling C++ source code as well as

linking executables and libraries.

Revision 0.18, March 20252 The build2 Build System

1.1 Hello, World

It should now be easy to guess what the first line of our buildfile does: it loads the cxx
module which defines the rules necessary to build our program (it also registers the cxx{} target

type).

Let’s now try to build and run our program (b is the build system driver):

$ cd hello/ # Change to project root.

$ b
c++ cxx{hello} -> obje{hello}
ld exe{hello}

$ ls -1
buildfile
hello.cxx
hello
hello.d
hello.o
hello.o.d

$./hello
Hello, World!

Or, if we are on Windows and using Visual Studio:

> cd hello

> b
c++ cxx{hello} -> obje{hello}
ld exe{hello}

> dir /b
buildfile
hello.cxx
hello.exe
hello.exe.d
hello.exe.obj
hello.exe.obj.d

> .\hello.exe
Hello, World!

By default build2 uses the same C++ compiler it was built with and without passing any extra

options, such as debug or optimization, target architecture, etc. To change these defaults we use

configuration variables. For example, to specify a different C++ compiler we use config.cxx:

$ b config.cxx=clang++

For Visual Studio, build2 by default will use the latest available version and build for the

x86_64 target (x64 in the Microsoft’s terminology). You can, however, override these defaults

by either running from a suitable Visual Studio development command prompt or by specifying

an absolute path to cl that you wish to use. For example (notice the use of inner quotes):

3Revision 0.18, March 2025 The build2 Build System

1.1 Hello, World

> b "config.cxx=’...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl’"

See MSVC Compiler Toolchain for details.

Similarly, for additional compile options, such as debug information or optimization level, there

is config.cxx.coptions. For example:

$ b config.cxx=clang++ config.cxx.coptions=-g

These and other configuration variables will be discussed in more detail later. We will also learn

how to make our configuration persistent so that we don’t have to repeat such long command

lines on every build system invocation.

Similar to config.cxx, there is also config.c for specifying the C compiler. Note, however,

that if your project uses both C and C++, then you normally only need to specify one of them –

build2 will determine the other automatically.

Let’s discuss a few points about the build output. Firstly, to reduce the noise, the commands

being executed are by default shown abbreviated and with the same target type notation as we

used in the buildfile. For example:

c++ cxx{hello} -> obje{hello}
ld exe{hello}

If, however, you would like to see the actual command lines, you can pass -v (to see even more,

there is the -V as well as --verbose options; see b(1) for details). For example:

$ b -v
g++ -o hello.o -c hello.cxx
g++ -o hello hello.o

Most of the files produced by the build system should be self-explanatory: we have the object file

(hello.o, hello.obj) and executable (hello, hello.exe). For each of them we also

have the corresponding .d files which store the auxiliary dependency information, things like

compile options, header dependencies, etc.

To remove the build system output we use the clean operation (if no operation is specified, the

default is update):

$ b clean
rm exe{hello}
rm obje{hello}

$ ls -1
buildfile
hello.cxx

Revision 0.18, March 20254 The build2 Build System

1.1 Hello, World

One of the main reasons behind the target type concept is the platform/compiler-specified vari­

ances in file names as illustrated by the above listings. In our buildfile we refer to the

executable target as exe{hello}, not as hello.exe or hello$EXT. The actual file exten­

sion, if any, will be determined based on the compiler’s target platform by the rule doing the

linking. In this sense, target types are a platform-independent replacement of file extensions

(though they do have other benefits, such as allowing non-file targets as well as being hierarchi­

cal; see Target Types for details).

Let’s revisit the dependency declaration line from our buildfile:

exe{hello}: cxx{hello.cxx}

In light of target types replacing file extensions this looks tautological: why do we need to specify

both the cxx{} target type and the .cxx file extension? In fact, we don’t have to if we specify

the default file extension for the cxx{} target type. Here is our updated buildfile in its

entirety:

using cxx

cxx{*}: extension = cxx

exe{hello}: cxx{hello}

Let’s unpack the new line. What we have here is a target type/pattern-specific variable. It only

applies to targets of the cxx{} type whose names match the * wildcard pattern. The exten­
sion variable name is reserved by the build2 core for specifying target type extensions.

Let’s see how all these pieces fit together. When the build system needs to update exe{hello},

it searches for a suitable rule. A rule from the cxx module matches since it knows how to build a

target of type exe{} from a prerequisite of type cxx{}. When the matched rule is applied, it

searches for a target for the cxx{hello} prerequisite. During this search, the extension

variable is looked up and its value is used to end up with the hello.cxx file.

To resolve a rule match ambiguity or to override a default match build2 uses rule hints. For

example, if we wanted link a C executable using the C++ link rule:

[rule_hint=cxx] exe{hello}: c{hello}

Here is our new dependency declaration again:

exe{hello}: cxx{hello}

It has the canonical form: no extensions, only target types. Sometimes explicit extension specifi­

cation is still necessary, for example, if your project uses multiple extensions for the same file

type. But if unnecessary, it should be omitted for brevity.

5Revision 0.18, March 2025 The build2 Build System

1.1 Hello, World

If you prefer the .cpp file extension and your source file is called hello.cpp, then the only

line in our buildfile that needs changing is the extension variable assignment:

cxx{*}: extension = cpp

Let’s say our hello program got complicated enough to warrant moving some functionality into

a separate source/header module (or a real C++ module). For example:

$ tree hello/
hello/
|-- hello.cxx
|-- utility.hxx
|-- utility.cxx
·-- buildfile

This is what our updated buildfile could look like:

using cxx

hxx{*}: extension = hxx
cxx{*}: extension = cxx

exe{hello}: cxx{hello} hxx{utility} cxx{utility}

Nothing really new here: we’ve specified the default extension for the hxx{} target type and

listed the new header and source files as prerequisites. If you have experience with other build

systems, then explicitly listing headers might seem strange to you. As will be discussed later, in

build2 we have to explicitly list all the prerequisites of a target that should end up in a source

distribution of our project.

You don’t have to list all headers that you include, only the ones belonging to your project. Like

all modern C/C++ build systems, build2 performs automatic header dependency extraction.

In real projects with a substantial number of source files, repeating target types and names will

quickly become noisy. To tidy things up we can use name generation. Here are a few examples of

dependency declarations equivalent to the above:

exe{hello}: cxx{hello utility} hxx{utility}
exe{hello}: cxx{hello} {hxx cxx}{utility}

The last form is probably the best choice if your project contains a large number of header/source

pairs. Here is a more realistic example:

exe{hello}: { cxx}{hello} \
 {hxx }{forward types} \
 {hxx cxx}{format print utility}

Revision 0.18, March 20256 The build2 Build System

1.1 Hello, World

Manually listing a prerequisite every time we add a new source file to our project is both tedious

and error prone. Instead, we can automate our dependency declarations with wildcard name

patterns. For example:

exe{hello}: {hxx cxx}{*}

Based on the previous discussion of default extensions, you can probably guess how this works:

for each target type the value of the extension variable is added to the pattern and files match­

ing the result become prerequisites. So, in our case, we will end up with files matching the

*.hxx and *.cxx wildcard patterns.

In more complex projects it is often convenient to organize source code into subdirectories. To

handle such projects we can use the recursive wildcard:

exe{hello}: {hxx cxx}{**}

Using wildcards is somewhat controversial. Patterns definitely make development more pleasant

and less error prone: you don’t need to update your buildfile every time you add, remove, or

rename a source file and you won’t forget to explicitly list headers, a mistake that is often only

detected when trying to build a source distribution of a project. On the other hand, there is the

possibility of including stray source files into your build without noticing. And, for more complex

projects, name patterns can become fairly complex (see Name Patterns for details). Note also that

on modern hardware the performance of wildcard searches hardly warrants a consideration.

In our experience, when combined with modern version control systems like git(1), stray

source files are rarely an issue and generally the benefits of wildcards outweigh their drawbacks.

But, in the end, whether to use them or not is a personal choice and, as shown above, build2
supports both approaches.

And that’s about all there is to our hello example. To summarize, we’ve seen that to build a

simple project we need a single buildfile which itself doesn’t contain much more than a

dependency declaration for what we want to build. But we’ve also mentioned that simple projects

are only really meant for basics. So let’s convert our hello example to the standard project

structure which is what we will be using for most of our real development.

Simple projects have so many restrictions and limitations that they are hardly usable for anything

but, well, really simple projects.

Specifically, such projects cannot be imported by other projects nor can they use build system

modules that require bootstrapping. Notably, this includes the dist and config modules (the

test and install modules are loaded implicitly). And without the config module there is

no support for persistent configurations.

7Revision 0.18, March 2025 The build2 Build System

1.1 Hello, World

As a result, you should only use a simple project if you are happy to always build in the source

directory and with the default build configuration or willing to specify the output directory and/or

custom configuration on every invocation. In other words, expect an experience similar to a plain

Makefile.

One notable example where simple projects are handy is a glue buildfile that "pulls" together

several other projects, usually for convenience of development. See Target Importation for

details.

1.2 Project Structure

A build2 standard project has the following overall layout:

hello/
|-- build/
| |-- bootstrap.build
| ·-- root.build
|-- ...
·-- buildfile

Specifically, the project’s root directory should contain the build/ subdirectory as well as the

root buildfile. The build/ subdirectory contains project-wide build system information.

The bdep-new(1) command is an easy way to create the standard layout executable (-t exe)

and library (-t lib) projects. To change the C++ file extensions to .hpp/.cpp, pass -l
c++,cpp. For example:

$ bdep new --no-init -l c++,cpp -t exe hello

It is also possible to use an alternative build file/directory naming scheme where every instance of

the word build is replaced with build2, for example:

hello/
|-- build2/
| |-- bootstrap.build2
| ·-- root.build2
|-- ...
·-- build2file

Note that the naming must be consistent within a project with all the filesystem entries either

following build or build2 scheme. In other words, we cannot call the directory build2/ while

still using buildfile.

The alternative naming scheme is primarily useful when adding build2 support to an existing

project along with other build systems. In this case, the fairly generic standard names might

already be in use. For example, it is customary to have build/ in .gitignore. Plus more

specific naming will make it easier to identify files and directories as belonging to the build2

Revision 0.18, March 20258 The build2 Build System

1.2 Project Structure

support. For new projects as well as for existing projects that are switching exclusively to

build2 the standard naming scheme is recommended.

To create a project with the alternative naming using bdep-new(1) pass the alt-naming
project type sub-option. For example:

$ bdep new -t exe,alt-naming ...

To support lazy loading of subprojects (discussed later), reading of the project’s build informa­

tion is split into two phases: bootstrapping and loading. During bootstrapping the project’s

build/bootstrap.build file is read. Then, when (and if) the project is loaded completely,

its build/root.build file is read followed by the buildfile (normally from the project

root but possibly from a subdirectory).

The bootstrap.build file is required. Let’s see what it would look like for a typical project

using our hello as an example:

project = hello

using version
using config
using test
using install
using dist

The first non-comment line in bootstrap.build should be the assignment of the project

name to the project variable. After that, a typical bootstrap.build file loads a number of

build system modules. While most modules can be loaded during the project load phase in

root.build, certain modules have to be loaded early, while bootstrapping (for example,

because they define new operations).

Let’s examine briefly the modules loaded by our bootstrap.build: The version module

helps with managing our project versioning. With this module we only maintain the version in a

single place (the project’s manifest file) and it is automatically made available in various

convenient forms throughout our project (buildfiles, header files, etc). The version
module also automates versioning of snapshots between releases.

The manifest file is what makes our build system project a package. It contains all the meta­

data that a user of a package might need to know: name, version, dependencies, etc., all in one

place. However, even if you don’t plan to package your project, it is a good idea to create a basic

manifest if only to take advantage of the version management offered by the version
module. So let’s go ahead and add it next to our root buildfile:

$ tree hello/
hello/
|-- build/
| ·-- ...

9Revision 0.18, March 2025 The build2 Build System

1.2 Project Structure

|-- ...
|-- buildfile
·-- manifest

$ cat hello/manifest
: 1
name: hello
version: 0.1.0
summary: hello C++ executable

The config module provides support for persistent configurations. While build configuration is

a large topic that we will be discussing in more detail later, in a nutshell build2 support for

configuration is an integral part of the build system with the same mechanisms available to the

build system core, modules, and your projects. However, without config, the configuration

information is transient. That is, whatever configuration information was automatically discov­

ered or that you have supplied on the command line is discarded after each build system invoca­

tion. With the config module, however, we can configure a project to make the configuration

persistent. We will see an example of this shortly.

Next up are the test, install, and dist modules. As their names suggest, they provide

support for testing, installation and preparation of source distributions. Specifically, the test
module defines the test operation, the install module defines the install and unin­
stall operations, and the dist module defines the dist (meta-)operation. Again, we will try

them out in a moment.

Moving on, the root.build file is optional though most projects will have it. This is the place

where we define project’s configuration variables (subject of Project Configuration), establish

project-wide settings, as well as load build system modules that provide support for the

languages/tools that we use. Here is what it could look like for our hello example:

cxx.std = latest

using cxx

hxx{*}: extension = hxx
cxx{*}: extension = cxx

As you can see, we’ve moved the loading of the cxx modules and setting of the default file

extensions from the root buildfile in our simple project to root.build when using the

standard layout. We’ve also set the cxx.std variable to tell the cxx module to select the latest

C++ standard available in any particular C++ compiler this project might be built with.

Selecting the C++ standard for our project is a messy issue. If we don’t specify the standard

explicitly with cxx.std, then the default standard in each compiler will be used, which,

currently, can range from C++98 to C++14. So unless you carefully write your code to work with

any standard, this is probably not a good idea.

Revision 0.18, March 202510 The build2 Build System

1.2 Project Structure

Fixing the standard (for example, to c++11, c++14, etc) should work theoretically. In practice,

however, compilers add support for new standards incrementally and many versions, while

perfectly usable, are not feature-complete. As a result, a better practical strategy is to specify the

set of minimum supported compiler versions rather than the C++ standard.

There is also the issue of using libraries that require a newer standard in old code. For example,

headers from a library that relies on C++14 features will not compile when included in a project

that is built as C++11. And, even if the headers compile (that is, C++14 features are only used in

the implementation), strictly speaking, there is no guarantee that codebases compiled with differ­

ent C++ standards are ABI compatible (in fact, some changes to the C++ language leave the

implementations no choice but to break the ABI).

As result, our recommendation is to set the standard to latest and specify the minimum

supported compilers and versions in your project’s documentation (see package manifest

requires value for one possible place). Practically, this should allow you to include and link

any library, regardless of the C++ standard that it uses.

Let’s now take a look at the root buildfile:

./: {*/ -build/}

In plain English, this buildfile declares that building this directory (and, since it’s the root of

our project, building this entire project) means building all its subdirectories excluding build/.

Let’s now try to understand how this is actually achieved.

We already know this is a dependency declaration, ./ is the target, and what’s after : are its

prerequisites, which seem to be generated with some kind of a name pattern (the wildcard charac­

ter in */ should be the giveaway). What’s unusual about this declaration, however, is the lack of

any target types plus that strange-looking ./.

Let’s start with the missing target types. In fact, the above buildfile can be rewritten as:

dir{.}: dir{* -build}

So the trailing slash (always forward, even on Windows) is a special shorthand notation for

dir{}. As we will see shortly, it fits naturally with other uses of directories in buildfiles
(for example, in scopes).

The dir{} target type is an alias (and, in fact, is derived from more general alias{}; see

Target Types for details). Building it means building all its prerequisites.

If you are familiar with make, then you can probably see the similarity with the ubiquitous all
pseudo-target. In build2 we instead use directory names as more natural aliases for the "build

everything in this directory" semantics.

11Revision 0.18, March 2025 The build2 Build System

1.2 Project Structure

Note also that dir{} is purely an alias and doesn’t have anything to do with the filesystem. In

particular, it does not create any directories. If you do want explicit directory creation (which

should be rarely needed), use the fsdir{} target type instead.

The ./ target is a special default target. If we run the build system without specifying the target

explicitly, then this target is built by default. Every buildfile has the ./ target. If we don’t

declare it explicitly, then its declaration is implied with the first target in the buildfile as its

prerequisite. Recall our buildfile from the simple hello project:

exe{hello}: cxx{hello}

It is equivalent to:

./: exe{hello}
exe{hello}: cxx{hello}

If, however, we had several targets in the same directory that we wanted built by default, then we

would need to explicitly list them as prerequisites of the default target. For example:

./: exe{hello}
exe{hello}: cxx{hello}

./: exe{goodby}
exe{goodby}: cxx{goodby}

While straightforward, this is somewhat inelegant in its repetitiveness. To tidy things up we can

use dependency declaration chains that allow us to chain together several target-prerequisite

declarations in a single line. For example:

./: exe{hello}: cxx{hello}

./: exe{goodby}: cxx{goodby}

With dependency chains a prerequisite of the preceding target becomes a target itself for the

following prerequisites.

Let’s get back to our root buildfile:

./: {*/ -build/}

The last unexplained bit is the {*/ -build/} name pattern. All it does is exclude build/
from the subdirectories to build. See Name Patterns for details.

Let’s take a look at a slightly more realistic root buildfile:

./: {*/ -build/} doc{README.md LICENSE} manifest

Revision 0.18, March 202512 The build2 Build System

1.2 Project Structure

Here we have the customary README.md and LICENSE files as well as the package mani­
fest. Listing them as prerequisites achieves two things: they will be installed if/when our

project is installed and, as mentioned earlier, they will be included into the project source distri­

bution.

The README.md and LICENSE files use the doc{} target type. We could have used the

generic file{} but using the more precise doc{} makes sure that they are installed into the

appropriate documentation directory. The manifest file doesn’t need an explicit target type

since it has a fixed name (manifest{manifest} is valid but redundant).

Standard project infrastructure in place, where should we put our source code? While we could

have everything in the root directory of our project, just like we did with the simple layout, it is

recommended to instead place the source code into a subdirectory named the same as the project.

For example:

hello/
|-- build/
| ·-- ...
|-- hello/
| |-- hello.cxx
| ·-- buildfile
|-- buildfile
|-- manifest
·-- README.md

There are several reasons for this layout: It implements the canonical inclusion scheme where

each header is prefixed with its project name. It also has a predictable name where users can

expect to find our project’s source code. Finally, this layout prevents clutter in the project’s root

directory which usually contains various other files. See Canonical Project Structure for details.

Note, however, that this layout is not mandatory and build2 is flexible enough to support

various arrangements used in today’s C and C++ projects. Furthermore, the bdep-new(1)

command provides a number of customization options and chances are you will be able to create

your preferred layout automatically. See SOURCE LAYOUT for more information and exam­

ples.

Note also that while we can name our header and source files however we like (but, again, see

Canonical Project Structure for some sensible guidelines), C++ module interface files need to

embed a sufficient amount of the module name suffix in their names to unambiguously resolve all

the modules within a project. See Building Modules for details.

The source subdirectory buildfile is identical to that of the simple project minus the parts

moved to root.build:

13Revision 0.18, March 2025 The build2 Build System

1.2 Project Structure

exe{hello}: {hxx cxx}{**}

Let’s now build our project and see where the build system output ends up in this new layout:

$ cd hello/ # Change to project root.
$ b
c++ hello/cxx{hello} -> hello/obje{hello}
ld hello/exe{hello}

$ tree ./
./
|-- build/
| ·-- ...
|-- hello/
| |-- hello.cxx
| |-- hello
| |-- hello.d
| |-- hello.o
| |-- hello.o.d
| ·-- buildfile
|-- buildfile
·-- manifest

$ hello/hello
Hello, World!

If we don’t specify a target to build (as in the example above), then build2 will build the

current directory or, more precisely, the default target in the buildfile in the current direc­

tory. We can also build a directory other than the current, for example:

$ b hello/

Note that the trailing slash is required. In fact, hello/ in the above command line is a target and

is equivalent to dir{hello}, just like in the buildfiles.

Or we can build a specific target:

$ b hello/exe{hello}

Naturally, nothing prevents us from building multiple targets or even projects in the same build

system invocation. For example, if we had the libhello project next to our hello/, then we

could build both at once:

$ ls -1
hello/
libhello/

$ b hello/ libhello/

Revision 0.18, March 202514 The build2 Build System

1.2 Project Structure

Speaking of libraries, let’s see what the standard project structure looks like for one, using

libhello created by bdep-new(1) as an example:

$ bdep new --no-init -l c++ -t lib libhello

$ tree libhello/
libhello/
|-- build/
| |-- bootstrap.build
| |-- root.build
| ·-- export.build
|-- libhello/
| |-- hello.hxx
| |-- hello.cxx
| |-- export.hxx
| |-- version.hxx.in
| ·-- buildfile
|-- tests/
| ·-- ...
|-- buildfile
|-- manifest
·-- README.md

The overall layout (build/, libhello/ source subdirectory) as well as the contents of the

root files (bootstrap.build, root.build, root buildfile) are exactly the same. There

is, however, the new file export.build in build/, the new subdirectory tests/, and the

contents of the project’s source subdirectory libhello/ look quite a bit different. We will

examine all of these differences in the coming sections, as we learn more about the build system.

Again, this layout is not mandatory and bdep-new(1) can create a number of alternative

library structures. For example, if you prefer the include/src split, try:

$ bdep new --no-init -l c++ -t lib,split libhello

See SOURCE LAYOUT for more examples.

The standard project structure is not type (executable, library, etc) or even language specific. In

fact, the same project can contain multiple executables and/or libraries (for example, both hello
and libhello). However, if you plan to package your projects, it is a good idea to keep them as

separate build system projects (they can still reside in the same version control repository,

though).

Speaking of projects, this term is unfortunately overloaded to mean two different things at differ­

ent levels of software organization. At the bottom we have build system projects which, if pack­

aged, become packages. And at the top, related packages are often grouped into what is also

commonly referred to as projects. At this point both usages are probably too well established to

look for alternatives.

15Revision 0.18, March 2025 The build2 Build System

1.2 Project Structure

And this completes the conversion of our simple hello project to the standard structure. Earlier,

when examining bootstrap.build, we mentioned that modules loaded in this file usually

provide additional operations. So we still need to discuss what exactly the term build system

operation means and see how to use operations that are provided by the modules we have loaded.

But before we do that, let’s see how we can build our projects out of source tree and learn about

another cornerstone build2 concept: scopes.

1.3 Output Directories and Scopes

Two common requirements placed on modern build systems are the ability to build projects out

of the source directory tree (referred to as just out of source vs in source) as well as isolation of

buildfiles from each other when it comes to target and variable names. In build2 these

mechanisms are closely-related, integral parts of the build system.

This tight integration has advantages, like being always available and working well with other

build system mechanisms, as well as disadvantages, like the inability to implement a completely

different out of source arrangement and/or isolation model. In the end, if you find yourself "fight­

ing" this aspect of build2, it will likely be easier to use a different build system than subvert it.

Let’s start with an example of an out of source build for our hello project. To recap, this is

what we have:

$ ls -1
hello/

$ tree hello/
hello/
|-- build/
| ·-- ...
|-- hello/
| ·-- ...
|-- buildfile
·-- manifest

To start, let’s build it in the hello-out/ directory next to the project:

$ b hello/@hello-out/
mkdir fsdir{hello-out/}
mkdir hello-out/fsdir{hello/}
c++ hello/hello/cxx{hello} -> hello-out/hello/obje{hello}
ld hello-out/hello/exe{hello}

$ ls -1
hello/
hello-out/

$ tree hello-out/
hello-out/
·-- hello/

Revision 0.18, March 202516 The build2 Build System

1.3 Output Directories and Scopes

 |-- hello
 |-- hello.d
 |-- hello.o
 ·-- hello.o.d

This definitely requires some explaining. Let’s start from the bottom, with the hello-out/
layout. It is parallel to the source directory. This mirrored side-by-side listing (of the relevant

parts) should illustrate this clearly:

hello/ ~~> hello-out/
·-- hello/ ~~> ·-- hello/
 ·-- hello.cxx ~~> ·-- hello.o

In fact, if we copy the contents of hello-out/ over to hello/, we will end up with exactly

the same result as in the in source build. And this is not accidental: an in source build is just a

special case of an out of source build where the out directory is the same as src.

In build2 this parallel structure of the out and src directories is a cornerstone design decision

and is non-negotiable, so to speak. In particular, out cannot be inside src. And while we can stash

the build system output (object files, executables, etc) into (potentially different) subdirectories,

this is not recommended. As will be shown later, build2 offers better mechanisms to achieve

the same benefits (like reduced clutter, ability to run executables) but without the drawbacks (like

name clashes).

Let’s now examine how we invoked the build system to achieve this out of source build. Specifi­

cally, if we were building in source, our command line would have been:

$ b hello/

but for the out of source build, we have:

$ b hello/@hello-out/

In fact, that strange-looking construct, hello/@hello-out/ is just a more elaborate target

specification that explicitly spells out the target’s src and out directories. Let’s add an explicit

target type to make it clearer:

$ b hello/@hello-out/dir{.}

What we have on the right of @ is the target in the out directory and on the left – its src directory.

In plain English, this command line says "build me the default target from hello/ in the

hello-out/ directory".

As an example, if instead we wanted to build only the hello executable out of source, then the

invocation would have looked like this:

17Revision 0.18, March 2025 The build2 Build System

1.3 Output Directories and Scopes

$ b hello/hello/@hello-out/hello/exe{hello}

We could have also specified out for an in source build, but that’s redundant:

$ b hello/@hello/

There is another example of this elaborate target specification that can be seen in the build diag­

nostics, for instance, when installing headers of a library (the install operation is discussed in

the next section):

$ b install: libhello/@libhello-out/
...
install libhello/libhello/hxx{hello}@libhello-out/libhello/ ->
 /usr/local/include/

Notice, however, that now the target (hxx{hello}) is on the left of @, that is, in the src direc­

tory. It does, however, make sense if you think about it: our hello.hxx is a source file, in a

sense that it is not built and it resides in the project’s source directory. This is in contrast, for

example, to the exe{hello} target which is the output of the build system and goes to the out

directory. So in build2 targets can be either in src or in out (there can also be out of any project

targets, for example, installed files).

The elaborate target specification can also be used in buildfiles. We haven’t encountered

any so far because targets mentioned without explicit src/out default to out and, naturally, most of

the targets we mention in buildfiles are things we want built. One situation where you may

encounter an src target mentioned explicitly is when specifying its installability (discussed in the

next section). For example, if our project includes the customary INSTALL file, it probably

doesn’t make sense to install it. However, since it is a source file, we have to use the elaborate

target specification when disabling its installation:

doc{INSTALL}@./: install = false

Note also that only targets and not prerequisites have this notion of src/out directories. In a sense,

prerequisites are relative to the target they are prerequisites of and are resolved to targets in a

manner that is specific to their target types. For file{}-based prerequisites the corresponding

target in out is first looked up and, if found, used. Otherwise, an existing file in src is searched for

and, if found, the corresponding target (now in src) is used. In particular, this semantics gives

preference to generated code over static.

More precisely, a prerequisite is relative to the scope (discussed below) in which the dependency

is declared and not to the target that it is a prerequisite of. However, in most practical cases, this

means the same thing.

And this pretty much covers out of source builds. Let’s summarize the key points we have estab­

lished so far: Every build has two parallel directory trees, src and out, with the in source build

being just a special case where they are the same. Targets in a project can be either in the src or

Revision 0.18, March 202518 The build2 Build System

1.3 Output Directories and Scopes

out directory though most of the time targets we mention in our buildfiles will be in out,

which is the default. Prerequisites are relative to targets they are prerequisites of and

file{}-based prerequisites are first searched for as declared targets in out and then as existing

files in src.

Note also that we can have as many out of source builds as we want and we can place them

anywhere we want (but not inside src), say, on a RAM-backed disk/filesystem. As an example,

let’s build our hello project with two different compilers:

$ b hello/@hello-gcc/ config.cxx=g++
$ b hello/@hello-clang/ config.cxx=clang++

In the next section we will see how to permanently configure our out of source builds so that we

don’t have to keep repeating these long command lines.

While technically you can have both in source and out of source builds at the same time, this is

not recommended. While it may work for basic projects, as soon as you start using generated

source code (which is fairly common in build2), it becomes difficult to predict where the

compiler will pick generated headers. There is support for remapping mis-picked headers but this

may not always work with older C/C++ compilers. Plus, as we will see in the next section,

build2 supports forwarded configurations which provide most of the benefits of an in source

build but without the drawbacks.

Let’s now turn to buildfile isolation. It is a common, well-established practice to organize

complex software projects in directory hierarchies. One of the benefits of this organization is

isolation: we can use the same, short file names in different subdirectories. In build2 the

project’s directory tree is used as a basis for its scope hierarchy. In a sense, scopes are like C++

namespaces that automatically track the project’s filesystem structure and use directories as their

names. The following listing illustrates the parallel directory and scope hierarchies for our

hello project. The build/ subdirectory is special and does not have a corresponding scope.

hello/ hello/
| {
·-- hello/ hello/
 | {
 ·--
 }
 }

Every buildfile is loaded in its corresponding scope, variables set in a buildfile are set

in this scope and relative targets mentioned in a buildfile are relative to this scope’s direc­

tory. Let’s "load" the buildfile contents from our hello project to the above listing:

19Revision 0.18, March 2025 The build2 Build System

1.3 Output Directories and Scopes

hello/ hello/
| {
|-- buildfile ./: {*/ -build/}
|
·-- hello/ hello/
 | {
 ·-- buildfile exe{hello}: {hxx cxx}{**}
 }
 }

In fact, to be absolutely precise, we should also add the contents of bootstrap.build and

root.build to the project’s root scope (module loading is omitted for brevity):

hello/ hello/
| {
|-- build/
| |-- bootstrap.build project = hello
| |
| ·-- root.build cxx.std = latest
| hxx{*}: extension = hxx
| cxx{*}: extension = cxx
|
|-- buildfile ./: {*/ -build/}
|
·-- hello/ hello/
 | {
 ·-- buildfile exe{hello}: {hxx cxx}{**}
 }
 }

The above scope structure is very similar to what you will see (besides a lot of other things) if

you build with --dump match. With this option the build system driver dumps the build state

after matching rules to targets (see Diagnostics and Debugging for more information). Here is an

abbreviated output of building our hello with --dump (assuming an in source build in

/tmp/hello):

$ b --dump match

/
{
 [target_triplet] build.host = x86_64-linux-gnu
 [string] build.host.class = linux
 [string] build.host.cpu = x86_64
 [string] build.host.system = linux-gnu

 /tmp/hello/
 {

 [dir_path] src_root = /tmp/hello/
 [dir_path] out_root = /tmp/hello/

 [dir_path] src_base = /tmp/hello/
 [dir_path] out_base = /tmp/hello/

Revision 0.18, March 202520 The build2 Build System

1.3 Output Directories and Scopes

 [project_name] project = hello
 [string] project.summary = hello executable
 [string] project.url = https://example.org/hello

 [string] version = 1.2.3
 [uint64] version.major = 1
 [uint64] version.minor = 2
 [uint64] version.patch = 3

 [string] cxx.std = latest

 [string] cxx.id = gcc
 [string] cxx.version = 8.1.0
 [uint64] cxx.version.major = 8
 [uint64] cxx.version.minor = 1
 [uint64] cxx.version.patch = 0

 [target_triplet] cxx.target = x86_64-w64-mingw32
 [string] cxx.target.class = windows
 [string] cxx.target.cpu = x86_64
 [string] cxx.target.system = mingw32

 hxx{*}: [string] extension = hxx
 cxx{*}: [string] extension = cxx

 hello/
 {
 [dir_path] src_base = /tmp/hello/hello/
 [dir_path] out_base = /tmp/hello/hello/

 dir{./}: exe{hello}
 exe{hello.}: cxx{hello.cxx}
 }

 dir{./}: dir{hello/} manifest{manifest}
 }
}

This is probably quite a bit more information than what you’ve expected to see so let’s explain a

couple of things. Firstly, it appears there is another scope outer to our project’s root. In fact,

build2 extends scoping outside of projects with the root of the filesystem (denoted by the

special /) being the global scope. This extension becomes useful when we try to build multiple

unrelated projects or import one project into another. In this model all projects are part of a single

scope hierarchy with the global scope at its root.

The global scope is read-only and contains a number of pre-defined build-wide variables such as

the build system version, host platform (shown in the above listing), etc.

Next, inside the global scope, we see our project’s root scope (/tmp/hello/). Besides the vari­

ables that we have set ourselves (like project), it also contains a number of variables set by the

build system core (for example, out_base, src_root, etc) as well by build system modules

(for example, project.* and version.* variables set by the version module and cxx.*

21Revision 0.18, March 2025 The build2 Build System

1.3 Output Directories and Scopes

variables set by the cxx module).

The scope for our project’s source directory (hello/) should look familiar. We again have a

few special variables (out_base, src_base). Notice also that the name patterns in prerequi­

sites have been expanded to the actual files.

As you can probably guess from their names, the src_* and out_* variables track the associa­

tion between scopes and src/out directories. They are maintained automatically by the build

system core with the src/out_base pair set on each scope within the project and an additional

src/out_root pair set on the project’s root scope so that we can get the project’s root directo­

ries from anywhere in the project. Note that directory paths in these variables are always absolute

and normalized.

In the above example the corresponding src/out variable pairs have the same values because we

were building in source. As an example, this is what the association will look like for an out of

source build:

hello/ ~~> hello-out/ <~~ hello-out/
| { |
| src_root = .../hello/ |
| out_root = .../hello-out/ |
| |
| src_base = .../hello/ |
| out_base = .../hello-out/ |
| |
·-- hello/ ~~> hello/ <~~ ·-- hello/
 {
 src_base = .../hello/hello/
 out_base = .../hello-out/hello/
 }
 }

Now that we have some scopes and variables to play with, it’s a good time to introduce variable

expansion. To get the value stored in a variable we use $ followed by the variable’s name. The

variable is first looked up in the current scope (that is, the scope in which the expansion was

encountered) and, if not found, in the outer scopes all the way to the global scope.

To be precise, this is for the default variable visibility. Variables, however, can have more limited

visibilities, such as project, scope, target, or prerequisite.

To illustrate the lookup semantics, let’s add the following line to each buildfile in our

hello project:

Revision 0.18, March 202522 The build2 Build System

1.3 Output Directories and Scopes

$ cd hello/ # Change to project root.

$ cat buildfile
...
info "src_base: $src_base"

$ cat hello/buildfile
...
info "src_base: $src_base"

And then build it:

$ b
buildfile:3:1: info: src_base: /tmp/hello/
hello/buildfile:8:1: info: src_base: /tmp/hello/hello/

In this case src_base is defined in each of the two scopes and we get their respective values. If,

however, we change the above line to print src_root instead of src_base, we will get the

same value from the root scope:

buildfile:3:1: info: src_root: /tmp/hello/
hello/buildfile:8:1: info: src_root: /tmp/hello/

In this section we’ve only scratched the surface when it comes to variables. In particular, vari­

ables and variable values in build2 are optionally typed (those [string], [uint64] we’ve

seen in the build state dump). And in certain contexts the lookup semantics actually starts from

the target, not from the scope (target-specific variables; there are also prerequisite-specific).

These and other variable-related topics will be covered in subsequent sections.

One typical place to find src/out_root expansions is in the include search path options. For

example, the source subdirectory buildfile generated by bdep-new(1) for an executable

project actually looks like this (poptions stands for preprocessor options):

exe{hello}: {hxx cxx}{**}

cxx.poptions =+ "-I$out_root" "-I$src_root"

The strange-looking =+ line is a prepend variable assignment. It adds the value on the right hand

side to the beginning of the existing value. So, in the above example, the two header search paths

will be added before any of the existing preprocessor options (and thus will be considered first).

There are also the append assignment, +=, which adds the value on the right hand side to the end

of the existing value, as well as, of course, the normal or replace assignment, =, which replaces

the existing value with the right hand side. One way to remember where the existing and new

values end up in the =+ and += results is to imagine the new value taking the position of = and

the existing value – of +.

23Revision 0.18, March 2025 The build2 Build System

1.3 Output Directories and Scopes

The above buildfile allows us to include our headers using the project’s name as a prefix,

inline with the Canonical Project Structure guidelines. For example, if we added the

utility.hxx header to our hello project, we would include it like this:

#include <iostream>

#include <hello/utility.hxx>

int main ()
{
...
}

Besides poptions, there are also coptions (compile options), loptions (link options),

aoptions (archive options) and libs (extra libraries to link). If you are familiar with make,

these are roughly equivalent to CPPFLAGS, CFLAGS/CXXFLAGS, LDFLAGS, ARFLAGS, and

LIBS/LDLIBS, respectively. Here they are again in the tabular form:

*.poptions preprocess CPPFLAGS
*.coptions compile CFLAGS/CXXFLAGS
*.loptions link LDFLAGS
*.aoptions archive ARFLAGS
*.libs extra libraries LIBS/LDLIBS

More specifically, there are three sets of these variables: cc.* (stands for C-common) which

applies to all C-like languages as well as c.* and cxx.* which only apply during the C and

C++ compilation, respectively. We can use these variables in our buildfiles to adjust the

compiler/linker behavior. For example:

if ($cc.class == ’gcc’)
{
 cc.coptions += -fno-strict-aliasing # C and C++
 cxx.coptions += -fno-exceptions # only C++
}

if ($c.target.class != ’windows’)
 c.libs += -ldl # only C

Additionally, as we will see in Configuring, there are also the config.cc.*, config.c.*,

and config.cxx.* sets which are used by the users of our projects to provide external config­

uration. The initial values of the cc.*, c.*, and cxx.* variables are taken from the corre­

sponding config.*.* values.

And, as we will learn in Library Exportation, there are also the cc.export.*, c.export.*,

and cxx.export.* sets that are used to specify options that should be exported to the users of

our library.

Revision 0.18, March 202524 The build2 Build System

1.3 Output Directories and Scopes

If we adjust the cc.*, c.*, and cxx.* variables at the scope level, as in the above fragment,

then the changes will apply when building every target in this scope (as well as in the nested

scopes, if any). Usually this is what we want but sometimes we may need to pass additional

options only when compiling certain source files or linking certain libraries or executables. For

that we use the target-specific variable assignment. For example:

exe{hello}: {hxx cxx}{**}

obj{utility}: cxx.poptions += -DNDEBUG
exe{hello}: cxx.loptions += -static

Note that we set these variables on targets which they affect. In particular, those with a back­

ground in other build systems may, for example, erroneously expect that setting poptions on a

library target will affect compilation of its prerequisites. For example, the following does not

work:

exe{hello}: cxx.poptions += -DNDEBUG

The recommended way to achieve this behavior in build2 is to organize your targets into subdi­

rectories, in which case we can just set the variables on the scope. And if this is impossible or

undesirable, then we can use target type/pattern-specific variables (if there is a common pattern)

or simply list the affected targets explicitly. For example:

obj{*.test}: cxx.poptions += -DDEFINE_MAIN
obj{main utility}: cxx.poptions += -DNDEBUG

The first line covers compilation of source files that have the .test second-level extension (see

Implementing Unit Testing for background) while the second simply lists the targets explicitly.

It is also possible to specify different options when producing different types of object files

(obje{} – executable, obja{} – static library, or objs{} – shared library) or when linking

different libraries (liba{} – static library or libs{} – shared library). See Library Exportation

and Versioning for an example.

As mentioned above, each buildfile in a project is loaded into its corresponding scope. As a

result, we rarely need to open scopes explicitly. In the few cases that we do, we use the following

syntax:

<directory>/
{
 ...
}

If the scope directory is relative, then it is assumed to be relative to the current scope. As an exer­

cise for understanding, let’s reimplement our hello project as a single buildfile. That is,

we move the contents of the source subdirectory buildfile into the root buildfile:

25Revision 0.18, March 2025 The build2 Build System

1.3 Output Directories and Scopes

$ tree hello/
hello/
|-- build/
| ·-- ...
|-- hello/
| ·-- hello.cxx
·-- buildfile

$ cat hello/buildfile

./: hello/

hello/
{
 ./: exe{hello}: {hxx cxx}{**}
}

While this single buildfile setup is not recommended for new projects, it can be useful for

non-intrusive conversion of existing projects to build2. One approach is to place the unmodi­

fied original project into a subdirectory (potentially automating this with a mechanism such as

git(1) submodules) then adding the build/ subdirectory and the root buildfile which

explicitly opens scopes to define the build over the upstream project’s subdirectory structure.

Seeing this merged buildfile may make you wonder what exactly caused the loading of the

source subdirectory buildfile in our normal setup. In other words, when we build our hello
from the project root, who loads hello/buildfile and why?

Actually, in the earlier days of build2, we had to explicitly load buildfiles that define

targets we depend on with the include directive. In fact, we still can (and have to if we are

depending on targets other than directories). For example:

./: hello/

include hello/buildfile

We can also omit buildfile for brevity and have just:

include hello/

This explicit inclusion, however, quickly becomes tiresome as the number of directories grows. It

also makes using wildcard patterns for subdirectory prerequisites a lot less appealing.

To overcome this the dir{} target type implements an interesting prerequisite to target resolu­

tion semantics: if there is no existing target with this name, a buildfile that (presumably)

defines this target is automatically loaded from the corresponding directory. In fact, this mecha­

nism goes a step further and, if the buildfile does not exist, then it assumes one with the

following contents was implied:

Revision 0.18, March 202526 The build2 Build System

1.3 Output Directories and Scopes

./: */

That is, it simply builds all the subdirectories. This is especially handy when organizing related

tests into directory hierarchies.

As mentioned above, this automatic inclusion is only triggered if the target we depend on is

dir{} and we still have to explicitly include the necessary buildfiles for other targets. One

common example is a project consisting of a library and an executable that links it, each residing

in a separate directory next to each other (as noted earlier, this is not recommended for projects

that you plan to package). For example:

hello/
|-- build/
| ·-- ...
|-- hello/
| |-- main.cxx
| ·-- buildfile
|-- libhello/
| |-- hello.hxx
| |-- hello.cxx
| ·-- buildfile
·-- buildfile

In this case the executable buildfile would look along these lines:

include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

Note also that buildfile inclusion should only be used for accessing targets within the same

project. For cross-project references we use Target Importation.

1.4 Operations

Modern build systems have to perform operations other than just building: cleaning the build

output, running tests, installing/uninstalling the build results, preparing source distributions, and

so on. And, if the build system has integrated configuration support, configuring the project

would naturally belong to this list as well.

If you are familiar with make, you should recognize the parallel with the common clean test,

install, and dist, "operation" pseudo-targets.

In build2 we have the concept of a build system operation performed on a target. The two

pre-defined operations are update and clean with other operations provided by build system

modules.

27Revision 0.18, March 2025 The build2 Build System

1.4 Operations

Operations to be performed and targets to perform them on are specified on the command line. As

discussed earlier, update is the default operation and ./ in the current directory is the default

target if no operation and/or target is specified explicitly. And, similar to targets, we can specify

multiple operations (not necessarily on the same target) in a single build system invocation. The

list of operations to perform and targets to perform them on is called a build specification or

buildspec for short (see b(1) for details). Here are a few examples:

$ cd hello # Change to project root.

$ b # Update current directory.
$ b ./ # Same as above.
$ b update # Same as above.
$ b update: ./ # Same as above.

$ b clean update # Rebuild.

$ b clean: hello/ # Clean specific target.
$ b update: hello/exe{hello} # Update specific target

$ b update: libhello/ tests/ # Update two targets.

If you are running build2 from PowerShell, then you will need to use quoting when updating

specific targets, for example:

$ b update: ’hello/exe{hello}’

Let’s revisit build/bootstrap.build from our hello project:

project = hello

using version
using config
using test
using install
using dist

Other than version, all the modules we load define new operations. Let’s examine each of

them starting with config.

1.4.1 Configuring

As mentioned briefly earlier, the config module provides support for persisting configurations

by having us configure our projects. At first it may feel natural to call configure an operation.

There is, however, a conceptual problem: we don’t really configure a target. And, perhaps after

some meditation, it should become clear that what we are really doing is configuring operations

on targets. For example, configuring updating a C++ project might involve detecting and saving

information about the C++ compiler while configuring installing it may require specifying the

installation directory.

Revision 0.18, March 202528 The build2 Build System

1.4.1 Configuring

In other words, configure is an operation on operation on targets – a meta-operation. And so

in build2 we have the concept of a build system meta-operation. If not specified explicitly (as

part of the buildspec), the default is perform, which is to simply perform the operation.

Back to config, this module provides two meta-operations: configure which saves the

configuration of a project into the build/config.build file as well as disfigure which

removes it.

While the common meaning of the word disfigure is somewhat different to what we make it mean

in this context, we still prefer it over the commonly suggested alternative (deconfigure) for the

symmetry of their Latin con- ("together") and dis- ("apart") prefixes.

Let’s say for the in source build of our hello project we want to use Clang and enable debug

information. Without persistence we would have to repeat this configuration on every build

system invocation:

$ cd hello/ # Change to project root.

$ b config.cxx=clang++ config.cxx.coptions=-g

Instead, we can configure our project with this information once and from then on invoke the

build system without any arguments:

$ b configure config.cxx=clang++ config.cxx.coptions=-g

$ tree ./
./
|-- build/
| |-- ...
| ·-- config.build
·-- ...

$ b
$ b clean
$ b
...

To remove the persistent configuration we use the disfigure meta-operation:

$ b disfigure

Let’s again configure our project and take a look at config.build:

29Revision 0.18, March 2025 The build2 Build System

1.4.1 Configuring

$ b configure config.cxx=clang++ config.cxx.coptions=-g

$ cat build/config.build

config.cxx = clang++
config.cxx.poptions = [null]
config.cxx.coptions = -g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]
...

As you can see, it’s just a buildfile with a bunch of variable assignments. In particular, this means

you can tweak your build configuration by modifying this file with your favorite editor. Or, alter­

natively, you can adjust the configuration by reconfiguring the project:

$ b configure config.cxx=g++

$ cat build/config.build

config.cxx = g++
config.cxx.poptions = [null]
config.cxx.coptions = -g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]
...

Any variable value specified on the command line overrides those specified in the build­
files. As a result, config.cxx was updated while the value of config.cxx.coptions
was preserved.

To revert a configuration variable to its default value, list its name in the special

config.config.disfigure variable. For example:

$ b configure config.config.disfigure=config.cxx

Command line variable overrides are also handy to adjust the configuration for a single build

system invocation. For example, let’s say we want to quickly check that our project builds with

optimization but without permanently changing the configuration:

$ b config.cxx.coptions=-O3 # Rebuild with -O3.
$ b # Rebuild with -g.

Besides the various *.?options variables, we can also specify the "compiler mode" options as

part of the compiler executable in config.c and config.cxx. Such options cannot be modi­

fied by buildfiles and they will appear last on the command lines. For example:

Revision 0.18, March 202530 The build2 Build System

1.4.1 Configuring

$ b configure config.cxx="g++ -m32"

The compiler mode options are also the correct place to specify system-like header (-I) and

library (-L, /LIBPATH) search paths. Where by system-like we mean common installation

directories like /usr/include or /usr/local/lib which may contain older versions of

the libraries we are trying to build and/or use. By specifying these paths as part of the mode

options (as opposed to config.*.poptions and config.*.loptions) we make sure

they will be considered last, similar to the compiler’s build-in search paths. For example:

$ b configure config.cxx="g++ -L/opt/install"

If we would like to prevent subsequent changes to the environment from affecting our build

configuration, we can make it hermetic (see Hermetic Build Configurations for details):

$ b configure config.config.hermetic=true ...

One prominent use of hermetic configurations is to preserve the build environment of the Visual

Studio development command prompt. That is, hermetically configuring our project in a suitable

Visual Studio command prompt makes us free to build it from any other prompt or shell, IDE,

etc.

We can also configure out of source builds of our projects. In this case, besides

config.build, configure also saves the location of the source directory so that we don’t

have to repeat that either. Remember, this is how we used to build our hello out of source:

$ b hello/@hello-gcc/ config.cxx=g++
$ b hello/@hello-clang/ config.cxx=clang++

And now we can do:

$ b configure: hello/@hello-gcc/ config.cxx=g++
$ b configure: hello/@hello-clang/ config.cxx=clang++

$ hello-clang/
hello-clang/
·-- build/
 |-- bootstrap/
 | ·-- src-root.build
 ·-- config.build

$ b hello-gcc/
$ b hello-clang/
$ b hello-gcc/ hello-clang/

One major benefit of an in source build is the ability to run executables as well as examine build

and test output (test results, generated source code, documentation, etc) without leaving the

source directory. Unfortunately, we cannot have multiple in source builds and as was discussed

earlier, mixing in and out of source builds is not recommended.

31Revision 0.18, March 2025 The build2 Build System

1.4.1 Configuring

To overcome this limitation build2 has a notion of forwarded configurations. As the name

suggests, we can configure a project’s source directory to forward to one of its out of source

builds. Once done, whenever we run the build system from the source directory, it will automati­

cally build in the corresponded forwarded output directory. Additionally, it will backlink (using

symlinks or another suitable mechanism) certain "interesting" targets (exe{}, doc{}) to the

source directory for easy access. As an example, let’s configure our hello/ source directory to

forward to the hello-gcc/ build:

$ b configure: hello/@hello-gcc/,forward

$ cd hello/ # Change to project root.
$ b
c++ hello/cxx{hello} -> ../hello-gcc/hello/obje{hello}
ld ../hello-gcc/hello/exe{hello}
ln ../hello-gcc/hello/exe{hello} -> hello/

Notice the last line in the above listing: it indicates that exe{hello} from the out directory was

backlinked in our project’s source subdirectory:

$ tree ./
./
|-- build/
| |-- bootstrap/
| | ·-- out-root.build
| ·-- ...
|-- hello/
| |-- ...
| ·-- hello -> ../../hello-gcc/hello/hello*
·-- ...

$./hello/hello
Hello World!

By default only exe{} and doc{} targets are backlinked. This, however, can be customized

with the backlink target-specific variable.

1.4.2 Testing

The next module we load in bootstrap.build is test which defines the test operation.

As the name suggests, this module provides support for running tests.

There are two types of tests that we can run with the test module: simple and scripted.

A simple test is just an executable target with the test target-specific variable set to true. For

example:

exe{hello}: test = true

Revision 0.18, March 202532 The build2 Build System

1.4.2 Testing

A simple test is executed once and in its most basic form (typical for unit testing) doesn’t take

any inputs nor produce any output, indicating success via the zero exit status. If we test our

hello project with the above addition to the buildfile, then we will see the following

output:

$ b test
test hello/exe{hello}
Hello, World!

While the test passes (since it exited with zero status), we probably don’t want to see that

Hello, World! every time we run it (this can, however, be quite useful when running exam­

ples). More importantly, we don’t really test its functionality and if tomorrow our hello starts

swearing rather than greeting, the test will still pass.

Besides checking its exit status we can also supply some basic information to a simple test (more

common for integration testing). Specifically, we can pass command line options

(test.options) and arguments (test.arguments) as well as input (test.stdin, used

to supply test’s stdin) and output (test.stdout, used to compare to test’s stdout).

Let’s see how we can use this to fix our hello test by making sure our program prints the

expected greeting. First, we need to add a file that will contain the expected output, let’s call it

test.out:

$ ls -1 hello/
hello.cxx
test.out
buildfile

$ cat hello/test.out
Hello, World!

Next, we arrange for it to be compared to our test’s stdout. Here is the new hello/build­
file:

exe{hello}: {hxx cxx}{**}
exe{hello}: file{test.out}: test.stdout = true

The last line looks new. What we have here is a prerequisite-specific variable assignment. By

setting test.stdout for the file{test.out} prerequisite of target exe{hello} we

mark it as expected stdout output of this target (theoretically, we could have marked it as

test.input for another target). Notice also that we no longer need the test target-specific

variable; it’s unnecessary if one of the other test.* variables is specified.

Now, if we run our test, we won’t see any output:

33Revision 0.18, March 2025 The build2 Build System

1.4.2 Testing

$ b test
test hello/exe{hello}

And if we try to change the greeting in hello.cxx but not in test.out, our test will fail

printing the diff(1) comparison of the expected and actual output:

$ b test
c++ hello/cxx{hello} -> hello/obje{hello}
ld hello/exe{hello}
test hello/exe{hello}
--- test.out
+++ -
@@ -1 +1 @@
-Hello, World!
+Hi, World!
error: test hello/exe{hello} failed

Notice another interesting thing: we have modified hello.cxx to change the greeting and our

test executable was automatically rebuilt before testing. This happened because the test opera­

tion performs update as its pre-operation on all the targets to be tested.

Let’s make our hello program more flexible by accepting the name to greet on the command

line:

#include <iostream>

int main (int argc, char* argv[])
{
 if (argc < 2)
 {
 std::cerr << "error: missing name" << std::endl;
 return 1;
 }

 std::cout << "Hello, " << argv[1] << ’!’ << std::endl;
}

We can exercise its successful execution path with a simple test fairly easily:

exe{hello}: test.arguments = ’World’
exe{hello}: file{test.out}: test.stdout = true

What if we also wanted to test its error handling? Since simple tests are single-run, this won’t be

easy. Even if we could overcome this, having expected output for each test in a separate file will

quickly become untidy. And this is where script-based tests come in. Testscript is build2’s

portable language for running tests. It vaguely resembles Bash and is optimized for concise test

implementation and fast, parallel execution.

Revision 0.18, March 202534 The build2 Build System

1.4.2 Testing

Just to give you an idea (see Testscript Introduction for a proper introduction), here is what

testing our hello program with Testscript would look like:

$ ls -1 hello/
hello.cxx
testscript
buildfile

$ cat hello/buildfile

exe{hello}: {hxx cxx}{**} testscript

And this is the contents of hello/testscript:

: basics
:
$* ’World’ >’Hello, World!’

: missing-name
:
$* 2>>EOE != 0
error: missing name
EOE

A couple of key points: The test.out file is gone with all the test inputs and expected outputs

incorporated into testscript. To test an executable with Testscript, all we have to do is list

the corresponding testscript file as its prerequisite (and which, being a fixed name, doesn’t

need an explicit target type, similar to manifest).

To see Testscript in action, let’s say we’ve made our program more forgiving by falling back to a

default name if one wasn’t specified:

#include <iostream>

int main (int argc, char* argv[])
{
 const char* n (argc > 1 ? argv[1] : "World");
 std::cout << "Hello, " << n << ’!’ << std::endl;
}

If we forget to adjust the missing-name test, then this is what we could expect to see when

running the tests:

$ b test
c++ hello/cxx{hello} -> hello/obje{hello}
ld hello/exe{hello}
test hello/exe{hello} + hello/testscript{testscript}
hello/testscript:7:1: error: hello/hello exit code 0 == 0
 info: stdout: hello/test-hello/missing-name/stdout

35Revision 0.18, March 2025 The build2 Build System

1.4.2 Testing

Testscript-based integration testing is the default setup for executable (-t exe) projects created

by bdep-new(1). Here is the recap of the overall layout:

hello/
|-- build/
| ·-- ...
|-- hello/
| |-- hello.cxx
| |-- testscript
| ·-- buildfile
|-- buildfile
·-- manifest

For libraries (-t lib), however, the integration testing setup is a bit different. Here are the rele­

vant parts of the layout:

libhello/
|-- build/
| ·-- ...
|-- libhello/
| |-- hello.hxx
| |-- hello.cxx
| |-- export.hxx
| |-- version.hxx.in
| ·-- buildfile
|-- tests/
| |-- build/
| | |-- bootstrap.build
| | ·-- root.build
| |-- basics/
| | |-- driver.cxx
| | ·-- buildfile
| ·-- buildfile
|-- buildfile
·-- manifest

Specifically, there is no testscript in libhello/, the project’s source subdirectory.

Instead, we have the tests/ subdirectory which itself looks like a project: it contains the

build/ subdirectory with all the familiar files, etc. In fact, tests is a subproject of our

libhello project.

While we will be examining tests in greater detail later, in a nutshell, the reason it is a subpro­

ject is to be able to test an installed version of our library. By default, when tests is built as

part of its parent project (called amalgamation), the locally built libhello library will be auto­

matically imported. However, we can also configure a build of tests out of its amalgamation,

in which case we can import an installed version of libhello. We will learn how to do all that

as well as the underlying concepts (subproject/amalgamation, import, etc) in the coming sections.

Revision 0.18, March 202536 The build2 Build System

1.4.2 Testing

Inside tests/ we have the basics/ subdirectory which contains a simple test for our library’s

API. By default it doesn’t use Testscript but if you want to, you can. You can also rename

basics/ to something more meaningful and add more tests next to it. For example, if we were

creating an XML parsing and serialization library, then our tests/ could have the following

layout:

tests/
|-- build/
| ·-- ...
|-- parser/
| ·-- ...
|-- serializer/
| ·-- ...
·-- buildfile

Nothing prevents us from having the tests/ subdirectory for executable projects. And it can be

just a subdirectory or a subproject, the same as for libraries. Making it a subproject makes sense if

your program has complex installation, for example, if its execution requires configuration and/or

data files that need to be found, etc. For simple programs, however, testing the executable before

installing it is usually sufficient.

For a general discussion of functional/integration and unit testing refer to the Tests section in the

toolchain introduction. For details on the unit test support implementation see Implementing Unit

Testing.

1.4.3 Installing

The install module defines the install and uninstall operations. As the name

suggests, this module provides support for project installation.

Installation in build2 is modeled after UNIX-like operation systems though the installation

directory layout is highly customizable. While build2 projects can import build2 libraries

directly, installation is often a way to "export" them in a form usable by other build systems.

The root installation directory is specified with the config.install.root configuration

variable. Let’s install our hello program into /tmp/install:

$ cd hello/ # Change to project root.

$ b install config.install.root=/tmp/install/

And see what we’ve got (executables are marked with *):

37Revision 0.18, March 2025 The build2 Build System

1.4.3 Installing

$ tree /tmp/install/

/tmp/install/
|-- bin/
| ·-- *hello
·-- share/
 ·-- doc/
 ·-- hello/
 ·-- manifest

Similar to the test operation, install performs update as a pre-operation for targets that it

installs.

We can also configure our project with the desired config.install.* values so that we

don’t have to repeat them on every install/uninstall. For example:

$ b configure config.install.root=/tmp/install/
$ b install
$ b uninstall

Now let’s try the same for libhello (symbolic link targets are shown with -> and actual

static/shared library names may differ on your operating system):

$ rm -r /tmp/install

$ cd libhello/ # Change to project root.

$ b install config.install.root=/tmp/install/

$ tree /tmp/install/

/tmp/install/
|-- include/
| ·-- libhello/
| |-- hello.hxx
| |-- export.hxx
| ·-- version.hxx
|-- lib/
| |-- pkgconfig/
| | |-- libhello.pc
| | |-- libhello.shared.pc
| | ·-- libhello.static.pc
| |-- libhello.a
| |-- libhello.so -> libhello-0.1.so
| ·-- libhello-0.1.so
·-- share/
 ·-- doc/
 ·-- libhello/
 ·-- manifest

As you can see, the library headers go into the customary include/ subdirectory while static

and shared libraries (and their pkg-config(1) files) – into lib/. Using this installation we

should be able to import this library from other build systems or even use it in a manual build:

Revision 0.18, March 202538 The build2 Build System

1.4.3 Installing

$ g++ -I/tmp/install/include -L/tmp/install/lib greet.cxx -lhello

If we want to install into a system-wide location like /usr or /usr/local, then we most

likely will need to specify the sudo(1) program:

$ b config.install.root=/usr/local/ config.install.sudo=sudo

In build2 only actual install/uninstall commands are executed with sudo(1). And while on

the topic of sensible implementations, uninstall can be generally trusted to work reliably.

The default installability of a target as well as where it is installed is determined by its target type.

For example, exe{} is by default installed into bin/, doc{} – into

share/doc/<project>/, and file{} is not installed.

We can, however, override these defaults with the install target-specific variable. Its value

should be either special false indicating that the target should not be installed or the directory

to install the target to. As an example, here is what the root buildfile from our libhello
project looks like:

./: {*/ -build/} manifest

tests/: install = false

The first line we have already seen and the purpose of the second line should now be clear: it

makes sure we don’t try to install anything in the tests/ subdirectory.

If the value of the install variable is not false, then it is normally a relative path with the

first path component being one of these names:

name default override
---- ------- --------
root config.install.root

data_root root/ config.install.data_root
exec_root root/ config.install.exec_root

bin exec_root/bin/ config.install.bin
sbin exec_root/sbin/ config.install.sbin
lib exec_root/lib/ config.install.lib
libexec exec_root/libexec/<project>/ config.install.libexec
pkgconfig lib/pkgconfig/ config.install.pkgconfig

etc data_root/etc/ config.install.etc
include data_root/include/ config.install.include
include_arch include/ config.install.include_arch
share data_root/share/ config.install.share
data share/<project>/ config.install.data
buildfile share/build2/export/<project>/ config.install.buildfile

39Revision 0.18, March 2025 The build2 Build System

1.4.3 Installing

doc share/doc/<project>/ config.install.doc
legal doc/ config.install.legal
man share/man/ config.install.man
man<N> man/man<N>/ config.install.man<N>

Let’s see what’s going on here: The default install directory tree is derived from the

config.install.root value but the location of each node in this tree can be overridden by

the user that installs our project using the corresponding config.install.* variables (see

the install module documentation for details on their meaning). In our buildfiles, in

turn, we use the node names instead of actual directories. As an example, here is a buildfile

fragment from the source subdirectory of our libhello project:

hxx{*}:
{
 install = include/libhello/
 install.subdirs = true
}

Here we set the installation location for headers to be the libhello/ subdirectory of the

include installation location. Assuming config.install.root is /usr/, the install
module will perform the following steps to resolve this relative path to the actual, absolute instal­

lation directory:

include/libhello/
data_root/include/libhello/
root/include/libhello/
/usr/include/libhello/

In the above buildfile fragment we also see the use of the install.subdirs variable.

Setting it to true instructs the install module to recreate subdirectories starting from this

point in the project’s directory hierarchy. For example, if our libhello/ source subdirectory

had the details/ subdirectory with the utility.hxx header, then this header would have

been installed as .../include/libhello/details/utility.hxx.

By default the generated pkg-config files will contain install.include and

install.lib directories as header (-I) and library (-L) search paths, respectively. However,

these can be customized with the {c,cxx}.pkgconfig.{include,lib} variables. For

example, sometimes we may need to install headers into a subdirectory of the include directory

but include them without this subdirectory:

Install headers into hello/libhello/ subdirectory of, say,
/usr/include/ but include them as <libhello/*>.
#
hxx{*}:
{
 install = include/hello/libhello/
 install.subdirs = true
}

lib{hello}: cxx.pkgconfig.include = include/hello/

Revision 0.18, March 202540 The build2 Build System

1.4.3 Installing

1.4.4 Distributing

The last module that we load in our bootstrap.build is dist which provides support for

the preparation of source distributions and defines the dist meta-operation. Similar to

configure, dist is a meta-operation rather than an operation because, conceptually, we are

preparing a distribution for performing operations (like update, test) on targets rather than

targets themselves.

The preparation of a correct distribution requires that all the necessary project files (sources,

documentation, etc) be listed as prerequisites in the project’s buildfiles.

You may wonder why not just use the export support offered by many version control systems?

The main reason is that in most real-world projects version control repositories contain a lot more

than what needs to be distributed. In fact, it is not uncommon to host multiple build system

projects/packages in a single repository. As a result, with this approach we seem to inevitably end

up maintaining an exclusion list, which feels backwards: why specify all the things we don’t want

in a new list instead of making sure the already existing list of things that we do want is

complete? Also, once we have the complete list, it can be put to good use by other tools, such as

editors, IDEs, etc.

The preparation of a distribution also requires an out of source build. This allows the dist
module to distinguish between source and output targets. By default, targets found in src are

included into the distribution while those in out are excluded. However, we can customize this

with the dist target-specific variable.

As an example, let’s prepare a distribution of our hello project using the out of source build

configured in hello-out/. We use config.dist.root to specify the directory to write the

distribution to:

$ b dist: hello-out/ config.dist.root=/tmp/dist

$ ls -1 /tmp/dist
hello-0.1.0/

$ tree /tmp/dist/hello-0.1.0/
/tmp/dist/hello-0.1.0/
|-- build/
| |-- bootstrap.build
| ·-- root.build
|-- hello/
| |-- hello.cxx
| |-- testscript
| ·-- buildfile
|-- buildfile
·-- manifest

41Revision 0.18, March 2025 The build2 Build System

1.4.4 Distributing

As we can see, the distribution directory includes the project version (from the version vari­

able which, in our case, is extracted from manifest by the version module). Inside the

distribution directory we have our project’s source files (but, for example, without any .gitig­
nore files that we may have had in hello/).

We can also ask the dist module to package the distribution directory into one or more archives

and generate their checksum files for us. For example:

$ b dist: hello-out/ \
 config.dist.root=/tmp/dist \
 config.dist.archives="tar.gz zip" \
 config.dist.checksums=sha256

$ ls -1 /tmp/dist
hello-0.1.0/
hello-0.1.0.tar.gz
hello-0.1.0.tar.gz.sha256
hello-0.1.0.zip
hello-0.1.0.zip.sha256

We can also configure our project with the desired config.dist.* values so we don’t have to

repeat them every time. For example:

$ b configure: hello-out/ config.dist.root=/tmp/dist ...
$ b dist

Let’s now take a look at an example of customizing what gets distributed. Most of the time you

will be using this mechanism to include certain targets from out. Here is a fragment from the

libhello source subdirectory buildfile:

hxx{version}: in{version} $src_root/manifest

Our library provides the version.hxx header that the users can include to obtain its version.

This header is generated by the version module from the version.hxx.in template. In

essence, the version module takes the version value from our manifest, splits it into various

components (major, minor, patch, etc) and then preprocesses the in{} file substituting these

values (see the version module documentation for details). The end result is an automatically

maintained version header.

Usually there is no need to include this header into the distribution since it will be automatically

generated if and when necessary. However, we can if we need to. For example, we could be

porting an existing project and its users could be expecting the version header to be shipped as

part of the archive. Here is how we can achieve this:

hxx{version}: in{version} $src_root/manifest
{
 dist = true
 clean = ($src_root != $out_root)
}

Revision 0.18, March 202542 The build2 Build System

1.4.4 Distributing

Because this header is an output target, we have to explicitly request its distribution with

dist=true. Notice that we have also disabled its cleaning for the in source build so that the

clean operation results in a state identical to distributed.

1.5 Target Importation

Recall that if we need to depend on a target defined in another buildfile within our project,

then we simply include the said buildfile and reference the target. For example, if our

hello included both an executable and a library in separate subdirectories next to each other:

hello/
|-- build/
| ·-- ...
|-- hello/
| |-- ...
| ·-- buildfile
·-- libhello/
 |-- ...
 ·-- buildfile

Then our executable buildfile could look like this:

include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

What if instead libhello were a separate project? The inclusion approach would no longer

work for two reasons: we don’t know the path to libhello (after all, it’s an independent

project and can reside anywhere) and we can’t assume the path to the lib{hello} target

within libhello (the project directory layout can change).

To depend on a target from a separate project we use importation instead of inclusion. This mech­

anism is also used to depend on targets that are not part of any project, for example, installed

libraries.

The importing project’s side is pretty simple. This is what the above buildfile will look like

if libhello were a separate project:

import libs = libhello%lib{hello}

exe{hello}: {hxx cxx}{**} $libs

The import directive is a kind of variable assignment that resolves a project-qualified relative

target (libhello%lib{hello}) to an unqualified absolute target and stores it in the variable

(libs in our case). We can then expand the variable ($libs), normally in the dependency

declaration, to get the imported target.

43Revision 0.18, March 2025 The build2 Build System

1.5 Target Importation

If we needed to import several libraries, then we simply repeat the import directive, usually

accumulating the result in the same variable, for example:

import libs = libformat%lib{format}
import libs += libprint%lib{print}
import libs += libhello%lib{hello}

exe{hello}: {hxx cxx}{**} $libs

Let’s now try to build our hello project that uses imported libhello:

$ b hello/
error: unable to import target libhello%lib{hello}
 info: use config.import.libhello command line variable to specify
 its project out_root

While that didn’t work out well, it does make sense: the build system cannot know the location of

libhello or which of its builds we want to use. Though it does helpfully suggest that we use

config.import.libhello to specify its out directory (out_root). Let’s point it to

libhello source directory to use its in source build (out_root == src_root):

$ b hello/ config.import.libhello=libhello/
c++ libhello/libhello/cxx{hello} -> libhello/libhello/objs{hello}
ld libhello/libhello/libs{hello}
c++ hello/hello/cxx{hello} -> hello/hello/obje{hello}
ld hello/hello/exe{hello}

And it works. Naturally, the importation mechanism works the same for out of source builds and

we can persist the config.import.* variables in the project’s configuration. As an example,

let’s configure Clang builds of the two projects out of source:

$ b configure: libhello/@libhello-clang/ config.cxx=clang++
$ b configure: hello/@hello-clang/ config.cxx=clang++ \
 config.import.libhello=libhello-clang/

$ b hello-clang/
c++ libhello/libhello/cxx{hello} -> libhello-clang/libhello/objs{hello}
ld libhello-clang/libhello/libs{hello}
c++ hello/hello/cxx{hello} -> hello-clang/hello/obje{hello}
ld hello-clang/hello/exe{hello}

If the corresponding config.import.* variable is not specified, import searches for a

project in a couple of other places. First, it looks in the list of subprojects starting from the

importing project itself and then continuing with its outer amalgamations and their subprojects

(see Subprojects and Amalgamations for details on this subject).

We’ve actually seen an example of this search step in action: the tests subproject in

libhello. The test imports libhello which is automatically found as an amalgamation

containing this subproject.

Revision 0.18, March 202544 The build2 Build System

1.5 Target Importation

To skip searching in subprojects/amalgamations and proceed directly to the rule-specific search

(described below), specify the config.import.* variable with an empty value. For example:

$ b configure: ... config.import.libhello=

If the project being imported cannot be located using any of these methods, then import falls

back to the rule-specific search. That is, a rule that matches the target may provide support for

importing certain target types based on rule-specific knowledge. Support for importing installed

libraries by the C++ link rule is a good example of this. Internally, the cxx module extracts the

compiler’s library search paths (that is, paths that would be used to resolve -lfoo) and then the

link rule uses them to search for installed libraries. This allows us to use the same import direc­

tive regardless of whether we import a library from a separate build, from a subproject, or from

an installation directory.

Importation of an installed library will work even if it is not a build2 project. Besides finding

the library itself, the link rule will also try to locate its pkg-config(1) file and, if present,

extract additional compile/link flags from it (see Importation of Installed Libraries for details).

The link rule also automatically produces pkg-config(1) files for libraries that it installs.

A common problem with importing and using third-party C/C++ libraries is compiler warnings.

Specifically, we are likely to include their headers into our project’s source files which means we

may see warnings in such headers (which we cannot always fix) mixed with warnings in our code

(which we should normally be able to fix). See Compilation Internal Scope for a mechanism to

deal with this problem.

Let’s now examine the exporting side of the importation mechanism. While a project doesn’t

need to do anything special to be found by import, it does need to handle locating the exported

target (or targets; there could be several) within the project as well as loading their build­
files. And this is the job of an export stub, the build/export.build file that you might

have noticed in the libhello project:

libhello
|-- build/
| ·-- export.build
·-- ...

Let’s take a look inside:

$out_root/
{
 include libhello/
}

export $out_root/libhello/$import.target

45Revision 0.18, March 2025 The build2 Build System

1.5 Target Importation

An export stub is a special kind of buildfile that bridges from the importing project into

exporting. It is loaded in a special temporary scope outside of any project, in a "no man’s land" so

to speak. The only variables set on the temporary scope are src_root and out_root of the

project being imported as well as import.target containing the name of the target being

imported (without project qualification; that is, lib{hello} in our example).

Typically, an export stub will open the scope of the exporting project, load the buildfile that

defines the target being exported and finally "return" the absolute target name to the importing

project using the export directive. And this is exactly what the export stub in our libhello

does.

We now have all the pieces of the importation puzzle in place and you can probably see how they

all fit together. To summarize, when the build system sees the import directive, it looks for a

project with the specified name. If found, it creates a temporary scope, sets the src/out_root

variables to point to the project and import.target – to the target name specified in the

import directive. And then it load the project’s export stub in this scope. Inside the export stub

we switch to the project’s root scope, load its buildfile and then use the export directive to

return the exported target. Once the export stub is processed, the build system obtains the

exported target and assigns it to the variable specified in the import directive.

Our export stub is quite "loose" in that it allows importing any target defined in the project’s

source subdirectory buildfile. While we found it to be a good balance between strictness and

flexibility, if you would like to "tighten" your export stubs, you can. For example:

if ($import.target == lib{hello})
 export $out_root/libhello/$import.target

If no export directive is executed in an export stub then the build system assumes that the

target is not exported by the project and issues appropriate diagnostics.

Let’s revisit the executable buildfile with which we started this section. Recall that it is for

an executable that depends on a library which resides in the same project:

include ../libhello/ # Include lib{hello}.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello}

If lib{hello} is exported by this project, then instead of manually including its buildfile
we can use project-local importation:

import lib = lib{hello}

exe{hello}: {hxx cxx}{**} $lib

Revision 0.18, March 202546 The build2 Build System

1.5 Target Importation

The main advantage of project-local importation over inclusion is the ability to move things

around without having to adjust locations in multiple places (the only place we need to do it is the

export stub). This advantage becomes noticeable in more complex projects with a large number

of components.

An import is project-local if the target being imported has no project name. Note that the target

must still be exported in the project’s export stub. In other words, project-local importation use

the same mechanism as the normal import.

Another special type of importation is ad hoc importation. It is triggered if the target being

imported has no project name and is either absolute or is a relative directory (in which case it is

interpreted as relative to the importing scope). Semantically this is similar a normal import but

with the location of the project being imported hard-coded into the buildfile. While this

would be a bad idea in most case, sometimes we may want to create a special glue buildfile

that "pulls" together several projects, usually for convenience of development.

One typical case that calls for such a glue buildfile is a multi-package project. For example,

we may have a hello project (in a more general sense, as in a version control repository) that

contains the libhello library and hello executable packages (which are independent build

system projects):

hello/
|-- .git/
|-- hello/
| |-- build/
| | ·-- ...
| |-- hello/
| | ·-- ...
| |-- buildfile
| ·-- manifest
·-- libhello/
 |-- build/
 | ·-- ...
 |-- libhello/
 | ·-- ...
 |-- buildfile
 ·-- manifest

Notice that the root of this repository is not a build system project and we cannot, for example,

just run the build system driver without any arguments to update all the packages. Instead we

have to list them explicitly:

$ b hello/ libhello/

And that’s inconvenient. To overcome this shortcoming we can turn the repository root into a

simple build system project by adding a glue buildfile that imports (using ad hoc importa­

tion) and builds all the packages:

47Revision 0.18, March 2025 The build2 Build System

1.5 Target Importation

import pkgs = */

./: $pkgs

Unlike other import types, ad hoc importation does not rely (or require) an export stub. Instead, it

directly loads a buildfile that could plausibly declare the target being imported.

In the unlikely event of a project-local importation of a directory target, it will have to be spelled

with an explicit dir{} target type, for example:

import d = dir{tests/}

1.6 Library Exportation and Versioning

By now we have examined and explained every line of every buildfile in our hello
executable project. There are, however, still a few lines to be covered in the source subdirectory

buildfile in libhello. Here it is in its entirety:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.

lib{hello}: {hxx ixx txx cxx}{** -version} hxx{version} \
 $impl_libs $intf_libs

hxx{version}: in{version} $src_root/manifest

Build options.
#
cxx.poptions =+ "-I$out_root" "-I$src_root"

obja{*}: cxx.poptions += -DLIBHELLO_STATIC_BUILD
objs{*}: cxx.poptions += -DLIBHELLO_SHARED_BUILD

Export options.
#
lib{hello}:
{
 cxx.export.poptions = "-I$out_root" "-I$src_root"
 cxx.export.libs = $intf_libs
}

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.
#
if $version.pre_release
 lib{hello}: bin.lib.version = "-$version.project_id"
else
 lib{hello}: bin.lib.version = "-$version.major.$version.minor"

Revision 0.18, March 202548 The build2 Build System

1.6 Library Exportation and Versioning

Install into the libhello/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/libhello/
 install.subdirs = true
}

Let’s start with all those cxx.export.* variables. It turns out that merely exporting a library

target is not enough for the importers of the library to be able to use it. They also need to know

where to find its headers, which other libraries to link, etc. This information is carried in a set of

target-specific cxx.export.* variables that parallel the cxx.* set and that together with the

library’s prerequisites constitute the library metadata protocol. Every time a source file that

depends on a library is compiled or a binary is linked, this information is automatically extracted

by the compile and link rules from the library dependency chain, recursively. And when the

library is installed, this information is carried over to its pkg-config(1) file.

Similar to the c.* and cc.* sets discussed earlier, there are also c.export.* and

cc.export.* sets.

Note, however, that there is no *.export.coptions since a library imposing compilation

options on its consumers is bad practice (too coarse-grained, does not compose, etc). Instead, the

recommended approach is to specify in the library documentation that it expects its consumers to

use a certain compilation option. And if your library is unusable without exporting a compilation

option and you are sure benefits outweigh the drawbacks, then you can specify it as part of

*.export.poptions (it is still a good idea to prominently document this).

Here are the parts relevant to the library metadata protocol in the above buildfile:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.

lib{hello}: ... $impl_libs $intf_libs

lib{hello}:
{
 cxx.export.poptions = "-I$out_root" "-I$src_root"
 cxx.export.libs = $intf_libs
}

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

As a first step we classify all our library dependencies into interface dependencies and implemen­

tation dependencies. A library is an interface dependency if it is referenced from our interface, for

example, by including (importing) one of its headers (modules) from one of our (public) headers

(modules) or if one of its functions is called from our inline or template functions. Otherwise, it is

an implementation dependency.

49Revision 0.18, March 2025 The build2 Build System

1.6 Library Exportation and Versioning

To illustrate the distinction between interface and implementation dependencies, let’s say we’ve

reimplemented our libhello to use libformat to format the greeting and libprint to

print it. Here is our new header (hello.hxx):

#include <libformat/format.hxx>

namespace hello
{
 void
 say_hello_formatted (std::ostream&, const std::string& hello);

 inline void
 say_hello (std::ostream& o, const std::string& name)
 {
 say_hello_formatted (o, format::format_hello ("Hello", name));
 }
}

And this is the new source file (hello.cxx):

#include <libprint/print.hxx>

namespace hello
{
 void
 say_hello_formatted (ostream& o, const string& h)
 {
 print::print_hello (o, h);
 }
}

In this case, libformat is our interface dependency since we both include its header in our

interface and call it from one of our inline functions. In contrast, libprint is only included and

used in the source file and so we can safely treat it as an implementation dependency. The corre­

sponding import directives in our buildfile will therefore look like this:

import intf_libs = libformat%lib{format}
import impl_libs = libprint%lib{print}

The preprocessor options (poptions) of an interface dependency must be made available to our

library’s users. The library itself should also be explicitly linked whenever our library is linked.

All this is achieved by listing the interface dependencies in the cxx.export.libs variable:

lib{hello}:
{
 cxx.export.libs = $intf_libs
}

More precisely, the interface dependency should be explicitly linked if a user of our library may

end up with a direct call to the dependency in one of their object files. Not linking such a library

is called underlinking while linking a library unnecessarily (which can happen because we’ve

Revision 0.18, March 202550 The build2 Build System

1.6 Library Exportation and Versioning

included its header but are not actually calling any of its non-inline/template functions) is called

overlinking. Underlinking is an error on some platforms while overlinking may slow down the

process startup and/or waste its memory.

Note also that this only applies to shared libraries. In case of static libraries, both interface and

implementation dependencies are always linked, recursively. Specifically, when linking a shared

library, only libraries specified in its *.export.libs are linked. While when linking a static

library, all its library prerequisites as well as those specified in *.libs are linked. Note that

*.export.libs is not used when linking a static library since it is naturally assumed that all

such libraries are also specified as library prerequisites or in *.libs.

The remaining lines in the library metadata fragment are:

lib{hello}:
{
 cxx.export.poptions = "-I$out_root" "-I$src_root"
}

liba{hello}: cxx.export.poptions += -DLIBHELLO_STATIC
libs{hello}: cxx.export.poptions += -DLIBHELLO_SHARED

The first line makes sure the users of our library can locate its headers by exporting the relevant

-I options. The last two lines define the library type macros that are relied upon by the

export.hxx header to properly setup symbol exporting.

The liba{} and libs{} target types correspond to the static and shared libraries, respectively.

And lib{} is actually a target group that can contain one, the other, or both as its members.

Specifically, when we build a lib{} target, which members will be built is determined by the

config.bin.lib variable with the static, shared, and both (default) possible values.

So to only build a shared library we can run:

$ b config.bin.lib=shared

When it comes to linking lib{} prerequisites, which member is picked is controlled by the

config.bin.{exe,liba,libs}.lib variables for the executable, static library, and

shared library targets, respectively. Each contains a list of shared and static values that

determine the linking preferences. For example, to build both shared and static libraries but to

link executable to static libraries we can run:

$ b config.bin.lib=both config.bin.exe.lib=static

See the bin module documentation for more information.

51Revision 0.18, March 2025 The build2 Build System

1.6 Library Exportation and Versioning

Note also that we don’t need to change anything in the above buildfile if our library is

header-only. In build2 this is handled dynamically and automatically based on the absence of

source file prerequisites. In fact, the same library can be header-only on some platforms or in

some configuration and "source-ful" in others.

In build2 a header-only library (or a module interface-only library) is not a different kind of

library compared to static/shared libraries but is rather a binary-less, or binless for short, static or

shared library. So, theoretically, it is possible to have a library that has a binless static and a

binary-ful (binful) shared variants. Note also that binless libraries can depend on binful libraries

and are fully supported where the pkg-config(1) functionality is concerned.

One counter-intuitive aspect of having a binless library that depends on a system binful library,

for example, -lm, is that you still have to specify the system library in both *.export.libs
and *.libs because the latter is used when linking the static variant of the binless library. For

example:

cxx.libs = -lm
lib{hello}: cxx.export.libs = -lm

If you are creating a new library with bdep-new(1) and are certain that it will always be

binless and in all configurations, then you can produce a simplified buildfile by specifying

the binless option, for example:

$ bdep new -l c++ -t lib,binless libheader-only

Let’s now turn to the second subject of this section and the last unexplained bit in our build­
file: shared library versioning. Here is the relevant fragment:

if $version.pre_release
 lib{hello}: bin.lib.version = "-$version.project_id"
else
 lib{hello}: bin.lib.version = "-$version.major.$version.minor"

Shared library versioning is a murky, platform-specific area. Instead of trying to come up with a

unified versioning scheme that few are likely to comprehend (similar to autoconf), build2
provides a platform-independent versioning scheme as well as the ability to specify plat­

form-specific versions in a native format.

The library version is specified with the bin.lib.version target-specific variable. Its value

should be a sequence of @-pairs with the left hand side (key) being the platform name and the

right hand side (value) being the version. An empty key (in which case @ can be omitted) signi­

fies the platform-independent version (see the bin module documentation for the exact seman­

tics). For example:

Revision 0.18, March 202552 The build2 Build System

1.6 Library Exportation and Versioning

lib{hello}: bin.lib.version = -1.2 linux@3

While the interface for platform-specific versions is defined, their support is currently only imple­

mented on Linux.

A platform-independent version is embedded as a suffix into the library name (and into its

soname on relevant platforms) while platform-specific versions are handled according to the

platform. Continuing with the above example, these would be the resulting shared library names

on select platforms:

libhello.so.3 # Linux
libhello-1.2.dll # Windows
libhello-1.2.dylib # Mac OS

With this background we can now explain what’s going in our buildfile:

if $version.pre_release
 lib{hello}: bin.lib.version = "-$version.project_id"
else
 lib{hello}: bin.lib.version = "-$version.major.$version.minor"

Here we only use platform-independent library versioning. For releases we embed both major and

minor version components assuming that patch releases are binary compatible. For pre-releases,

however, we use the complete version to make sure it cannot be used in place of another

pre-release or the final version.

The version.project_id variable contains the project’s (as opposed to package’s), shortest

"version id". See the version module documentation for details.

1.7 Subprojects and Amalgamations

In build2 projects can contain other projects, recursively. In this arrangement the outer project

is called an amalgamation and the inner – subprojects. In contrast to importation where we

merely reference a project somewhere else, amalgamation is physical containment. It can be

strong where the src directory of a subproject is within the amalgamating project or weak where

only the out directory is contained.

There are several distinct use cases for amalgamations. We’ve already discussed the tests/

subproject in libhello. To recap: traditionally, it is made a subproject rather than a subdirec­

tory to support building it as a standalone project in order to test library installations.

As discussed in Target Importation, subprojects and amalgamations (as well as their subprojects,

recursively) are automatically considered when resolving imports. As a result, amalgamation can

be used to bundle dependencies to produce an external dependency-free distribution. For

example, if our hello project imports libhello, then we could copy the libhello project

into hello, for example:

53Revision 0.18, March 2025 The build2 Build System

1.7 Subprojects and Amalgamations

$ tree hello/
hello/
|-- build/
| ·-- ...
|-- hello/
| |-- hello.cxx
| ·-- ...
|-- libhello/
| |-- build/
| | ·-- ...
| |-- libhello/
| | |-- hello.hxx
| | |-- hello.cxx
| | ·-- ...
| |-- tests/
| | ·-- ...
| ·-- buildfile
·-- buildfile

$ b hello/
c++ hello/libhello/libhello/cxx{hello} ->
 hello/libhello/libhello/objs{hello}
ld hello/libhello/libhello/libs{hello}
c++ hello/hello/cxx{hello} -> hello/hello/obje{hello}
ld hello/hello/exe{hello}

Note, however, that while project bundling can be useful in certain cases, it does not scale as a

general dependency management solution. For that, independent packaging and proper depen­

dency management are the appropriate mechanisms.

By default build2 looks for subprojects only in the root directory of a project. That is, every

root subdirectory is examined to see if it itself is a project root. If you need to place a subproject

somewhere else in your project’s directory hierarchy, then you will need to specify its location

(and of all other subprojects) explicitly with the subprojects variable in boot­
strap.build. For example, if above we placed libhello into the extras/ subdirectory

of hello, then our bootstrap.build would need to start like this:

project = hello
subprojects = extras/libhello/
...

Note also that while importation of specific targets from subprojects is always performed,

whether they are loaded and built as part of the overall project build is controlled using the stan­

dard subdirectories inclusion and dependency mechanisms. Continuing with the above example,

if we adjust the root buildfile in hello to exclude the extras/ subdirectory from the

build:

./: {*/ -build/ -extras/}

Revision 0.18, March 202554 The build2 Build System

1.7 Subprojects and Amalgamations

Then while we can still import libhello from any buildfile in our project, the entire

libhello (for example, its tests) will never be built as part of the hello build.

Similar to subprojects we can also explicitly specify the project’s amalgamation with the amal­
gamation variable (again, in bootstrap.build). This is rarely necessary except if you

want to prevent the project from being amalgamated, in which case you should set it to the empty

value.

If either of these variables is not explicitly set, then they will contain the automatically discovered

values.

Besides affecting importation, another central property of amalgamation is configuration inheri­

tance. As an example, let’s configure the above bundled hello project in its src directory:

$ b configure: hello/ config.cxx=clang++ config.cxx.coptions=-g

$ tree
hello/
|-- build/
| |-- config.build
| ·-- ...
|-- libhello/
| |-- build/
| | |-- config.build
| | ·-- ...
| ·-- ...
·-- ...

As you can see, we now have the config.build files in both projects’ build/ subdirecto­

ries. If we examine the amalgamation’s config.build, we will see the familiar picture:

$ cat hello/build/config.build

config.cxx = clang++
config.cxx.poptions = [null]
config.cxx.coptions = -g
config.cxx.loptions = [null]
config.cxx.aoptions = [null]
config.cxx.libs = [null]

...

The subproject’s config.build, however, is pretty much empty:

$ cat hello/libhello/build/config.build

Base configuration inherited from ../

55Revision 0.18, March 2025 The build2 Build System

1.7 Subprojects and Amalgamations

As the comment suggests, the base configuration is inherited from the outer project. We can,

however, override some values if we need to. For example (note that we are re-configuring the

libhello subproject):

$ b configure: hello/libhello/ config.cxx.coptions=-O2

$ cat hello/libhello/build/config.build

Base configuration inherited from ../

config.cxx.coptions = -O2

This configuration inheritance combined with import resolution is behind the most common use

of amalgamations in build2 – shared build configurations. Let’s say we are developing multi­

ple projects, for example, hello and libhello that it imports:

$ ls -1
hello/
libhello/

And we want to build them with several compilers, let’s say GCC and Clang. As we have already

seen in Configuring, we can configure several out of source builds for each compiler, for

example:

$ b configure: libhello/@libhello-gcc/ config.cxx=g++
$ b configure: libhello/@libhello-clang/ config.cxx=clang++

$ b configure: hello/@hello-gcc/ \
 config.cxx=g++ \
 config.import.libhello=libhello-gcc/
$ b configure: hello/@hello-clang/ \
 config.cxx=clang++ \
 config.import.libhello=libhello-clang/

$ ls -l
hello/
hello-gcc/
hello-clang/
libhello/
libhello-gcc/
libhello-clang/

Needless to say, this is a lot of repetitive typing. Another problem is future changes to the config­

urations. If, for example, we need to adjust compile options in the GCC configuration, then we

will have to (remember to) do it in both places.

You can probably sense where this is going: why not create two shared build configurations (that

is, amalgamations), one for GCC and one for Clang, within each of which we build both of our

projects (as their subprojects)? This is how we can do that:

Revision 0.18, March 202556 The build2 Build System

1.7 Subprojects and Amalgamations

$ b create: build-gcc/,cc config.cxx=g++
$ b create: build-clang/,cc config.cxx=clang++

$ b configure: libhello/@build-gcc/libhello/
$ b configure: hello/@build-gcc/hello/

$ b configure: libhello/@build-clang/libhello/
$ b configure: hello/@build-clang/hello/

$ ls -l
hello/
libhello/
build-gcc/
build-clang/

Let’s explain what’s going on here. First, we create two build configurations using the create

meta-operation. These are real build2 projects just tailored for housing other projects as

subprojects. In create, after the directory name, we specify the list of modules to load in the

project’s root.build. In our case we specify cc which is a common module for C-based

languages (see b(1) for details on create and its parameters).

When creating build configurations it is a good idea to get into the habit of using the cc module

instead of c or cxx since with more complex dependency chains we may not know whether

every project we build only uses C or C++. In fact, it is not uncommon for a C++ project to have

C implementation details and even the other way around (yes, really, there are C libraries with

C++ implementations).

Once the configurations are ready we simply configure our libhello and hello as subpro­

jects in each of them. Note that now we neither need to specify config.cxx, because it will be

inherited from the amalgamation, nor config.import.*, because the import will be automat­

ically resolved to a subproject.

Now, to build a specific project in a particular configuration we simply build the corresponding

subdirectory. We can also build the entire build configuration if we want to. For example:

$ b build-gcc/hello/

$ b build-clang/

In case you’ve already looked into bpkg(1) and/or bdep(1), their build configurations are

actually these same amalgamations (created underneath with the create meta-operation) and

their packages are just subprojects. And with this understanding you are free to interact with them

directly using the build system interface.

57Revision 0.18, March 2025 The build2 Build System

1.7 Subprojects and Amalgamations

1.8 Buildfile Language

By now we should have a good overall sense of what writing buildfiles feels like. In this

section we will examine the language in slightly more detail and with more precision.

Buildfile is primarily a declarative language with support for variables, pure functions, repetition

(for-loop), conditional inclusion/exclusion (if-else), and pattern matching (switch). At the

lexical level, buildfiles are UTF-8 encoded text restricted to the Unicode graphic characters,

tabs (\t), carriage returns (\r), and line feeds (\n).

Buildfile is a line-oriented language. That is, every construct ends at the end of the line unless

escaped with line continuation (trailing \). For example:

exe{hello}: {hxx cxx}{**} \
 $libs

Some lines may start a block if followed by { on the next line. Such a block ends with a closing }
on a separate line. Some types of blocks can nest. For example:

if ($cxx.target.class == ’windows’)
{
 if ($cxx.target.system == ’ming32’)
 {
 ...
 }
}

A comment starts with # and everything from this character and until the end of the line is

ignored. A multi-line comment starts with #\ on a separate line and ends with the same character

sequence, again on a separate line. For example:

Single line comment.

info ’Hello, World!’ # Trailing comment.

#\
Multi-
line
comment.
#\

The three primary Buildfile constructs are dependency declaration, directive, and variable assign­

ment. We’ve already used all three but let’s see another example:

include ../libhello/ # Directive.

exe{hello}: {hxx cxx}{**} ../libhello/lib{hello} # Dependency.

cxx.poptions += -DNDEBUG # Variable.

Revision 0.18, March 202558 The build2 Build System

1.8 Buildfile Language

There is also the scope opening (we’ve seen one in export.build) as well as target-specific

and prerequisite-specific variable assignment blocks. The latter two are used to assign several

entity-specific variables at once. For example:

details/ # Scope.
{
 hxx{*}: install = false
}

lib{hello}: # Target-specific.
{
 cxx.export.poptions = "-I$src_root"
 cxx.export.libs = $intf_libs
}

exe{test}: file{test.roundtrip}: # Prerequisite-specific.
{
 test.stdin = true
 test.stdout = true
}

Variable assignment blocks can be combined with dependency declarations, for example:

h{config}: in{config}
{
 in.symbol = ’@’
 in.mode = lax

 SYSTEM_NAME = $c.target.system
 SYSTEM_PROCESSOR = $c.target.cpu
}

In case of a dependency chain, if the chain ends with a colon (:), then the block applies to the last

set of prerequisites. Otherwise, it applies to the last set of targets. For example:

./: exe{test}: cxx{main}
{
 test = true # Applies to the exe{test} target.
}

./: exe{test}: libue{test}:
{
 bin.whole = false # Applies to the libue{test} prerequisite.
}

All prerequisite-specific variables must be assigned at once as part of the dependency declaration

since repeating the same dependency again duplicates the prerequisite rather than references the

already existing one.

There is also the target type/pattern-specific variable assignment block, for example:

59Revision 0.18, March 2025 The build2 Build System

1.8 Buildfile Language

exe{*.test}:
{
 test = true
 install = false
}

See Variables for a more detailed discussion of variables.

Each buildfile is processed linearly with directives executed and variables expanded as they

are encountered. However, certain variables, for example cxx.poptions, are also expanded

by rules during execution in which case they will "see" the final value set in the buildfile.

Unlike GNU make(1), which has deferred (=) and immediate (:=) variable assignments, all

assignments in build2 are immediate. For example:

x = x
y = $x
x = X
info $y # Prints ’x’, not ’X’.

1.8.1 Expansion and Quoting

While we’ve discussed variable expansion and lookup earlier, to recap, to get the variable’s value

we use $ followed by its name. The variable name is first looked up in the current scope (that is,

the scope in which the expansion was encountered) and, if not found, in the outer scopes, recur­

sively.

There are two other kinds of expansions: function calls and evaluation contexts, or eval contexts

for short. Let’s start with the latter since function calls are built on top of eval contexts.

An eval context is essentially a fragment of a line with additional interpretations of certain char­

acters to support value comparison, logical operators, and a few other constructs. Eval contexts

begin with (, end with), and can nest. Here are a few examples:

info ($src_root != $out_root) # Prints true or false.
info ($src_root == $out_root ? ’in’ : ’out’) # Prints in or out.

macos = ($cxx.target.class == ’macos’) # Assigns true or false.
linux = ($cxx.target.class == ’linux’) # Assigns true or false.

if ($macos || $linux) # Also eval context.
 ...

Below is the eval context grammar that shows supported operators and their precedence.

Revision 0.18, March 202560 The build2 Build System

1.8.1 Expansion and Quoting

eval: ’(’ (eval-comma | eval-qual)? ’)’
eval-comma: eval-ternary (’,’ eval-ternary)*
eval-ternary: eval-or (’?’ eval-ternary ’:’ eval-ternary)?
eval-or: eval-and (’||’ eval-and)*
eval-and: eval-comp (’&&’ eval-comp)*
eval-comp: eval-value ((’==’|’!=’|’<’|’>’|’<=’|’>=’) eval-value)*
eval-value: value-attributes? (<value> | eval | ’!’ eval-value)
eval-qual: <name> ’:’ <name>

value-attributes: ’[’ <key-value-pairs> ’]’

Note that ?: (ternary operator) and ! (logical not) are right-associative. Unlike C++, all the

comparison operators have the same precedence. A qualified name cannot be combined with any

other operator (including ternary) unless enclosed in parentheses. The eval option in the

eval-value production shall contain a single value only (no commas).

Additionally, the ‘ (backtick) and | (bitwise or) tokens are reserved for future support of arith­

metic evaluation contexts and evaluation pipelines, respectively.

A function call starts with $ followed by its name and an eval context listing its arguments. Note

that there is no space between the name and (. For example:

x =
y = Y

info $empty($x) # true
info $empty($y) # false

if $regex.match($y, ’[A-Z]’)
 ...

p = $src_base/foo.txt

info $path.leaf($src_base) # foo.txt
info $path.directory($src_base) # $src_base
info $path.base($path.leaf($src_base)) # foo

Note that the majority of functions in build2 are pure in a sense that they do not alter the build

state in any way (see Functions for details).

Functions in build2 are currently defined either by the build system core or build system

modules and are implemented in C++. In the future it will be possible to define custom functions

in buildfiles (also in C++).

Variable and function names follow the C identifier rules. We can also group variables into

namespaces and functions into families by combining multiple identifiers with .. These rules are

used to determine the end of the variable name in expansions. If, however, a name is recognized

as being longer than desired, then we can use the eval context to explicitly specify its boundaries.

For example:

61Revision 0.18, March 2025 The build2 Build System

1.8.1 Expansion and Quoting

base = foo
name = $(base).txt

What is the structure of a variable value? Consider this assignment:

x = foo bar

The value of x could be a string, a list of two strings, or something else entirely. In build2 the

fundamental, untyped value is a list of names. A value can be typed to something else later but it

always starts as a list of names. So in the above example we have a list of two names, foo and

bar, the same as in this example (notice the extra spaces):

x = foo bar

The motivation behind going with a list of names instead of a string or a list of strings is that at its

core we are dealing with targets and their prerequisites and it would be natural to make the repre­

sentation of their names (that is, the way we refer to them) the default. Consider the following

two examples; it would be natural for them to mean the same thing:

exe{hello}: {hxx cxx}{**}

prereqs = {hxx cxx}{**}
exe{hello}: $prereqs

Note also that the name semantics was carefully tuned to be reversible to its syntactic representa­

tion for common non-name values, such as paths, command line options, etc., that are usually

found in buildfiles.

To get to individual elements of a list, an expansion can be followed by a subscript. Note that

subscripts are only recognize inside evaluation contexts and there should be no space between the

expansion and [. For example:

x = foo bar

info ($x[0]) # foo
info ($regex.split(’foo bar’, ’ ’, ’’)[1]) # bar

Names are split into a list at whitespace boundaries with certain other characters treated as syntax

rather than as part of the value. Here are a few examples:

x = $y # expansion
x = (a == b) # eval context
x = {foo bar} # name generation
x = [null] # attributes
x = name@value # pairs
x = # start of a comment

Revision 0.18, March 202562 The build2 Build System

1.8.1 Expansion and Quoting

The complete set of syntax characters is $(){}@#"’ plus space and tab, as well as [], but only

in certain contexts (see Attributes for details). If instead we need these characters to appear liter­

ally as part of the value, then we either have to escape or quote them.

Additionally, *?[will be treated as wildcards in name patterns (see Name Patterns for details).

Note that this treatment can only be inhibited with quoting and not escaping.

While name patterns are recognized inside evaluation contexts, in certain cases the ?[characters

are treated as part of the ternary operator and value subscript, respectively. In such case, to be

treat as wildcards rather than as syntax, these characters have to be escaped, for example:

x = (foo.\?xx)
y = ($foo\[123].txt)

To escape a special character, we prefix it with a backslash (\; to specify a literal backslash,

double it). For example:

x = \$
y = C:\\Program\ Files

Similar to UNIX shells, build2 supports single (’’) and double ("") quoting with roughly the

same semantics. Specifically, expansions (variable, function call, and eval context) and escaping

are performed inside double-quoted strings but not in single-quoted. Note also that quoted strings

can span multiple lines with newlines treated literally (unless escaped in double-quoted strings).

For example:

x = "(a != b)" # true
y = ’(a != b)’ # (a != b)

x = "C:\\Program Files"
y = ’C:\Program Files’

t = ’line one
line two
line three’

Since quote characters are also part of the syntax, if you need to specify them literally in the

value, then they will either have to be escaped or quoted. For example:

cxx.poptions += -DOUTPUT=’"debug"’
cxx.poptions += -DTARGET=\"$cxx.target\"

An expansion can be one of two kinds: spliced or concatenated. In a spliced expansion the vari­

able, function, or eval context is separated from other text with whitespaces. In this case, as the

name suggests, the resulting list of names is spliced into the value. For example:

63Revision 0.18, March 2025 The build2 Build System

1.8.1 Expansion and Quoting

x = ’foo fox’
y = bar $x baz # Three names: ’bar’ ’foo fox’ ’baz’.

This is an important difference compared to the semantics of UNIX shells where the result of

expansion is re-parsed. In particular, this is the reason why you won’t see quoted expansions in

buildfiles as often as in (well-written) shell scripts.

In a concatenated expansion the variable, function, or eval context are combined with unseparated

text before and/or after the expansion. For example:

x = ’foo fox’
y = bar$(x)foz # Single name: ’barfoo foxbaz’

A concatenated expansion is typed unless it is quoted. In a typed concatenated expansion the

parts are combined in a type-aware manner while in an untyped – literally, as string. To illustrate

the difference, consider this buildfile fragment:

info $src_root/foo.txt
info "$src_root/foo.txt"

If we run it on a UNIX-like operating system, we will see two identical lines, along these lines:

/tmp/test/foo.txt
/tmp/test/foo.txt

However, if we run it on Windows (which uses backslashes as directory separators), we will see

the output along these lines:

C:\test\foo.txt
C:\test/foo.txt

The typed concatenation resulted in a native directory separator because dir_path (the

src_root type) did the right thing.

Not every typed concatenation is well defined and in certain situations we may need to force

untyped concatenation with quoting. Options specifying header search paths (-I) are a typical

case, for example:

cxx.poptions =+ "-I$out_root" "-I$src_root"

If we were to remove the quotes, we would see the following error:

buildfile:6:20: error: no typed concatenation of <untyped> to dir_path
 info: use quoting to force untyped concatenation

Revision 0.18, March 202564 The build2 Build System

1.8.1 Expansion and Quoting

1.8.2 Conditions (if-else)

The if directive can be used to conditionally exclude buildfile fragments from being

processed. The conditional fragment can be a single (separate) line or a block with the initial if

optionally followed by a number of elif directives and a final else, which together form the

if-else chain. An if-else block can contain nested if-else chains. For example:

if ($cxx.target.class == ’linux’)
 info ’linux’
elif ($cxx.target.class == ’windows’)
{
 if ($cxx.target.system == ’mingw32’)
 info ’windows-mingw’
 elif ($cxx.target.system == ’win32-msvc’)
 info ’windows-msvc’
 else
 info ’windows-other’
}
else
 info ’other’

The if and elif directive names must be followed by an expression that expands to a single,

literal true or false. This can be a variable expansion, a function call, an eval context, or a

literal value. For example:

if $version.pre_release
 ...

if $regex.match($x, ’[A-Z]’)
 ...

if ($cxx.target.class == ’linux’)
 ...

if false
{
 # disabled fragment
}

x = X
if $x # Error, must expand to true or false.
 ...

There are also if! and elif! directives which negate the condition that follows (note that there

is no space before !). For example:

if! $version.pre_release
 ...
elif! $regex.match($x, ’[A-Z]’)
 ...

65Revision 0.18, March 2025 The build2 Build System

1.8.2 Conditions (if-else)

Note also that there is no notion of variable locality in if-else blocks and any value set inside

is visible outside. For example:

if true
{
 x = X
}

info $x # Prints ’X’.

The if-else chains should not be used for conditional dependency declarations since this

would violate the expectation that all of the project’s source files are listed as prerequisites, irre­

spective of the configuration. Instead, use the special include prerequisite-specific variable to

conditionally include prerequisites into the build. For example:

Incorrect.
#
if ($cxx.target.class == ’linux’)
 exe{hello}: cxx{hello-linux}
elif ($cxx.target.class == ’windows’)
 exe{hello}: cxx{hello-win32}

Correct.
#
exe{hello}: cxx{hello-linux}: include = ($cxx.target.class == ’linux’)
exe{hello}: cxx{hello-win32}: include = ($cxx.target.class == ’windows’)

1.8.3 Pattern Matching (switch)

The switch directive is similar to if-else in that it allows us to conditionally exclude

buildfile fragments from being processed. The difference is in the way the conditions are

structured: while in if-else we can do arbitrary tests, in switch we match one or more

values against a set of patterns. For instance, this is how we can reimplement the first example

from Conditionals (if-else) using switch:

switch $cxx.target.class, $cxx.target.system
{
 case ’linux’
 info ’linux’

 case ’windows’, ’mingw32’
 info ’windows-mingw’

 case ’windows’, ’win32-msvc’
 info ’windows-msvc’

 case ’windows’
 info ’windows-other’

 default
 info ’other’
}

Revision 0.18, March 202566 The build2 Build System

1.8.3 Pattern Matching (switch)

Similar to if-else, the conditional fragment can be a single (separate) line or a block with a

zero or more case lines/blocks optionally followed by default. A case-default block

can contain nested switch directives (though it is often more convenient to use multiple values

in a single switch, as shown above). For example:

switch $cxx.target.class
{
 ...
 case ’windows’
 {
 switch $cxx.target.system
 {
 case ’mingw32’
 info ’windows-mingw’

 case ’win32-msvc’
 info ’windows-msvc’

 default
 info ’windows-other’
 }
 }
 ...
}

All the case fragments are tried in the order specified with the first that matches evaluated and

all the others ignored (that is, there is no explicit break nor the ability to fall through). If none of

the case patterns matched and there is the default fragment, then it is evaluated. Multiple

case lines can be specified for a single conditional fragment. For example:

switch $cxx.target.class, $cxx.id
{
 case ’windows’, ’msvc’
 case ’windows’, ’clang’
 info ’msvcrt’
}

The switch directive name must be followed by one or more value expressions separated with a

comma (,). Similarly, the case directive name must be followed by one or more pattern expres­

sions separated with a comma (,). These expressions can be variable expansions, function calls,

eval contexts, or literal values.

If multiple values/patterns are specified, then all the case patterns must match in order for the

corresponding fragment to be evaluated. However, if some trailing patterns are omitted, then they

are considered as matching. For example:

67Revision 0.18, March 2025 The build2 Build System

1.8.3 Pattern Matching (switch)

switch $cxx.target.class, $cxx.target.system
{
 case ’windows’, ’mingw32’
 info ’windows-mingw’

 case ’windows’, ’win32-msvc’
 info ’windows-msvc’

 case ’windows’
 info ’windows-other’
}

The first pattern in the pattern expression can be optionally followed by one or more alternative

patterns separated by a vertical bar (|). Only one of the alternatives need to match in order for the

whole pattern expression to be considered as matching. For example:

switch $cxx.id
{
 case ’clang’ | ’clang-apple’
 ...
}

The value in the value expression can be optionally followed by a colon (:) and a match function.

If the match function is not specified, then equality is used by default. For example:

switch $cxx.target.cpu: regex.match
{
 case ’i[3-6]86’
 ...

 case ’x86_64’
 ...
}

The match function name can be optionally followed by additional values that are passed as the

third argument to the match function. This is normally used to specify additional match flags, for

example:

switch $cxx.target.cpu: regex.match icase
{
 ...
}

Other commonly used match functions are regex.search() (similar to regex.match()
but searches for any match rather than matching the whole value), path.match() (match

using shell wildcard patterns) and string.icasecmp() (match using equality but ignoring

case). Additionally, any other function that takes the value as its first argument, the pattern as its

second, and returns bool can be used as a match function.

Revision 0.18, March 202568 The build2 Build System

1.8.3 Pattern Matching (switch)

Note that there is no special wildcard or match-anything pattern at the syntax level. In most

common cases the desired semantics can be achieved with default and/or by omitting trailing

patterns. If you do need it, then we recommend using path.match() and its * wildcard. For

example:

switch $cxx.target.class: path.match, \
 $cxx.target.system: path.match, \
 $cxx.id: path.match
{
 case ’windows’, ’*’, ’clang’
 ...
}

Note also that similar to if-else, there is no notion of variable locality in the switch and

case-default blocks and any value set inside is visible outside. Additionally, the same

considerations about conditional dependency declarations apply.

1.8.4 Repetitions (for)

The for directive can be used to repeat the same buildfile fragment multiple times, once for

each element of a list. The fragment to repeat can be a single (separate) line or a block, which

together form the for loop. A for block can contain nested for loops. For example:

for n: foo bar baz
{
 exe{$n}: cxx{$n}
}

The for directive name must be followed by the variable name (called loop variable) that on

each iteration will be assigned the corresponding element, :, and an expression that expands to a

potentially empty list of values. This can be a variable expansion, a function call, an eval context,

or a literal list as in the above fragment. Here is a somewhat more realistic example that splits a

space-separated environment variable value into names and then generates a dependency declara­

tion for each of them:

for n: $regex.split($getenv(NAMES), ’ +’, ’’)
{
 exe{$n}: cxx{$n}
}

Note also that there is no notion of variable locality in for blocks and any value set inside is

visible outside. At the end of the iteration the loop variable contains the value of the last element,

if any. For example:

69Revision 0.18, March 2025 The build2 Build System

1.8.4 Repetitions (for)

for x: x X
{
 y = Y
}

info $x # Prints ’X’.
info $y # Prints ’Y’.

1.9 Implementing Unit Testing

As an example of how many of these features fit together to implement more advanced function­

ality, let’s examine a buildfile that provides support for unit testing. This support is added by

the bdep-new(1) command if we specify the unit-tests option when creating executable

(-t exe,unit-tests) or library (-t lib,unit-tests) projects. Here is the source

subdirectory buildfile of an executable created with this option:

./: exe{hello}: libue{hello}: {hxx cxx}{** -**.test...}

Unit tests.
#
exe{*.test}:
{
 test = true
 install = false
}

for t: cxx{**.test...}
{
 d = $directory($t)
 n = $name($t)...

 ./: $d/exe{$n}: $t $d/hxx{+$n} $d/testscript{+$n}
 $d/exe{$n}: libue{hello}: bin.whole = false
}

cxx.poptions =+ "-I$out_root" "-I$src_root"

The basic idea behind this unit testing arrangement is to keep unit tests next to the source code

files that they test and automatically recognize and build them into test executables without

having to manually list each in the buildfile. Specifically, if we have hello.hxx and

hello.cxx, then to add a unit test for this module all we have to do is drop the

hello.test.cxx source file next to them and it will be automatically picked up, built into an

executable, and run during the test operation.

As an example, let’s say we’ve renamed hello.cxx to main.cxx and factored the printing

code into the hello.hxx/hello.cxx module that we would like to unit-test. Here is the new

layout:

Revision 0.18, March 202570 The build2 Build System

1.9 Implementing Unit Testing

hello/
|-- build
| ·-- ...
|-- hello
| |-- hello.cxx
| |-- hello.hxx
| |-- hello.test.cxx
| |-- main.cxx
| ·-- buildfile
·-- ...

Let’s examine how this support is implemented in our buildfile, line by line. Because now

we link hello.cxx object code into multiple executables (unit tests and the hello program

itself), we have to place it into a utility library. This is what the first line does (it has to explicitly

list exe{hello} as a prerequisite of the default targets since we now have multiple targets that

should be built by default):

./: exe{hello}: libue{hello}: {hxx cxx}{** -**.test...}

A utility library (u in libue) is a static library that is built for a specific type of a primary target

(e in libue for executable). If we were building a utility library for a library then we would

have used the libul{} target type instead. In fact, this would be the only difference in the

above unit testing implementation if it were for a library project instead of an executable:

./: lib{hello}: libul{hello}: {hxx cxx}{** -**.test...}

...

Unit tests.
#
...

for t: cxx{**.test...}
{
 ...

 $d/exe{$n}: libul{hello}: bin.whole = false
}

Going back to the first three lines of the executable buildfile, notice that we had to exclude

source files in the *.test.cxx form from the utility library. This makes sense since we don’t

want unit testing code (each with its own main()) to end up in the utility library.

The exclusion pattern, -**.test..., looks a bit cryptic. What we have here is a second-level

extension (.test) which we use to classify our source files as belonging to unit tests. Because it

is a second-level extension, we have to indicate this fact to the pattern matching machinery with

the trailing triple dot (meaning "there are more extensions coming"). If we didn’t do that, .test
would have been treated as a first-level extension explicitly specified for our source files (see

Target Types for details).

71Revision 0.18, March 2025 The build2 Build System

1.9 Implementing Unit Testing

The next couple of lines set target type/pattern-specific variables to treat all unit test executables

as tests that should not be installed:

exe{*.test}:
{
 test = true
 install = false
}

You may be wondering why we had to escape the second-level .test extension in the name

pattern above but not here. The answer is that these are different kinds of patterns in different

contexts. In particular, patterns in the target type/pattern-specific variables are only matched

against target names without regard for extensions. See Name Patterns for details.

Then we have the for-loop that declares an executable target for each unit test source file. The

list of these files is generated with a name pattern that is the inverse of what we’ve used for the

utility library:

for t: cxx{**.test...}
{
 d = $directory($t)
 n = $name($t)...

 ./: $d/exe{$n}: $t $d/hxx{+$n} $d/testscript{+$n}
 $d/exe{$n}: libue{hello}: bin.whole = false
}

In the loop body we first split the test source file into the directory (remember, we can have

sources, including tests, in subdirectories) and name (which contains the .test second-level

extension and which we immediately escape with ...). And then we use these components to

declare a dependency for the corresponding unit test executable. There is nothing here that we

haven’t already seen except for using variable expansions instead of literal names.

By default utility libraries are linked in the "whole archive" mode where every object file from

the static library ends up in the resulting executable or library. This behavior is what we want

when linking the primary target but can normally be relaxed for unit tests to speed up linking.

This is what the last line in the loop does using the bin.whole prerequisite-specific variable.

You can easily customize this and other aspects on a test-by-test basis by excluding the specific

test(s) from the loop and then providing a custom implementation. For example:

for t: cxx{**.test... -special.test...}
{
 ...
}

./: exe{special.test...}: cxx{special.test...} libue{hello}

Revision 0.18, March 202572 The build2 Build System

1.9 Implementing Unit Testing

Note also that if you plan to link any of your unit tests in the whole archive mode, then you will

also need to exclude the source file containing the primary executable’s main() from the utility

library. For example:

./: exe{hello}: cxx{main} libue{hello}
libue{hello}: {hxx cxx}{** -main -**.test...}

1.10 Diagnostics and Debugging

Sooner or later we will run into a situation where our buildfiles don’t do what we expect

them to. In this section we examine a number of techniques and mechanisms that can help us

understand the cause of a misbehaving build.

To perform a build the build system goes through several phases. During the load phase the

buildfiles are loaded and processed. The result of this phase is the in-memory build state

that contains the scopes, targets, variables, etc., defined by the buildfiles. Next is the match

phase during which rules are matched to the targets that need to be built, recursively. Finally,

during the execute phase the matched rules are executed to perform the build.

The load phase is always serial and stops at the first error. In contrast, by default, both match and

execute are parallel and continue in the presence of errors (similar to the "keep going" make
mode). While beneficial in normal circumstances, during debugging this can lead to both inter­

leaved output that is hard to correlate as well as extra noise from cascading errors. As a result, for

debugging, it is usually helpful to run serially and stop at the first error, which can be achieved

with the --serial-stop|-s option.

The match phase can be temporarily switched to either (serial) load or (parallel) execute. The

former is used, for example, to load additional buildfiles during the dir{} prerequisite to

target resolution, as described in Output Directories and Scopes. While the latter is used to update

generated source code (such as headers) that is required to complete the match.

Debugging issues in each phase requires different techniques. Let’s start with the load phase. As

mentioned in Buildfile Language, buildfiles are processed linearly with directives executed

and variables expanded as they are encountered. As we have already seen, to print a variable

value we can use the info directive. For example:

x = X
info $x

This will print something along these lines:

buildfile:2:1: info: X

73Revision 0.18, March 2025 The build2 Build System

1.10 Diagnostics and Debugging

Or, if we want to clearly see where the value begins and ends (useful when investigating whites­

pace-related issues):

x = " X "
info "’$x’"

Which prints:

buildfile:2:1: info: ’ X ’

Besides the info directive, there are also text, which doesn’t print the info: prefix, warn,

which prints a warning, as well as fail which prints an error and causes the build system to exit

with an error. Here is an example of using each:

text ’note: we are about to get an error’
warn ’the error is imminent’
fail ’this is the end’
info ’we will never get here’

This will produce the following output:

buildfile:1:1: note: we are about to get an error
buildfile:2:1: warning: the error is imminent
buildfile:3:1: error: this is the end

If you find yourself writing code like this:

if ($cxx.target.class == ’windows’)
 fail ’Windows is not supported’

Then the assert directive is a more concise way to express the same:

assert ($cxx.target.class != ’windows’) ’Windows is not supported’

The assert condition must be an expression that evaluates to true or false, similar to the if

directive (see Conditions (if-else) for details). The description after the condition is optional

and, similar to if, there is also the assert! variant, which fails if the condition is true.

All the diagnostics directives write to stderr. If instead we need to write something to

stdout to, for example, send some information back to our caller, then we can use the print

directive. For example, this will print the C++ compiler id and its target:

print "$cxx.id $cxx.target"

To query the value of a target-specific variable we use the qualified name syntax (the

eval-qual production) of eval context, for example:

Revision 0.18, March 202574 The build2 Build System

1.10 Diagnostics and Debugging

obj{main}: cxx.poptions += -DMAIN
info $(obj{main}: cxx.poptions)

There is no direct way to query the value of a prerequisite-specific variable since a prerequisite

has no identity. Instead, we can use the dump directive discussed next to print the entire depen­

dency declaration, including prerequisite-specific variables for each prerequisite.

While printing variable values is the most common mechanism for diagnosing buildfile
issues, sometimes it is also helpful to examine targets and scopes. For that we use the dump

directive.

Without any arguments, dump prints (to stderr) the contents of the scope it was encountered

in and at that point of processing the buildfile. Its output includes variables, targets and their

prerequisites, as well as nested scopes, recursively. As an example, let’s print the source subdi­

rectory scope of our hello executable project. Here is its buildfile with the dump directive

at the end:

exe{hello}: {hxx cxx}{**}

cxx.poptions =+ "-I$out_root" "-I$src_root"

dump

This will produce the output along these lines:

buildfile:5:1: dump:
 /tmp/hello/hello/
 {
 [strings] cxx.poptions = -I/tmp/hello -I/tmp/hello
 [dir_path] out_base = /tmp/hello/hello/
 [dir_path] src_base = /tmp/hello/hello/

 buildfile{buildfile.}:

 exe{hello.?}: cxx{hello.?}
 }

The question marks (?) in the dependency declaration mean that the file extensions haven’t been

assigned yet, which happens during the match phase.

Instead of printing the entire scope, we can also print individual targets by specifying one or more

target names in dump. To make things more interesting, let’s convert our hello project to use a

utility library, similar to the unit testing setup (Implementing Unit Testing). We will also link to

the dl library to see an example of a target-specific variable being dumped:

exe{hello}: libue{hello}: bin.whole = false
exe{hello}: cxx.libs += -ldl
libue{hello}: {hxx cxx}{**}

dump exe{hello}

75Revision 0.18, March 2025 The build2 Build System

1.10 Diagnostics and Debugging

The output will look along these lines:

buildfile:5:1: dump:
 /tmp/hello/hello/exe{hello.?}:
 {
 [strings] cxx.libs = -ldl
 }
 /tmp/hello/hello/exe{hello.?}: /tmp/hello/hello/:libue{hello.?}:
 {
 [bool] bin.whole = false
 }

The output of dump might look familiar: in Output Directories and Scopes we’ve used the

--dump option to print the entire build state, which looks pretty similar. In fact, the dump direc­

tive uses the same mechanism but allows us to print individual scopes and targets from within a

buildfile.

There is, however, an important difference to keep in mind: dump prints the state of a target or

scope at the point in the buildfile load phase where it was executed. In contrast, the --dump
option can be used to print the state after the load phase (--dump load) and/or after the match

phase (--dump match). In particular, the after match printout reflects the changes to the build

state made by the matching rules, which may include entering of additional dependencies, setting

of additional variables, resolution of prerequisites to targets, assignment of file extensions, etc. As

a result, while the dump directive should be sufficient in most cases, sometimes you may need to

use the --dump option to examine the build state just before rule execution.

It is possible to limit the output of --dump to specific scopes and/or targets with the

--dump-scope and --dump-target options.

Let’s now move from state to behavior. As we already know, to see the underlying commands

executed by the build system we use the -v options (which is equivalent to --verbose 2).

Note, however, that these are logical rather than actual commands. You can still run them and

they should produce the desired result, but in reality the build system may have achieved the

same result in a different way. To see the actual commands we use the -V option instead (equiva­

lent to --verbose 3). Let’s see the difference in an example. Here is what building our

hello executable with -v might look like:

$ b -s -v
g++ -o hello.o -c hello.cxx
g++ -o hello hello.o

And here is the same build with -V:

$ b -s -V
g++ -MD -E -fdirectives-only -MF hello.o.t -o hello.o.ii hello.cxx
g++ -E -fpreprocessed -fdirectives-only hello.o.ii
g++ -o hello.o -c -fdirectives-only hello.o.ii
g++ -o hello hello.o

Revision 0.18, March 202576 The build2 Build System

1.10 Diagnostics and Debugging

From the second listing we can see that in reality build2 first partially preprocessed

hello.cxx while extracting its header dependency information. It then preprocessed it fully,

which is used to extract module dependency information, calculate the checksum for ignorable

change detection, etc. When it comes to producing hello.o, the build system compiled the

partially preprocessed output rather than the original hello.cxx. The end result, however, is

the same as in the first listing.

Verbosity level 3 (-V) also triggers printing of the build system module configuration informa­

tion. Here is what we would see for the cxx module:

cxx hello@/tmp/hello/
 cxx g++@/usr/bin/g++
 id gcc
 version 7.2.0 (Ubuntu 7.2.0-1ubuntu1~16.04)
 major 7
 minor 2
 patch 0
 build (Ubuntu 7.2.0-1ubuntu1~16.04)
 signature gcc version 7.2.0 (Ubuntu 7.2.0-1ubuntu1~16.04)
 checksum 09b3b59d337eb9a760dd028fa0df585b307e6a49c2bfa00b3[...]
 target x86_64-linux-gnu
 runtime libgcc
 stdlib libstdc++
 c stdlib glibc
...

Verbosity levels higher than 3 enable build system tracing. In particular, level 4 is useful for

understanding why a rule doesn’t match a target or if it does, why it determined the target to be

out of date. For example, assuming we have an up-to-date build of our hello, let’s change a

compile option:

$ b -s --verbose 4
info: /tmp/hello/dir{hello/} is up to date

$ b -s --verbose 4 config.cxx.poptions+=-DNDEBUG
trace: cxx::compile_rule::apply: options mismatch forcing update
of /tmp/hello/hello/obje{hello.o}
...

Higher verbosity levels result in more and more tracing statements being printed. These include

buildfile loading and parsing, prerequisite to target resolution, as well as build system

module and rule-specific logic.

While the tracing statements can be helpful in understanding what is happening, they don’t make

it easy to see why things are happening a certain way. In particular, one question that is often

encountered during build troubleshooting is which dependency chain causes matching or execu­

tion of a particular target. These questions can be answered with the help of the

--trace-match and --trace-execute options. For example, if we want to understand

what causes the update of obje{hello} in the hello project above:

77Revision 0.18, March 2025 The build2 Build System

1.10 Diagnostics and Debugging

$ b -s --trace-execute ’obje{hello}’
info: updating hello/obje{hello}
 info: using rule cxx.compile
 info: while updating hello/libue{hello}
 info: while updating hello/exe{hello}
 info: while updating dir{hello/}
 info: while updating dir{./}

Another useful diagnostics option is --mtime-check. When specified, the build system

performs a number of file modification time sanity checks that can be helpful in diagnosing spuri­

ous rebuilds.

If neither state dumps nor behavior analysis are sufficient to understand the problem, there is

always an option of running the build system under a C++ debugger in order to better understand

what’s going on. This can be particularly productive for debugging complex rules.

Finally, to help with diagnosing the build system performance issues, there is the --stat
option. It causes build2 to print various execution statistics which can be useful for pin-point­

ing the bottlenecks. There are also a number of options for tuning the build system’s perfor­

mance, such as, the number of jobs to perform in parallel, the stack size, queue depths, etc. See

the b(1) man pages for details.

2 Project Configuration

As discussed in the introduction (specifically, Project Structure) support for build configurations

is an integral part of build2 with the same mechanism used by the build system core (for

example, for project importation via the config.import.* variables), by the build system

modules (for example, for supplying compile options such as config.cxx.coptions), as

well as by our projects to provide any project-specific configurability. Project configuration is the

topic of this chapter.

The build2 build system currently provides no support for autoconf-style probing of the

build environment in order to automatically discover available libraries, functions, features, etc.

The main reason for omitting this support is the fundamental ambiguity and the resulting brittle­

ness of such probing due to the reliance on compiler, linker, or test execution failures. Specifi­

cally, in many such tests it is impossible for a build system to distinguish between a missing

feature, a broken test, and a misconfigured build environment. This leads to requiring a user inter­

vention in the best case and to a silently misconfigured build in the worst. Other issues with this

approach include portability, speed (compiling and linking takes time), as well as limited applica­

bility during cross-compilation (specifically, inability to run tests).

As a result, we recommend using expectation-based configuration where your project assumes a

feature to be available if certain conditions are met. Examples of such conditions at the source

code level include feature test macros, platform macros, runtime library macros, compiler

Revision 0.18, March 202578 The build2 Build System

2 Project Configuration

macros, etc., with the build system modules exposing some of the same information via variables

to allow making similar decisions in buildfiles. The standard pre-installed autoconf build

system module provides emulation of GNU autoconf using this approach.

Another alternative is to automatically adapt to missing features using more advanced techniques

such as C++ SFINAE. And in situations where none of this is possible, we recommend delegating

the decision to the user via a configuration value. Our experience with build2 as well as those

of other large cross-platform projects such as Boost show that this is a viable strategy.

Having said that, build2 does provide the ability to extract configuration information from the

environment ($getenv() function) or other tools ($process.run*() family of functions).

Note, however, that for this to work reliably there should be no ambiguity between the "no

configuration available" case (if such a case is possible) and the "something went wrong" case.

We show a realistic example of this in Configuration Report where we extract the GCC plugin

directory while dealing with the possibility of it being configured without plugin support.

Before we delve into the technical details, let’s discuss the overall need for project configurabil­

ity. While it may seem that making one’s project more user-configurable is always a good idea,

there are costs: by having a choice we increase the complexity and open the door for potential

incompatibility. Specifically, we may end up with two projects in the same build needing a shared

dependency with incompatible configurations.

While some languages, such as Rust, support having multiple differently-configured projects in

the same build, this is not something that is done often in C/C++. This ability is also not without

its drawbacks, most notably code bloat.

As a result, our recommendation is to strive for simplicity and avoid user configurability when­

ever possible. For example, there is a common desire to make certain functionality optional in

order not to make the user pay for things they don’t need. This, however, is often better addressed

either by always providing the optional functionality if it’s fairly small or by factoring it into a

separate project if it’s substantial. If a configuration value is to be provided, it should have a

sensible default with a bias for simplicity and compatibility rather than the optimal result. For

example, in the optional functionality case, the default should probably be to provide it.

As discussed in the introduction, the central part of the build configuration functionality are the

configuration variables. One of the key features that make them special is support for automatic

persistence in the build/config.build file provided by the config module (see Config­

uring for details).

Another mechanism that can be used for project configuration is environment variables. While

not recommended, sometimes it may be forced on us by external factors. In such cases, environ­

ment variables that affect the build result should be reported with the config.environment

directive as discussed in Hermetic Build Configurations.

79Revision 0.18, March 2025 The build2 Build System

2 Project Configuration

https://github.com/build2/libbuild2-autoconf/

The following example, based on the libhello project from the introduction, gives an

overview of the project configuration functionality with the remainder of the chapter providing

the detailed explanation of all the parts shown as well as the alternative approaches.

libhello/
|-- build/
| |-- root.build
| ·-- ...
|-- libhello/
| |-- hello.cxx
| |-- buildfile
| ·-- ...
·-- ...

build/root.build

config [string] config.libhello.greeting ?= ’Hello’

libhello/buildfile

cxx.poptions += "-DLIBHELLO_GREETING=\"$config.libhello.greeting\""

// libhello/hello.cxx

void say_hello (ostream& o, const string& n)
{
 o << LIBHELLO_GREETING ", " << n << ’!’ << endl;
}

$ b configure config.libhello.greeting=Hi -v
config libhello@/tmp/libhello/
 greeting Hi

$ cat build/config.build
config.libhello.greeting = Hi

$ b -v
g++ ... -DLIBHELLO_GREETING="Hi" ...

By (enforced) convention, configuration variables start with config., for example,

config.import.libhello. In case of a build system module, the second component in its

configuration variables should be the module name, for example, config.cxx,

config.cxx.coptions. Similarly, project-specific configuration variables should have the

project name as their second component, for example, config.libhello.greeting.

More precisely, a project configuration variable must match the

config[.**].<project>.** pattern where additional components may be present after

config. in case of subprojects. Overall, the recommendation is to use hierarchical names, such

as config.libcurl.tests.remote for subprojects, similar to build system submodules.

Revision 0.18, March 202580 The build2 Build System

2 Project Configuration

If a build system module for a tool (such as a source code generator) and the tool itself share a

name, then they may need to coordinate their configuration variable names in order to avoid

clashes. Note also that when importing an executable target in the

<project>%exe{<project>} form, the config.<project> variable is treated as an

alias for config.import.<project>.<project>.exe.

For an imported buildfile, <project> may refer to either the importing project or the

project from which the said buildfile was imported.

The build system core reserves build and import as the second component in configuration

variables as well as configured as the third and subsequent components.

A variable in the config.<project>.develop form has pre-defined semantics: it allows a

project to distinguish between development and consumption builds. While normally there is no

distinction between these two modes, sometimes a project may need to provide additional func­

tionality during development. For example, a source code generator which uses its own generated

code in its implementation may need to provide a bootstrap step from the pre-generated code.

Normally, such a step is only needed during development.

While some communities, such as Rust, believe that building and running tests is only done

during development, we believe its reasonable for an end-user to want to run tests for all their

dependencies. As a result, we strongly discourage restricting tests to the development mode only.

Test are an integral part of the project and should always be available.

If used, the config.<project>.develop variable should be explicitly defined by the

project with the bool type and the false default value. For example:

build/root.build

config [bool] config.libhello.develop ?= false

If the config.<project>.develop variable is specified by the user of the project but the

project does not define it (that is, the project does not distinguish between development and

consumption), then this variable is silently ignored. By default bdep-init(1) configures

projects being initialized for development. This can be overridden with explicit

config.<project>.develop=false.

2.1 config Directive

To define a project configuration variable we add the config directive into the project’s

build/root.build file (see Project Structure). For example:

81Revision 0.18, March 2025 The build2 Build System

2.1 config Directive

config [bool] config.libhello.fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

The irony does not escape us: these configuration variables are exactly of the kind that we advo­

cate against. However, finding a reasonable example of build-time configurability in a "Hello,

World!" library is not easy. In fact, it probably shouldn’t have any. So, for this chapter, do as we

say, not as we do.

Similar to import (see Target Importation), the config directive is a special kind of variable

assignment. Let’s examine all its parts in turn.

First comes the optional list of variable attributes inside []. The only attribute that we have in

the above example is the variable type, bool and string, respectively. It is generally a good

idea to assign static types to configuration variables because their values will be specified by the

users of our project and the more automatic validation we provide the better (see Variables for the

list of available types). For example, this is what will happen if we misspell the value of the

fancy variable:

$ b configure config.libhello.fancy=fals
error: invalid bool value ’fals’ in variable config.libhello.fancy

After the attribute list we have the variable name. The config directive will validate that it

matches the config[.**].<project>.** pattern (with one exception discussed in Config­

uration Report).

Finally, after the variable name comes the optional default value. Note that unlike normal vari­

ables, the default value assignment (?=) is the only valid form of assignment in the config

directive.

The semantics of the config directive is as follows: First an overridable variable is entered with

the specified name, type (if any), and global visibility. Then, if the variable is undefined and the

default value is specified, it is assigned the default value. After this, if the variable is defined

(either as user-defined or default), it is marked for persistence. Finally, a defined variable is also

marked for reporting as discussed in Configuration Report. Note that if the variable is

user-defined, then the default value is not evaluated.

Note also that if the configuration value is not specified by the user and you haven’t provided the

default, the variable will be undefined, not null, and, as a result, omitted from the persistent

configuration (build/config.build file). In fact, unlike other variables, project configura­

tion variables are by default not nullable. For example:

$ b configure config.libhello.fancy=[null]
error: null value in non-nullable variable config.libhello.fancy

Revision 0.18, March 202582 The build2 Build System

2.1 config Directive

There are two ways to make null a valid value of a project configuration variable. Firstly, if the

default value is null, then naturally the variable is assumed nullable. This is traditionally used

for optional configuration values. For example:

config [string] config.libhello.fallback_name ?= [null]

If we need a nullable configuration variable but with a non-null default value (or no default

value at all), then we have to use the null variable attribute. For example:

config [string, null] config.libhello.fallback_name ?= "World"

A common approach for representing an C/C++ enum-like value is to use string as a type and

pattern matching for validation. In fact, validation and propagation can often be combined. For

example, if our library needed to use a database for some reason, we could handle it like this:

config [string] config.libhello.database ?= [null]

using cxx

switch $config.libhello.database
{
 case [null]
 {
 # No database in use.
 }
 case ’sqlite’
 {
 cxx.poptions += -DLIBHELLO_WITH_SQLITE
 }
 case ’pgsql’
 {
 cxx.poptions += -DLIBHELLO_WITH_PGSQL
 }
 default
 {
 fail "invalid config.libhello.database value \
’$config.libhello.database’"
 }
}

While it is generally a good idea to provide a sensible default for all your configuration variables,

if you need to force the user to specify its value explicitly, this can be achieved with an extra

check. For example:

config [string] config.libhello.database

if! $defined(config.libhello.database)
 fail ’config.libhello.database must be specified’

83Revision 0.18, March 2025 The build2 Build System

2.1 config Directive

A configuration variable without a default value is omitted from config.build unless the

value is specified by the user. This semantics is useful for values that are normally derived from

other configuration values but could also be specified by the user. If the value is derived, then we

don’t want it saved in config.build since that would prevent it from being re-derived if the

configuration values it is based on are changed. For example:

config [strings] config.hello.database

assert ($size($config.hello.database) > 0) \
 ’database must be specified with config.hello.database’

config [bool, config.report.variable=multi] config.hello.multi_database

multi = ($defined(config.hello.multi_database) \
 ? $config.hello.multi_database \
 : $size(config.hello.database) > 1)

assert ($multi || $size(config.hello.database) == 1) \
 ’one database can be specified if config.hello.multi_database=false’

If computing the default value is expensive or requires elaborate logic, then the handling of a

configuration variable can be broken down into two steps along these lines:

config [string] config.libhello.greeting

if! $defined(config.libhello.greeting)
{
 greeting = ... # Calculate default value.

 if ($greeting == [null])
 fail "unable to calculate default greeting, specify manually \
with config.libhello.greeting"

 config config.libhello.greeting ?= $greeting
}

Other than assigning the default value via the config directive, configuration variables should

not be modified by the project’s buildfiles. Instead, if further processing of the configuration

value is necessary, we should assign the configuration value to a different, non-config.*, vari­

able and modify that. The two situations where this is commonly required are post-processing of

configuration values to be more suitable for use in buildfiles as well as further customiza­

tion of configuration values. Let’s see examples of both.

To illustrate the first situation, let’s say we need to translate the database identifiers specified by

the user:

config [string] config.libhello.database ?= [null]

switch $config.libhello.database
{
 case [null]

Revision 0.18, March 202584 The build2 Build System

2.1 config Directive

 database = [null]

 case ’sqlite’
 database = ’SQLITE’

 case ’pgsql’
 database = ’PGSQL’

 case ’mysql’
 case ’mariadb’
 database = ’MYSQL’

 default
 fail "..."
 }
}

using cxx

if ($database != [null])
 cxx.poptions += "-DLIBHELLO_WITH_$database"

For the second situation, the typical pattern looks like this:

config [strings] config.libhello.options

options = # Overridable options go here.
options += $config.libhello.options
options += # Non-overridable options go here.

That is, assuming that the subsequently specified options (for example, command line options)

override any previously specified, we first set default buildfile options that are allowed to be

overridden by options from the configuration value, then append such options, if any, and finish

off by appending buildfile options that should always be in effect.

As a concrete example of this approach, let’s say we want to make the compiler warning level of

our project configurable (likely a bad idea; also ignores compiler differences):

config [strings] config.libhello.woptions

woptions = -Wall -Wextra
woptions += $config.libhello.woptions
woptions += -Werror

using cxx

cxx.coptions += $woptions

With this arrangement, the users of our project can customize the warning level but cannot

disable the treatment of warnings as errors. For example:

85Revision 0.18, March 2025 The build2 Build System

2.1 config Directive

$ b -v config.libhello.woptions=-Wno-extra
g++ ... -Wall -Wextra -Wno-extra -Werror ...

If you do not plan to package your project, then the above rules are the only constraints you have.

However, if your project is also a package, then other projects that use it as a dependency may

have preferences and requirements regarding its configuration. And it becomes the job of the

package manager (bpkg) to negotiate a suitable configuration between all the dependents of your

project (see Dependency Configuration Negotiation for details). This can be a difficult problem to

solve optimally in a reasonable time and to help the package manager come up with the best

configuration quickly you should follow the below additional rules and recommendations for

configuration of packages (but which are also generally good ideas):

1. Prefer bool configuration variables. For example, if your project supports a fixed number

of backends, then provide a bool variable to enable each rather than a single variable that

lists all the backends to be enabled.

2. Avoid project configuration variable dependencies, that is, where the default value of one

variable depends on the value of another. But if you do need such a dependency, make sure

it is expressed using the original config.<project>.* variables rather than any inter­

mediate/computed values. For example:

Enable Y only if X is enabled.
#
config [bool] config.hello.x ?= false
config [bool] config.hello.y ?= $config.libhello.x

3. Do not make project configuration variables conditional. In other words, the set of configu­

ration variables and their types should be a static property of the project. If you do need to

make a certain configuration variable "unavailable" or "disabled" if certain conditions are

met (for example, on a certain platform or based on the value of another configuration vari­

able), then express this with a default value and/or a check. For example:

windows = ($cxx.target.class == ’windows’)

Y should only be enabled if X is enabled and we are not on
Windows.
#
config [bool] config.hello.x ?= false
config [bool] config.hello.y ?= ($config.hello.x && !$windows)

if $config.libhello.y
{
 assert $config.hello.x "Y can only be enabled if X is enabled"
 assert (!$windows) "Y cannot be enabled on Windows"
}

Additionally, if you wish to factor some config directives into a separate file (for example, if

you have a large number of them or you would like to share them with subprojects) and source it

from your build/root.build, then it is recommended that you place this file into the

build/config/ subdirectory, where the package manager expects to find such files (see

Revision 0.18, March 202586 The build2 Build System

2.1 config Directive

Package Build System Skeleton for background). For example:

root.build
#

...

source $src_root/build/config/common.build

If you would prefer to keep such a file in a different location (for example, because it contains

things other than config directives), then you will need to manually list it in your package’s

manifest file, see the build-file value for details.

Another effect of the config directive is to print the configuration variable in the project’s

configuration report. This functionality is discussed in the following section. While we have

already seen some examples of how to propagate the configuration values to our source code,

Configuration Propagation discusses this topic in more detail.

2.2 Configuration Report

One of the effects of the config directive is to mark a defined configuration variable for report­

ing. The project configuration report is printed automatically at a sufficiently high verbosity level

along with the build system module configuration. For example (some of the cxx module config­

uration is omitted for brevity):

$ b config.libhello.greeting=Hey -v
cxx libhello@/tmp/libhello/
 cxx g++@/usr/bin/g++
 id gcc
 version 9.1.0
 ...
config libhello@/tmp/libhello/
 fancy false
 greeting Hey

The configuration report is printed immediately after loading the project’s

build/root.build file. It is always printed at verbosity level 3 (-V) or higher. It is also

printed at verbosity level 2 (-v) if any of the reported configuration variables have a new value.

A value is considered new if it was set to default or was overridden on the command line.

The project configuration report header (the first line) starts with the special config module

name (the config module itself does not have a report) followed by the project name and its

out_root path. After the header come configuration variables with the

config[.**].<project> prefix removed. The configuration report for each variable can be

customized using a number of config.report* attributes as discussed next.

87Revision 0.18, March 2025 The build2 Build System

2.2 Configuration Report

The config.report attribute controls whether the variable is included into the report and, if

so, the format to print its value in. For example, this is how we can exclude a variable from the

report:

config [bool, config.report=false] config.libhello.selftest ?= false

While we would normally want to report all our configuration variables , if some of them are

internal and not meant to be used by the users of our project, it probably makes sense to exclude

them.

The only currently supported alternative printing format is multiline which prints a list value

one element per line. Other printing formats may be supported in the future. For example:

config [dir_paths, config.report=multiline] config.libhello.search_dirs

$ b config.libhello.search_dirs="/etc/default /etc" -v
config libhello@/tmp/libhello/
 search_dirs
 /etc/default/
 /etc/

The config.report attribute can also be used to include a non-config.* variable into a

report. This is primarily useful for configuration values that are always discovered automatically

but that are still useful to report for troubleshooting. Here is a realistic example:

using cxx

Determine the GCC plugin directory.
#
if ($cxx.id == ’gcc’)
{
 plugin_dir = [dir_path] $process.run($cxx.path -print-file-name=plugin)

 # If plugin support is disabled, then -print-file-name will print
 # the name we have passed (the real plugin directory will always
 # be absolute).
 #
 if ("$plugin_dir" == plugin)
 fail "$recall($cxx.path) does not support plugins"

 config [config.report] plugin_dir
}

This is the only situation where a variable that does not match the

config[.**].<project>.** pattern is allowed in the config directive. Note also that a

value of such a variable is never considered new.

Note that this mechanism should not be used to report configuration values that require

post-processing because of the loss of the new value status (unless you are reporting both the

original and post-processed values). Instead, use the config.report.variable attribute to

Revision 0.18, March 202588 The build2 Build System

2.2 Configuration Report

specify an alternative variable for the report. For example:

config [strings, config.report.variable=woptions] \
 config.libhello.woptions

woptions = -Wall -Wextra
woptions += $config.libhello.woptions
woptions += -Werror

$ b config.libhello.woptions=-Wno-extra -v
config libhello@/tmp/libhello/
 woptions -Wall -Wextra -Wno-extra -Werror

The config.report.module attribute can be used to override the reporting module name,

that is, config in the config libhello@/tmp/libhello/ line above. It is primarily

useful in imported buildfiles that wish to report non-config.* variables under their own

name. For example:

config [string] config.rtos.board

Load the board description and report key information such as the
capability revoker.
#
...
revoker = ...

config [config.report.module=rtos] revoker

$ b config.rtos.board=ibex-safe-simulator -v
rtos hello@/tmp/hello/
 board ibex-safe-simulator
 revoker hardware

2.3 Configuration Propagation

Using configuration values in our buildfiles is straightforward: they are like any other

buildfile variables and we can access them directly. For example, this is how we could

provide optional functionality in our library by conditionally including certain source files: See

Conditions (if-else) for why we should not use if to implement this.

build/root.build

config [strings] config.libhello.io ?= true

libhello/buildfile

lib{hello}: {hxx ixx txx cxx}{** -version -hello-io} hxx{version}
lib{hello}: {hxx cxx}{hello-io}: include = $config.libhello.io

89Revision 0.18, March 2025 The build2 Build System

2.3 Configuration Propagation

On the other hand, it is often required to propagate the configuration information to our source

code. In fact, we have already seen one way to do it: we can pass this information via C/C++

preprocessor macros defined on the compiler’s command line. For example:

build/root.build

config [bool] config.libhello.fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

libhello/buildfile

if $config.libhello.fancy
 cxx.poptions += -DLIBHELLO_FANCY

cxx.poptions += "-DLIBHELLO_GREETING=\"$config.libhello.greeting\""

// libhello/hello.cxx

void say_hello (ostream& o, const string& n)
{
#ifdef LIBHELLO_FANCY
 // TODO: something fancy.
#else
 o << LIBHELLO_GREETING ", " << n << ’!’ << endl;
#endif
}

We can even use the same approach to export certain configuration information to our library’s

users (see Library Exportation and Versioning for details):

libhello/buildfile

Export options.
#
if $config.libhello.fancy
 lib{hello}: cxx.export.poptions += -DLIBHELLO_FANCY

This mechanism is simple and works well across compilers so there is no reason not to use it

when the number of configuration values passed and their size are small. However, it can quickly

get unwieldy as these numbers grow. For such cases, it may make sense to save this information

into a separate auto-generated source file with the help of the in module, similar to how we do it

for the version header.

The often-used approach is to generate a header file and include it into source files that need

access to the configuration information. Historically, this was a C header full of macros called

config.h. However, for C++ projects, there is no reason not to make it a C++ header and, if

desired, to use modern C++ features instead of macros. Which is what we will do here.

Revision 0.18, March 202590 The build2 Build System

2.3 Configuration Propagation

As an example of this approach, let’s convert the above command line-based implementation to

use the configuration header. We will continue using macros as a start (or in case this is a C

project) and try more modern techniques later. The build/root.build file is unchanged

except for loading the in module:

build/root.build

config [bool] config.libhello.fancy ?= false
config [string] config.libhello.greeting ?= ’Hello’

using in

The libhello/config.hxx.in file is new:

// libhello/config.hxx.in

#pragma once

#define LIBHELLO_FANCY $config.libhello.fancy$
#define LIBHELLO_GREETING "$config.libhello.greeting$"

As you can see, we can reference our configuration variables directly in the config.hxx.in

substitutions (see the in module documentation for details on how this works).

With this setup, the way to export configuration information to our library’s users is to make the

configuration header public and install it, similar to how we do it for the version header.

The rest is changed as follows:

libhello/buildfile

lib{hello}: {hxx ixx txx cxx}{** -version -config} hxx{version config}

hxx{config}: in{config}
{
 install = false
}

// libhello/hello.cxx

#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
#if LIBHELLO_FANCY
 // TODO: something fancy.
#else
 o << LIBHELLO_GREETING ", " << n << ’!’ << endl;
#endif
}

91Revision 0.18, March 2025 The build2 Build System

2.3 Configuration Propagation

Notice that we had to replace #ifdef LIBHELLO_FANCY with #if LIBHELLO_FANCY. If

you want to continue using #ifdef, then you will need to make the necessary arrangements

yourself (the in module is a generic preprocessor and does not provide any special treatment for

#define). For example:

#define LIBHELLO_FANCY $config.libhello.fancy$
#if !LIBHELLO_FANCY
undef LIBHELLO_FANCY
#endif

Now that the macro-based version is working, let’s see how we can take advantage of modern

C++ features to hopefully improve on some of their drawbacks. As a first step, we can replace the

LIBHELLO_FANCY macro with a compile-time constant and use if constexpr instead of

#ifdef in our implementation:

// libhello/config.hxx.in

namespace hello
{
 inline constexpr bool fancy = $config.libhello.fancy$;
}

// libhello/hello.cxx

#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
 if constexpr (fancy)
 {
 // TODO: something fancy.
 }
 else
 o << LIBHELLO_GREETING ", " << n << ’!’ << endl;
}

Note that with if constexpr the branch not taken must still be valid, parsable code. This is

both one of the main benefits of using it instead of #if (the code we are not using is still guaran­

teed to be syntactically correct) as well as its main drawback (it cannot be used, for example, for

platform-specific code without extra efforts, such as providing shims for missing declarations,

etc).

Next, we can do the same for LIBHELLO_GREETING:

// libhello/config.hxx.in

namespace hello
{
 inline constexpr char greeting[] = "$config.libhello.greeting$";
}

Revision 0.18, March 202592 The build2 Build System

2.3 Configuration Propagation

// libhello/hello.cxx

#include <libhello/config.hxx>

void say_hello (ostream& o, const string& n)
{
 if constexpr (fancy)
 {
 // TODO: something fancy.
 }
 else
 o << greeting << ", " << n << ’!’ << endl;
}

Note that for greeting we can achieve the same result without using inline variables or cons­
texpr and which would be usable in older C++ and even C. All we have to do is add the

config.cxx.in source file next to our header with the definition of the greeting variable.

For example:

// libhello/config.hxx.in

namespace hello
{
 extern const char greeting[];
}

// libhello/config.cxx.in

#include <libhello/config.hxx>

namespace hello
{
 const char greeting[] = "$config.libhello.greeting$";
}

libhello/buildfile

lib{hello}: {hxx ixx txx cxx}{** -config} {hxx cxx}{config}

hxx{config}: in{config}
{
 install = false
}

cxx{config}: in{config}

As this illustrates, the in module can produce as many auto-generated source files as we need.

For example, we could use this to split the configuration header into two, one public and installed

while the other private.

93Revision 0.18, March 2025 The build2 Build System

2.3 Configuration Propagation

3 Targets and Target Types

This chapter is a work in progress and is incomplete.

3.1 Target Types

A target type is part of a target’s identity. The core idea behind the concept of target types is to

abstract away from file extensions which can vary from project to project (for example, C++

source files extensions) or from platform to platform (for example, executable file extensions). It

also allows us to have non-file-based targets.

Target types form a base-derived inheritance tree. The root of this tree is the abstract target{}
type. The build2 core defines a number of standard target types, such as file{}, doc{}, and

exe{}. Build system modules can define additional target types that are based on the standard

ones (or on types defined by other modules). For example, the c module that provides the C

compilation support defines the h{} and c{} target types. Finally, buildfiles can derive

project-local target types using the define directive.

If a target type represents a file type with a well-established extension, then by convention such

an extension is used as the target type name. For example, the C language header and source files

use the .h and .c extensions and the target types are called h{} and c{}.

Speaking of conventions, as you may have noticed, when mentioning a target type we customar­

ily add {} after its name. We found that this helps with comprehension since target type names

are often short (you can also search for <type>{ to narrow it down to target types). In a way

this is a similar approach to adding () after a function name except here we use {}, which

mimics target type usage in target names, for example c{hello} for hello.c.

The following listing shows the hierarchy of the standard target types defined by the build2
core (the abstract target types are marked with *) while the following sections describe each stan­

dard target type in detail. For target types defined by a module refer to the respective module

documentation.

 .-----target*------------.
 | | |
 mtime_target*---. alias fsdir
 | | |
 path_target* group dir
 |
 .---------file----.
 | | |
 .----doc-----. exe buildfile
 | | |
legal man manifest
 |
 man<N>

Revision 0.18, March 202594 The build2 Build System

3 Targets and Target Types

While target types replace (potentially variable) extensions, there still needs to be a mechanism

for specifying them since in most cases targets have to be mapped to files. There are several ways

this can be achieved.

If a target type represents a file type with a well-established extension, then such an extension is

normally used by default and we don’t need to take any extra steps. For example the h{} and

c{} target types for C header and source files default to the .h and .c extensions, respectively,

and if our project follows this convention, then we can simply write:

exe{utility}: c{utility} h{utility}

And c{utility} will be mapped to utility.c and h{utility} – to utility.h.

There are two variants of this default extension case: fixed extension and customizable extension.

A target type may choose to fix the default extension if it’s a bad idea to deviate from the default

extension. A good example of such a target is man1{}, which fixes the default extension to be

.1. More commonly, however, a target will have a default extension but will allow customizing

it with the extension variable.

A good example where extension customization is often required are the hxx{} and cxx{}
target types for C++ header and source files, which default to the .hxx and .cxx extensions,

respectively. If our project uses other extensions, for example, .hpp and .cpp, then we can

adjust the defaults (typically done in root.build, after loading the cxx module):

hxx{*}: extension = hpp
cxx{*}: extension = cpp

Then we can write:

exe{utility}: cxx{utility} hxx{utility}

And cxx{utility} will be mapped to utility.cpp and hxx{utility} – to

utility.hpp.

What about exe{utility}, where does its extension come from? This is an example of a

target type with an extension that varies from platform to platform. In such cases the extension is

expected to be assigned by the rule that matches the target. In the above example, the link rule

from the cxx module that matches updating exe{utility} will assign a suitable extension

based on the target platform of the C++ compiler that it was instructed to use.

Finally, it is always possible to specify the file extension explicitly as part of the target name. For

example:

95Revision 0.18, March 2025 The build2 Build System

3.1 Target Types

exe{utility}: cxx{utility.cc} hxx{utility.hh}

This is normally only needed if the default extension is not appropriate or if the target type does

not have a default extension, as is the case, for example, for the file{} and doc{} target

types. This mechanism can also be used to override the automatically derived extension. For

example:

exe{($cxx.target.class == ’windows’ ? utility.com : utility)}: ...

If you need to specify a name that does not have an extension, then end it with a single dot. For

example, for a header utility you would write hxx{utility.}. If you need to specify a

name with an actual trailing dot, then escape it with a double dot, for example,

hxx{utility..}.

More generally, anywhere in a name, a double dot can be used to specify a dot that should not be

considered the extension separator while a triple dot – which should. For example, in

obja{foo.a.o} the extension is .o and if instead we wanted .a.o to be considered the

extension, then we could rewrite it either as obja{foo.a..o} or as obja{foo...a.o}.

To derive a new target type in a buildfile we use the define directive. Such target types

are project-local, meaning they cannot be exported to other projects. Typically this is used to

provide a more meaningful name to a set of files and also avoid having to specify their extensions

explicitly. Compare:

./: doc{README.md PACKAGE-README.md INSTALL.md}

To:

define md: doc
doc{*}: extension = md

./: md{README PACKAGE-README INSTALL}

3.1.1 target{}

The target{} target type is a root of the target type hierarchy. It is abstract and is not

commonly used directly, except perhaps in patterns (target type/pattern-specific variable, pattern

rules).

3.1.2 alias{} and dir{}

The alias{} target type is used for non-file-based targets that serve as aliases for their prereq­

uisite.

Revision 0.18, March 202596 The build2 Build System

3.1.1 target{}

Alias targets in build2 are roughly equivalent to phony targets in make.

For example:

alias{tests}: exe{test1 test2 test3}

$ b test: alias{tests}

An alias{} target can also serve as an "action" if supplied with an ad hoc recipe (or matched

by an ad hoc pattern rule). For example:

alias{strip}: exe{hello}
{{
 diag strip $<
 strip $path($<)
}}

The dir{} target type is a special kind of alias that represents a directory. Building it means

building everything inside the directory. See Project Structure for background.

A target without a type that ends with a directory separator (/) is automatically treated as dir{}.

For example, the following two lines are equivalent:

./: exe{test1 test2}
dir{./}: exe{test1 test2}

Omitting the target type in such situations is customary.

3.1.3 fsdir{}

The fsdir{} target type represents a filesystem directory. Unlike dir{} above, it is not an

alias and listing an fsdir{} directory as a prerequisite of a target will cause that directory to be

created on update and removed on clean.

While we usually don’t need to list explicit fsdir{} prerequisites for our targets, one situation

where this is necessary is when the target resides in a subdirectory that does not correspond to an

existing source directory. A typical example of this situation is placing object files into subdirec­

tories. Compare:

obj{foo}: c{foo}
sub/obj{bar}: c{bar} fsdir{sub/}

3.1.4 mtime_target{} and path_target{}

The mtime_target{} target type represents a target that uses modification times to determine

if it is out of date. The path_target{} target type represents a target that has a corresponding

filesystem entry. It is derived from mtime_target{} and uses the modification time of that

97Revision 0.18, March 2025 The build2 Build System

3.1.3 fsdir{}

filesystem entry to determine if the target is out of date.

Both of these target types are abstract and are not commonly used directly, except perhaps in

patterns (target type/pattern-specific variable, pattern rules).

3.1.5 group{}

The group{} target type represents a user-defined explicit target group, that is, a target that has

multiple member targets that are all built together with a single recipe.

Normally this target type is not used to declare targets or prerequisites but rather as a base of a

derived group. If desired, such a derived group can be marked with an attribute as "see-through",

meaning that when the group is listed as a prerequisite of a target, the matching rule "sees" its

members, rather than the group itself. For example:

define [see_through] thrift_cxx: group

3.1.6 file{}

The file{} target type represents a generic file. This target type is used as a base for most of

the file-based targets and can also be used to declare targets and prerequisites when there are no

more specific target types.

A target or prerequisite without a target type is automatically treated as file{}. However, omit­

ting a target type in such situations is not customary.

The file{} target type has no default extension and one cannot be assigned with the exten­
sion variable. As a result, if a file{} target has an extension, then it must be specified explic­

itly as part of the target name. For example:

./: file{example.conf}

3.1.7 doc{}, legal{}, and man{}

The doc{} target type represents a generic documentation file. It has semantics similar to

file{} (from which it derives): it can be used as a base or declare targets/prerequisites and

there is no default extension. One notable difference, however, is that doc{} targets are by

default installed into the doc/ installation location (see install Module). For example:

./: doc{README.md ChangeLog.txt}

The legal{} target type is derived from doc{} and represents a legal documentation file, such

as a license, copyright notice, authorship information, etc. The main purpose of having a separate

target type like this is to help with installing licensing-related files into a different location. To

this effect, legal{} targets are installed into the legal/ installation location, which by default

Revision 0.18, March 202598 The build2 Build System

3.1.5 group{}

is the same as doc/ but can be customized. For example:

./: legal{COPYRIGHT LICENSE AUTHORS.md}

The man{} target type is derived from doc{} and represents a manual page. This target type

requires an explicit extension specification and is installed into the man/ installation location

If you are using the man{} target type directly (instead of one of man<N>{} described below),

for example, to install a localized version of a man page, then you will likely need to adjust the

installation location on the per target basis.

The man<N>{} target types (where <N> is an integer between 1 and 9) are derived from man{}
and represent manual pages in the respective sections. These target types have fixed default

extensions .<N> (but an explicit extension can still be specified, for example man1{foo.1p})

and are installed into the man<N>/ installation locations. For example:

./: man1{foo}

3.1.8 exe{}

The exe{} target type represents an executable file. Executables in build2 appear in two

distinct but sometimes overlapping contexts: We can build an executable target, for example from

C source files. Or we can list an executable target as a prerequisite in order to execute it as part of

a recipe. And sometimes this can be the same executable target. For example, one project may

build an executable target that is a source code generator and another project may import this

executable target and use it in its recipes in order to generate some source code.

To support this semantics the exe{} target type has a peculiar default extension logic. Specifi­

cally, if the exe{} target is "output", then the extension is expected to be assigned by the match­

ing rule according to the target platform for which this executable is built. But if it does not, then

we fall back to no extension (for example, a script). If, however, the exe{} target is "input" (that

is, it’s listed as a prerequisite and there is no corresponding "output" target), then the extension of

the host platform is used as the default.

In all these cases the extension can also be specified explicitly. This, for example, would be

necessary if the executable were a batch file:

h{generate}: exe{generate.bat}
{{
 diag $< -> $>
 $< -o $path($>)
}}

Here, without the explicit extension, the .exe extension would have been used by default.

99Revision 0.18, March 2025 The build2 Build System

3.1.8 exe{}

4 Variables

This chapter is a work in progress and is incomplete.

The following variable/value types can currently be used in buildfiles:

bool

int64
int64s

uint64
uint64s

string
strings
string_set
string_map

path
paths
dir_path
dir_paths

json
json_array
json_object
json_set
json_map

name
names
name_pair

cmdline
project_name
target_triplet

Note that while expansions in the target and prerequisite-specific assignments happen in the

corresponding target and prerequisite contexts, respectively, for type/pattern-specific assignments

they happen in the scope context. Plus, a type/pattern-specific prepend/append is applied at the

time of expansion for the actual target. For example:

x = s

file{foo}: # target
{
 x += t # s t
 y = $x y # s t y
}

file{foo}: file{bar} # prerequisite
{

Revision 0.18, March 2025100 The build2 Build System

4 Variables

 x += p # x t p
 y = $x y # x t p y
}

file{b*}: # type/pattern
{
 x += w # <append w>
 y = $x w # <assign s w>
}

x = S

info $(file{bar}: x) # S w
info $(file{bar}: y) # s w

5 Functions

This chapter is a work in progress and is incomplete.

Functions in build2 are organized into families, such as the $string.*() family for manip­

ulating strings or $regex.*() for working with regular expressions. Most functions are pure

and those that are not, such as $builtin.getenv(), are explicitly documented as such.

Some functions, such as from the $regex.*() family, can only be called fully qualified with

their family name. For example:

if $regex.match($name, ’(.+)-(.+)’)
 ...

While other functions can be called without explicit qualification. For example:

path = $getenv(’PATH’)

There are also functions that can be called unqualified only for certain types of arguments (this

fact will be reflected in their synopsis and/or documentation). Note, however, that every function

can always be called qualified.

5.1 Builtin Functions

The $builtin.*() function family contains fundamental build2 functions.

5.1.1 $builtin.defined()

$defined(<variable>)

Return true if the specified variable is defined in the calling scope or any outer scopes.

101Revision 0.18, March 2025 The build2 Build System

5 Functions

Note that this function is not pure.

5.1.2 $builtin.visibility()

$visibility(<variable>)

Return variable visibility if it is known and null otherwise.

Possible visibility value are:

global -- all outer scopes
project -- this project (no outer projects)
scope -- this scope (no outer scopes)
target -- target and target type/pattern-specific
prereq -- prerequisite-specific

Note that this function is not pure.

5.1.3 $builtin.type()

$type(<value>)

Return the type name of the value or empty string if untyped.

5.1.4 $builtin.null()

$null(<value>)

Return true if the value is null.

5.1.5 $builtin.empty()

$empty(<value>)

Return true if the value is empty.

5.1.6 $builtin.first(), $builtin.second()

$first(<value>[, <not_pair>])
$second(<value>[, <not_pair>])

Return the first or the second half of a pair, respectively. If a value is not a pair, then return null
unless the not_pair argument is true, in which case return the non-pair value.

If multiple pairs are specified, then return the list of first/second halfs. If an element is not a pair,

then omit it from the resulting list unless the not_pair argument is true, in which case add

the non-pair element to the list.

Revision 0.18, March 2025102 The build2 Build System

5.1.2 $builtin.visibility()

5.1.7 $builtin.quote()

$quote(<value>[, <escape>])

Quote the value returning its string representation. If escape is true, then also escape (with a

backslash) the quote characters being added (this is useful if the result will be re-parsed, for

example as a script command line).

5.1.8 $builtin.getenv()

$getenv(<name>)

Get the value of the environment variable. Return null if the environment variable is not set.

Note that if the build result can be affected by the variable being queried, then it should be

reported with the config.environment directive.

Note that this function is not pure.

5.2 String Functions

5.2.1 $string.icasecmp()

$string.icasecmp(<untyped>, <untyped>)
$icasecmp(<string>, <string>)

Compare ASCII strings ignoring case and returning the boolean value.

5.2.2 $string.contains()

$string.contains(<untyped>, <untyped>[, <flags>])
$contains(<string>, <string>[, <flags>])

Check if the string (first argument) contains the given substring (second argument). The substring

must not be empty.

The following flags are supported:

icase - compare ignoring case

once - check if the substring occurs exactly once

See also $string.starts_with(), $string.ends_with(), $regex.search().

103Revision 0.18, March 2025 The build2 Build System

5.2 String Functions

5.2.3 $string.starts_with()

$string.starts_with(<untyped>, <untyped>[, <flags>])
$starts_with(<string>, <string>[, <flags>])

Check if the string (first argument) begins with the given prefix (second argument). The prefix

must not be empty.

The following flags are supported:

icase - compare ignoring case

See also $string.contains().

5.2.4 $string.ends_with()

$string.ends_with(<untyped>, <untyped>[, <flags>])
$ends_with(<string>, <string>[, <flags>])

Check if the string (first argument) ends with the given suffix (second argument). The suffix must

not be empty.

The following flags are supported:

icase - compare ignoring case

See also $string.contains().

5.2.5 $string.replace()

$string.replace(<untyped>, <from>, <to> [, <flags>])
$replace(<string>, <from>, <to> [, <flags>])

Replace occurences of substring from with to in a string. The from substring must not be

empty.

The following flags are supported:

icase - compare ignoring case

first_only - only replace the first match

last_only - only replace the last match

If both first_only and last_only flags are specified, then from is replaced only if it

occurs in the string once.

Revision 0.18, March 2025104 The build2 Build System

5.2.3 $string.starts_with()

See also $regex.replace().

5.2.6 $string.trim()

$string.trim(<untyped>)
$trim(<string>)

Trim leading and trailing whitespaces in a string.

5.2.7 $string.lcase(), $string.ucase()

$string.lcase(<untyped>)
$string.ucase(<untyped>)
$lcase(<string>)
$ucase(<string>)

Convert ASCII string into lower/upper case.

5.2.8 $string.size()

$size(<strings>)
$size(<string-set>)
$size(<string-map>)
$size(<string>)

First three forms: return the number of elements in the sequence.

Fourth form: return the number of characters (bytes) in the string.

5.2.9 $string.sort()

$sort(<strings> [, <flags>])

Sort strings in ascending order.

The following flags are supported:

icase - sort ignoring case

dedup - in addition to sorting also remove duplicates

5.2.10 $string.find()

$find(<strings>, <string>[, <flags>])

Return true if the string sequence contains the specified string.

105Revision 0.18, March 2025 The build2 Build System

5.2.6 $string.trim()

The following flags are supported:

icase - compare ignoring case

See also $regex.find_match() and $regex.find_search().

5.2.11 $string.find_index()

$find_index(<strings>, <string>[, <flags>])

Return the index of the first element in the string sequence that is equal to the specified string or

$size(strings) if none is found.

The following flags are supported:

icase - compare ignoring case

5.2.12 $string.keys()

$keys(<string-map>)

Return the list of keys in a string map.

Note that the result is sorted in ascending order.

5.3 Integer Functions

5.3.1 $integer.string()

$string(<int64>)
$string(<uint64>[, <base>[, <width>]])

Convert an integer to a string. For unsigned integers we can specify the desired base and width.

For example:

x = [uint64] 0x0000ffff

c.poptions += "-DOFFSET=$x" # -DOFFSET=65535
c.poptions += "-DOFFSET=$string($x, 16)" # -DOFFSET=0xffff
c.poptions += "-DOFFSET=$string($x, 16, 8)" # -DOFFSET=0x0000ffff

5.3.2 $integer.integer_sequence()

$integer_sequence(<begin>, <end>[, <step>])

Return the list of uint64 integers starting from begin (including) to end (excluding) with the

specified step or 1 if unspecified. If begin is greater than end, empty list is returned.

Revision 0.18, March 2025106 The build2 Build System

5.3 Integer Functions

5.3.3 $integer.size()

$size(<ints>)

Return the number of elements in the sequence.

5.3.4 $integer.sort()

$sort(<ints> [, <flags>])

Sort integers in ascending order.

The following flags are supported:

dedup - in addition to sorting also remove duplicates

5.3.5 $integer.find()

$find(<ints>, <int>)

Return true if the integer sequence contains the specified integer.

5.3.6 $integer.find_index()

$find_index(<ints>, <int>)

Return the index of the first element in the integer sequence that is equal to the specified integer

or $size(ints) if none is found.

5.4 Bool Functions

5.4.1 $bool.string()

$string(<bool>)

Convert a boolean value to a string literal true or false.

5.5 Path Functions

The $path.*() function family contains function that manipulating filesystem paths.

107Revision 0.18, March 2025 The build2 Build System

5.4 Bool Functions

5.5.1 $path.string()

$string(<paths>)

Return the traditional string representation of a path (or a list of string representations for a list of

paths). In particular, for directory paths, the traditional representation does not include the trailing

directory separator (except for the POSIX root directory). See $representation() below

for the precise string representation.

5.5.2 $path.posix_string()

$posix_string(<paths>)
$path.posix_string(<untyped>)

Return the traditional string representation of a path (or a list of string representations for a list of

paths) using the POSIX directory separators (forward slashes).

5.5.3 $path.representation()

$representation(<paths>)

Return the precise string representation of a path (or a list of string representations for a list of

paths). In particular, for directory paths, the precise representation includes the trailing directory

separator. See $string() above for the traditional string representation.

5.5.4 $path.posix_representation()

$posix_representation(<paths>)
$path.posix_representation(<untyped>)

Return the precise string representation of a path (or a list of string representations for a list of

paths) using the POSIX directory separators (forward slashes).

5.5.5 $path.absolute()

$absolute(<path>)
$path.absolute(<untyped>)

Return true if the path is absolute and false otherwise.

5.5.6 $path.simple()

$simple(<path>)
$path.simple(<untyped>)

Revision 0.18, March 2025108 The build2 Build System

5.5.1 $path.string()

Return true if the path is simple, that is, has no direcrory component, and false otherwise.

Note that on POSIX /foo is not a simple path (it is foo in the root directory) while / is (it is the

root directory).

5.5.7 $path.sub_path()

$sub_path(<path>, <path>)
$path.sub_path(<untyped>, <untyped>)

Return true if the path specified as the first argument is a sub-path of the one specified as the

second argument (in other words, the second argument is a prefix of the first) and false otherwise.

Both paths are expected to be normalized. Note that this function returns true if the paths are

equal. Empty path is considered a prefix of any path.

5.5.8 $path.super_path()

$super_path(<path>, <path>)
$path.super_path(<untyped>, <untyped>)

Return true if the path specified as the first argument is a super-path of the one specified as the

second argument (in other words, the second argument is a suffix of the first) and false otherwise.

Both paths are expected to be normalized. Note that this function returns true if the paths are

equal. Empty path is considered a suffix of any path.

5.5.9 $path.directory()

$directory(<paths>)
$path.directory(<untyped>)

Return the directory part of a path (or a list of directory parts for a list of paths) or an empty path

if there is no directory. A directory of a root directory is an empty path.

5.5.10 $path.root_directory()

$root_directory(<paths>)
$path.root_directory(<untyped>)

Return the root directory of a path (or a list of root directories for a list of paths) or an empty path

if the specified path is not absolute.

5.5.11 $path.leaf()

$leaf(<paths>)
$path.leaf(<untyped>)
$leaf(<paths>, <dir-path>)
$path.leaf(<untyped>, <dir-path>)

109Revision 0.18, March 2025 The build2 Build System

5.5.7 $path.sub_path()

First form (one argument): return the last component of a path (or a list of last components for a

list of paths).

Second form (two arguments): return a path without the specified directory part (or a list of paths

without the directory part for a list of paths). Return an empty path if the paths are the same. Issue

diagnostics and fail if the directory is not a prefix of the path. Note: expects both paths to be

normalized.

5.5.12 $path.relative()

$relative(<paths>, <dir-path>)
$path.relative(<untyped>, <dir-path>)

Return the path relative to the specified directory that is equivalent to the specified path (or a list

of relative paths for a list of specified paths). Issue diagnostics and fail if a relative path cannot be

derived (for example, paths are on different drives on Windows).

Note: to check if a path if relative, use $path.absolute().

5.5.13 $path.base()

$base(<paths>)
$path.base(<untyped>)

Return the base part (without the extension) of a path (or a list of base parts for a list of paths).

5.5.14 $path.extension()

$extension(<path>)
$path.extension(<untyped>)

Return the extension part (without the dot) of a path or empty string if there is no extension.

5.5.15 $path.complete()

$complete(<paths>)
$path.complete(<untyped>)

Complete the path (or list of paths) by prepending the current working directory unless the path is

already absolute.

5.5.16 $path.canonicalize()

$canonicalize(<paths>)
$path.canonicalize(<untyped>)

Revision 0.18, March 2025110 The build2 Build System

5.5.12 $path.relative()

Canonicalize the path (or list of paths) by converting all the directory separators to the canonical

form for the host platform. Note that multiple directory separators are not collapsed.

5.5.17 $path.normalize(), $path.try_normalize()

$normalize(<paths>)
$path.normalize(<untyped>)
$try_normalize(<path>)
$path.try_normalize(<untyped>)

Normalize the path (or list of paths) by collapsing the . and .. components if possible, collaps­

ing multiple directory separators, and converting all the directory separators to the canonical form

for the host platform.

If the resulting path would be invalid, the $normalize() version issues diagnostics and fails

while the $try_normalize() version returns null. Note that $try_normalize() only

accepts a single path.

5.5.18 $path.actualize(), $path.try_actualize()

$actualize(<paths>)
$path.actualize(<untyped>)
$try_actualize(<path>)
$path.try_actualize(<untyped>)

Actualize the path (or list of paths) by first normalizing it and then for host platforms with

case-insensitive filesystems obtaining the actual spelling of the path.

Only an absolute path can be actualized. If a path component does not exist, then its (and all

subsequent) spelling is unchanged. Note that this is a potentially expensive operation.

If the resulting path would be invalid or in case of filesystem errors (other than non-existent

component), the $actualize() version issues diagnostics and fails while the $try_actu­
alize() version returns null. Note that $try_actualize() only accepts a single path.

Note that this function is not pure.

5.5.19 $path.size()

$size(<paths>)
$size(<path>)

First form: return the number of elements in the paths sequence.

Second form: return the number of characters (bytes) in the path. Note that for dir_path the

result does not include the trailing directory separator (except for the POSIX root directory).

111Revision 0.18, March 2025 The build2 Build System

5.5.17 $path.normalize(), $path.try_normalize()

5.5.20 $path.sort()

$sort(<paths>[, <flags>])

Sort paths in ascending order. Note that on host platforms with a case-insensitive filesystem the

order is case-insensitive.

The following flags are supported:

dedup - in addition to sorting also remove duplicates

5.5.21 $path.find()

$find(<paths>, <path>)

Return true if the paths sequence contains the specified path. Note that on host platforms with a

case-insensitive filesystem the comparison is case-insensitive.

5.5.22 $path.find_index()

$find_index(<paths>, <path>)

Return the index of the first element in the paths sequence that is equal to the specified path or

$size(paths) if none is found. Note that on host platforms with a case-insensitive filesystem

the comparison is case-insensitive.

5.5.23 $path.match()

$path.match(<entry>, <pattern>[, <start-dir>])

Match a filesystem entry name against a name pattern (both are strings), or a filesystem entry

path against a path pattern. For the latter case the start directory may also be required (see below).

The pattern is a shell-like wildcard pattern. The semantics of the pattern and entry argu­

ments is determined according to the following rules:

1. The arguments must be of the string or path types, or be untyped.

2. If one of the arguments is typed, then the other one must be of the same type or be untyped. In

the later case, an untyped argument is converted to the type of the other argument.

3. If both arguments are untyped and the start directory is specified, then the arguments are

converted to the path type.

4. If both arguments are untyped and the start directory is not specified, then, if one of the argu­

ments is syntactically a path (the value contains a directory separator), then they are converted to

the path type, otherwise -- to the string type (match as names).

Revision 0.18, March 2025112 The build2 Build System

5.5.20 $path.sort()

If pattern and entry paths are both either absolute or relative and not empty, and the first pattern

component is not a self-matching wildcard (doesn’t contain ***), then the start directory is not

required, and is ignored if specified. Otherwise, the start directory must be specified and be an

absolute path.

5.6 Name Functions

The $name.*() function family contains function that operate on target and prerequisite

names. See also the $target.*() function family for functions that operate on actual targets.

5.6.1 $name.name()

$name(<names>)

Return the name of a target (or a list of names for a list of targets).

5.6.2 $name.extension()

$extension(<name>)

Return the extension of a target.

Note that this function returns null if the extension is unspecified (default) and empty string if

it’s specified as no extension.

5.6.3 $name.directory()

$directory(<names>)

Return the directory of a target (or a list of directories for a list of targets).

5.6.4 $name.target_type()

$target_type(<names>)

Return the target type name of a target (or a list of target type names for a list of targets).

5.6.5 $name.project()

$project(<name>)

Return the project of a target or null if not project-qualified.

113Revision 0.18, March 2025 The build2 Build System

5.6 Name Functions

5.6.6 $name.is_a()

$is_a(<name>, <target-type>)

Return true if the name’s target type is-a target-type. Note that this is a dynamic type check

that takes into account target type inheritance.

5.6.7 $name.filter(), $name.filter_out()

$filter(<names>, <target-types>)
$filter_out(<names>, <target-types>)

Return names with target types which are-a (filter) or not are-a (filter_out) one of

target-types. See $is_a() for background.

5.6.8 $name.size()

$size(<names>)

Return the number of elements in the sequence.

5.6.9 $name.sort()

$sort(<names>[, <flags>])

Sort names in ascending order.

The following flags are supported:

dedup - in addition to sorting also remove duplicates

5.6.10 $name.find()

$find(<names>, <name>)

Return true if the name sequence contains the specified name.

5.6.11 $name.find_index()

$find_index(<names>, <name>)

Return the index of the first element in the name sequence that is equal to the specified name or

$size(names) if none is found.

Revision 0.18, March 2025114 The build2 Build System

5.6.6 $name.is_a()

5.7 Target Functions

The $target.*() function family contains function that operate on targets. See also the

$name.*() function family for functions that operate on target (and prerequisite) names.

5.7.1 $target.path()

$path(<names>)

Return the path of a target (or a list of paths for a list of targets). The path must be assigned,

which normally happens during match. As a result, this function is normally called from a recipe.

Note that while this function is technically not pure, we don’t mark it as such since it can only be

called (normally from a recipe) after the target has been matched, meaning that this target is a

prerequisite and therefore this impurity has been accounted for.

5.7.2 $target.process_path()

$process_path(<name>)

Return the process path of an executable target.

Note that while this function is not technically pure, we don’t mark it as such for the same

reasons as for $path() above.

5.8 Regex Functions

The $regex.*() function family contains function that provide comprehensive regular expres­

sion matching and substitution facilities. The supported regular expression flavor is ECMAScript,

more precisely, ECMA-262-based C++11 regular expressions. Note that the match_not_null
flag is in effect unless the string being matched is empty.

In the $regex.*() functions the substitution escape sequences in the format string (the fmt

argument) are extended with a subset of the Perl escape sequences: \n, \u, \l, \U, \L, \E, \1
... \9, and \\. Note that the standard ECMAScript escape sequences ($1, $2, $&, etc) are still

supported.

Note that functions from the $regex.*() family can only be called fully qualified with their

family name. For example:

if $regex.match($name, ’(.+)-(.+)’)
 ...

115Revision 0.18, March 2025 The build2 Build System

5.7 Target Functions

5.8.1 $regex.match()

$regex.match(<val>, <pat> [, <flags>])

Match a value of an arbitrary type against the regular expression. Convert the value to string prior

to matching. Return the boolean value unless return_subs flag is specified (see below), in

which case return names (or null if no match).

The following flags are supported:

icase - match ignoring case

return_subs - return names (rather than boolean), that contain
 sub-strings that match the marked sub-expressions
 and null if no match

5.8.2 $regex.find_match()

$regex.find_match(<vals>, <pat> [, <flags>])

Match list elements against the regular expression and return true if the match is found. Convert

the elements to strings prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.3 $regex.filter_match(), $regex.filter_out_match()

$regex.filter_match(<vals>, <pat> [, <flags>])
$regex.filter_out_match(<vals>, <pat> [, <flags>])

Return elements of a list that match (filter) or do not match (filter_out) the regular

expression. Convert the elements to strings prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.4 $regex.search()

$regex.search(<val>, <pat> [, <flags>])

Determine if there is a match between the regular expression and some part of a value of an arbi­

trary type. Convert the value to string prior to searching. Return the boolean value unless

return_match or return_subs flag is specified (see below) in which case return names

(null if no match).

Revision 0.18, March 2025116 The build2 Build System

5.8.1 $regex.match()

The following flags are supported:

icase - match ignoring case

return_match - return names (rather than boolean), that contain a
 sub-string that matches the whole regular expression
 and null if no match

return_subs - return names (rather than boolean), that contain
 sub-strings that match the marked sub-expressions
 and null if no match

If both return_match and return_subs flags are specified then the sub-string that matches

the whole regular expression comes first.

See also $string.contains(), $string.starts_with(),

$string.ends_with().

5.8.5 $regex.find_search()

$regex.find_search(<vals>, <pat> [, <flags>])

Determine if there is a match between the regular expression and some part of any of the list

elements. Convert the elements to strings prior to matching.

The following flags are supported:

icase - match ignoring case

5.8.6 $regex.filter_search(),

$regex.filter_out_search()

$regex.filter_search(<vals>, <pat> [, <flags>])
$regex.filter_out_search(<vals>, <pat> [, <flags>])

Return elements of a list for which there is a match (filter) or no match (filter_out)

between the regular expression and some part of the element. Convert the elements to strings

prior to matching.

The following flags are supported:

icase - match ignoring case

117Revision 0.18, March 2025 The build2 Build System

5.8.5 $regex.find_search()

5.8.7 $regex.replace()

$regex.replace(<val>, <pat>, <fmt> [, <flags>])

Replace matched parts in a value of an arbitrary type, using the format string. Convert the value

to string prior to matching. The result value is always untyped, regardless of the argument type.

The following flags are supported:

icase - match ignoring case

format_first_only - only replace the first match

format_no_copy - do not copy unmatched value parts into the
 result

If both format_first_only and format_no_copy flags are specified then the result will

only contain the replacement of the first match.

See also $string.replace().

5.8.8 $regex.replace_lines()

$regex.replace_lines(<val>, <pat>, <fmt> [, <flags>])

Convert the value to string, parse it into lines and for each line apply the $regex.replace()

function with the specified pattern, format, and flags. If the format argument is null, omit the

"all-null" replacements for the matched lines from the result. Return unmatched lines and line

replacements as a name list unless return_lines flag is specified (see below), in which case

return a single multi-line simple name value.

The following flags are supported in addition to the $regex.replace() function’s flags:

return_lines - return the simple name (rather than a name list)
 containing the unmatched lines and line replacements
 separated with newlines.

Note that if format_no_copy is specified, unmatched lines are not copied either.

5.8.9 $regex.split()

$regex.split(<val>, <pat>, <fmt> [, <flags>])

Split a value of an arbitrary type into a list of unmatched value parts and replacements of the

matched parts, omitting empty ones (unless the format_copy_empty flag is specified).

Convert the value to string prior to matching.

Revision 0.18, March 2025118 The build2 Build System

5.8.7 $regex.replace()

The following flags are supported:

icase - match ignoring case

format_no_copy - do not copy unmatched value parts into the
 result

format_copy_empty - copy empty elements into the result

5.8.10 $regex.merge()

$regex.merge(<vals>, <pat>, <fmt> [, <delim> [, <flags>]])

Replace matched parts in a list of elements using the regex format string. Convert the elements to

strings prior to matching. The result value is untyped and contains concatenation of transformed

non-empty elements (unless the format_copy_empty flag is specified) optionally separated

with a delimiter.

The following flags are supported:

icase - match ignoring case

format_first_only - only replace the first match

format_no_copy - do not copy unmatched value parts into the
 result

format_copy_empty - copy empty elements into the result

If both format_first_only and format_no_copy flags are specified then the result will

be a concatenation of only the first match replacements.

5.8.11 $regex.apply()

$regex.apply(<vals>, <pat>, <fmt> [, <flags>])

Replace matched parts of each element in a list using the regex format string. Convert the

elements to strings prior to matching. Return a list of transformed elements, omitting the empty

ones (unless the format_copy_empty flag is specified).

The following flags are supported:

icase - match ignoring case

format_first_only - only replace the first match

format_no_copy - do not copy unmatched value parts into the
 result

format_copy_empty - copy empty elements into the result

119Revision 0.18, March 2025 The build2 Build System

5.8.10 $regex.merge()

If both format_first_only and format_no_copy flags are specified then the result

elements will only contain the replacement of the first match.

5.9 JSON Functions

The $json.*() function family contains function that operate on the JSON types: json,

json_array, and json_object. For example:

j = [json] one@1 two@abc three@([json] x@1 y@-1)

for m: $j
{
 n = $member_name($m)
 v = $member_value($m)

 info $n $value_type($v) $v
}

5.9.1 $json.value_type()

$value_type(<json>[, <distinguish_numbers>])

Return the type of a JSON value: null, boolean, number, string, array, or object. If

the distinguish_numbers argument is true, then instead of number return signed
number, unsigned number, or hexadecimal number.

5.9.2 $json.value_size()

$value_size(<json>)

Return the size of a JSON value.

The size of a null value is 0. The sizes of simple values (boolean, number, and string) is

1. The size of array and object values is the number of elements and members, respectively.

Note that the size of a string JSON value is not the length of the string. To get the length call

$string.size() instead by casting the JSON value to the string value type.

5.9.3 $json.member_name()

$member_name(<json-member>)

Return the name of a JSON object member.

Revision 0.18, March 2025120 The build2 Build System

5.9 JSON Functions

5.9.4 $json.member_value()

$member_value(<json-member>)

Return the value of a JSON object member.

5.9.5 $json.object_names()

$object_names(<json-object>)

Return the list of names in the JSON object. If the JSON null is passed instead, assume it is a

missing object and return an empty list.

5.9.6 $json.array_size()

$array_size(<json-array>)

Return the number of elements in the JSON array. If the JSON null value is passed instead,

assume it is a missing array and return 0.

5.9.7 $json.array_find()

$array_find(<json-array>, <json>)

Return true if the JSON array contains the specified JSON value. If the JSON null value is

passed instead, assume it is a missing array and return false.

5.9.8 $json.array_find_index()

$array_find_index(<json-array>, <json>)

Return the index of the first element in the JSON array that is equal to the specified JSON value

or $array_size(json-array) if none is found. If the JSON null value is passed instead,

assume it is a missing array and return 0.

5.9.9 $json.load()

$json.load(<path>)

Parse the contents of the specified file as JSON input text and return the result as a value of the

json type.

See also $json.parse().

Note that this function is not pure.

121Revision 0.18, March 2025 The build2 Build System

5.9.4 $json.member_value()

5.9.10 $json.parse()

$json.parse(<text>)

Parse the specified JSON input text and return the result as a value of the json type.

See also $json.load() and $json.serialize().

5.9.11 $json.serialize()

$serialize(<json>[, <indentation>])

Serialize the specified JSON value and return the resulting JSON output text.

The optional indentation argument specifies the number of indentation spaces that should be

used for pretty-printing. If 0 is passed, then no pretty-printing is performed. The default is 2

spaces.

See also $json.parse().

5.9.12 $json.size()

$size(<json-set>)
$size(<json-map>)

Return the number of elements in the sequence.

5.9.13 $json.keys()

$keys(<json-map>)

Return the list of keys in a json map as a json array.

Note that the result is sorted in ascending order.

5.10 Process Functions

5.10.1 $process.run()

$process.run(<prog>[<args>...])

Run builtin or external program and return trimmed stdout output.

Note that if the result of executing the program can be affected by environment variables and this

result can in turn affect the build result, then such variables should be reported with the

config.environment directive.

Revision 0.18, March 2025122 The build2 Build System

5.10 Process Functions

Note that this function is not pure and can only be called during the load phase.

5.10.2 $process.run_regex()

$process.run_regex(<prog>[<args>...], <pat>[, <fmt>])

Run builtin or external program and return stdout output lines matched and optionally

processed with a regular expression.

Each line of stdout (including the customary trailing blank) is matched (as a whole) against pat

and, if successful, returned, optionally processed with fmt, as an element of a list. See the

$regex.*() function family for details on regular expressions and format strings.

Note that if the result of executing the program can be affected by environment variables and this

result can in turn affect the build result, then such variables should be reported with the

config.environment directive.

Note that this function is not pure and can only be called during the load phase.

5.11 Filesystem Functions

5.11.1 $filesystem.file_exists()

$file_exists(<path>)

Return true if a filesystem entry at the specified path exists and is a regular file (or is a symlink to

a regular file) and false otherwise.

Note that this function is not pure.

5.11.2 $filesystem.directory_exists()

$directory_exists(<path>)

Return true if a filesystem entry at the specified path exists and is a directory (or is a symlink to a

directory) and false otherwise.

Note that this function is not pure.

5.11.3 $filesystem.path_search()

$path_search(<pattern>[, <start-dir>])

Return filesystem paths that match the shell-like wildcard pattern. If the pattern is an absolute

path, then the start directory is ignored (if present). Otherwise, the start directory must be speci­

fied and be absolute.

123Revision 0.18, March 2025 The build2 Build System

5.11 Filesystem Functions

Note that this function is not pure.

5.12 Project Name Functions

The $project_name.*() function family contains function that operate on the

project_name type.

5.12.1 $project_name.string()

$string(<project-name>)

Return the string representation of a project name. See also the $variable() function below.

5.12.2 $project_name.base()

$base(<project-name>[, <extension>])

Return the base part (without the extension) of a project name.

If extension is specified, then only remove that extension. Note that extension should not

include the dot and the comparison is always case-insensitive.

5.12.3 $project_name.extension()

$extension(<project-name>)

Return the extension part (without the dot) of a project name or empty string if there is no exten­

sion.

5.12.4 $project_name.variable()

$variable(<project-name>)

Return the string representation of a project name that is sanitized to be usable as a variable

name. Specifically, ., -, and + are replaced with _.

5.13 Process Path Functions

The $process_path.*() function family contains function that operate on the

process_path type and its extended process_path_ex variant. These types describe a

path to an executable that, if necessary, has been found in PATH, completed with an extension,

etc. The process_path_ex variant includes additional metadata, such as the stable process

name for diagnostics and the executable checksum for change tracking.

Revision 0.18, March 2025124 The build2 Build System

5.12 Project Name Functions

5.13.1 $process_path.recall()

$recall(<process-path>)

Return the recall path of an executable, that is, a path that is not necessarily absolute but which

nevertheless can be used to re-run the executable in the current environment. This path, for

example, could be used in diagnostics when printing the failing command line.

5.13.2 $process_path.effect()

$effect(<process-path>)

Return the effective path of an executable, that is, the absolute path to the executable that will

also include any omitted extensions, etc.

5.13.3 $process_path.name()

$name(<process-path-ex>)

Return the stable process name for diagnostics.

5.13.4 $process_path.checksum()

$checksum(<process-path-ex>)

Return the executable checksum for change tracking.

5.13.5 $process_path.env_checksum()

$env_checksum(<process-path-ex>)

Return the environment checksum for change tracking.

5.14 Target Triplet Functions

The $target_triplet.*() function family contains function that operate on the

target_triplet type that represents the ubiquitous cpu-vendor-os target platform

triplet.

5.14.1 $target_triplet.string()

$string(<target-triplet>)

Return the canonical (that is, without the unknown vendor component) target triplet string.

125Revision 0.18, March 2025 The build2 Build System

5.14 Target Triplet Functions

5.14.2 $target_triplet.representation()

$representation(<target-triplet>)

Return the complete target triplet string that always contains the vendor component.

6 Directives

This chapter is a work in progress and is incomplete.

6.1 define

define <derived>: <base>

Define a new target type <derived> by inheriting from existing target type <base>. See

Target Types for details.

6.2 include

include <file>
include <directory>

Load the specified file (the first form) or buildfile in the specified directory (the second

form). In both cases the file is loaded in the scope corresponding to its directory. Subsequent

inclusions of the same file are automatically ignored. See also source.

6.3 source

source <file>

Load the specified file in the current scope as if its contents were copied and pasted in place of

the source directive. Note that subsequent sourcing of the same file in the same scope are not

automatically ignored. See also include.

7 Attributes

This chapter is a work in progress and is incomplete.

The only currently recognized target attribute is rule_hint which specifies the rule hint. Rule

hints can be used to resolve ambiguity when multiple rules match the same target as well as to

override an unambiguous match. For example, the following rule hint makes sure our executable

is linked with the C++ compiler even though it only has C sources:

Revision 0.18, March 2025126 The build2 Build System

6 Directives

[rule_hint=cxx] exe{hello}: c{hello}

8 Name Patterns

For convenience, in certain contexts, names can be generated with shell-like wildcard patterns. A

name is a name pattern if its value contains one or more unquoted wildcard characters or charac­

ter sequences. For example:

./: */ # All (immediate) subdirectories
exe{hello}: {hxx cxx}{**} # All C++ header/source files.
pattern = ’*.txt’ # Literal ’*.txt’.

Pattern-based name generation is not performed in certain contexts. Specifically, it is not

performed in target names where it is interpreted as a pattern for target type/pattern-specific vari­

able assignments. For example.

s = *.txt # Variable assignment (performed).
./: cxx{*} # Prerequisite names (performed).
cxx{*}: dist = false # Target pattern (not performed).

In contexts where it is performed, it can be inhibited with quoting, for example:

pat = ’foo*bar’
./: cxx{’foo*bar’}

The following wildcards are recognized:

* - match any number of characters (including zero)
? - match any single character
[...] - match a character with a bracket expression

Currently only literal character and range bracket expressions are supported. Specifically, no

character or equivalence classes, etc., are supported nor the special characters backslash-escaping.

See the "Pattern Matching Notation" section in the POSIX "Shell Command Language" specifica­

tion for details.

Note that some wildcard characters may have special meaning in certain contexts. For instance, [
at the beginning of a value will be interpreted as the start of the attribute list while ? and [in the

eval context are part of the ternary operator and value subscript, respectively. In such cases the

character will need to be escaped in order to be treated as a wildcard, for example:

x = \[1-9]-foo.txt
y = (foo.\?xx)
z = ($foo\[123].txt)

127Revision 0.18, March 2025 The build2 Build System

8 Name Patterns

If a pattern ends with a directory separator, then it only matches directories. Otherwise, it only

matches files. Matches that start with a dot (.) are automatically ignored unless the pattern itself

also starts with this character.

In addition to the above wildcards, ** and *** are recognized as wildcard sequences. If a pattern

contains **, then it is matched just like * but in all the subdirectories, recursively, but excluding

directories that contain the .buildignore file. The *** wildcard behaves like ** but also

matches the start directory itself. For example:

exe{hello}: cxx{**} # All C++ source files recursively.

A group-enclosed ({}) pattern value may be followed by inclusion/exclusion patterns/matches. A

subsequent value is treated as an inclusion or exclusion if it starts with a literal, unquoted plus (+)

or minus (-) sign, respectively. In this case the remaining group values, if any, must all be inclu­

sions or exclusions. If the second value doesn’t start with a plus or minus, then all the group

values are considered independent with leading pluses and minuses not having any special

meaning. For regularity as well as to allow patterns without wildcards, the first pattern can also

start with the plus sign. For example:

exe{hello}: cxx{f* -foo} # Exclude foo if exists.
exe{hello}: cxx{f* +bar} # Include bar if exists.
exe{hello}: cxx{f* -fo?} # Exclude foo and fox if exist.
exe{hello}: cxx{f* +b* -foo -bar} # Exclude foo and bar if exist.
exe{hello}: cxx{+f* +b* -foo -bar} # Same as above.
exe{hello}: cxx{+foo} # Pattern without wildcards.
exe{hello}: cxx{f* b* -z*} # Names matching three patterns.

Inclusions and exclusions are applied in the order specified and only to the result produced up to

that point. The order of names in the result is unspecified. However, it is guaranteed not to

contain duplicates. The first pattern and the following inclusions/exclusions must be consistent

with regards to the type of filesystem entry they match. That is, they should all match either files

or directories. For example:

exe{hello}: cxx{f* -foo +*oo} # Exclusion has no effect.
exe{hello}: cxx{f* +*oo} # Ok, no duplicates.
./: {*/ -build} # Error: exclusion not a directory.

As a more realistic example, let’s say we want to exclude source files that reside in the test/

directories (and their subdirectories) anywhere in the tree. This can be achieved with the follow­

ing pattern:

exe{hello}: cxx{** -***/test/**}

Similarly, if we wanted to exclude all source files that have the -test suffix:

Revision 0.18, March 2025128 The build2 Build System

8 Name Patterns

exe{hello}: cxx{** -**-test}

In contrast, the following pattern only excludes such files from the top directory:

exe{hello}: cxx{** -*-test}

If many inclusions or exclusions need to be specified, then an inclusion/exclusion group can be

used. For example:

exe{hello}: cxx{f* -{foo bar}}
exe{hello}: cxx{+{f* b*} -{foo bar}}

This is particularly useful if you would like to list the names to include or exclude in a variable.

For example, this is how we can exclude certain files from compilation but still include them as

ordinary file prerequisites (so that they are still included into the source distribution):

exc = foo.cxx bar.cxx
exe{hello}: cxx{+{f* b*} -{$exc}} file{$exc}

If we want to specify our pattern in a variable, then we have to use the explicit inclusion syntax,

for example:

pat = ’f*’
exe{hello}: cxx{+$pat} # Pattern match.
exe{hello}: cxx{$pat} # Literal ’f*’.

pat = ’+f*’
exe{hello}: cxx{$pat} # Literal ’+f*’.

inc = ’f*’ ’b*’
exc = ’f*o’ ’b*r’
exe{hello}: cxx{+{$inc} -{$exc}}

One common situation that calls for exclusions is auto-generated source code. Let’s say we have

auto-generated command line parser in options.hxx and options.cxx. Because of the

in/out of source builds, our name pattern may or may not find these files. Note, however, that we

cannot just include them as non-pattern prerequisites. We also have to exclude them from the

pattern match since otherwise we may end up with duplicate prerequisites. As a result, this is how

we have to handle this case provided we want to continue using patterns to find other, non-gener­

ated source files:

exe{hello}: {hxx cxx}{* -options} {hxx cxx}{options}

If all our auto-generated source files have a common prefix or suffix, then we can exclude them

wholesale with a pattern. For example, if all our generated files end with the ‘-options‘ suffix:

exe{hello}: {hxx cxx}{** -**-options} {hxx cxx}{foo-options bar-options}

129Revision 0.18, March 2025 The build2 Build System

8 Name Patterns

If the name pattern includes an absolute directory, then the pattern match is performed in that

directory and the generated names include absolute directories as well. Otherwise, the pattern

match is performed in the pattern base directory. In buildfiles this is src_base while on the

command line – the current working directory. In this case the generated names are relative to the

base directory. For example, assuming we have the foo.cxx and b/bar.cxx source files:

exe{hello}: $src_base/cxx{**} # $src_base/cxx{foo} $src_base/b/cxx{bar}
exe{hello}: cxx{**} # cxx{foo} b/cxx{bar}

Pattern matching as well as inclusion/exclusion logic is target type-specific. If the name pattern

does not contain a type, then the dir{} type is assumed if the pattern ends with a directory sepa­

rator and file{} otherwise.

For the dir{} target type the trailing directory separator is added to the pattern and all the inclu­

sion/exclusion patterns/matches that do not already end with one. Then the filesystem search is

performed for matching directories. For example:

./: dir{* -build} # Search for */, exclude build/.

For the file{} and file{}-based target types the default extension (if any) is added to the

pattern and all the inclusion/exclusion patterns/matches that do not already contain an extension.

Then the filesystem search is performed for matching files.

For example, the cxx{} target type obtains the default extension from the extension variable

(see Target Types for background). Assuming we have the following line in our root.build:

cxx{*}: extension = cxx

And the following in our buildfile:

exe{hello}: {cxx}{* -foo -bar.cxx}

The pattern match will first search for all the files matching the *.cxx pattern in src_base
and then exclude foo.cxx and bar.cxx from the result. Note also that target type-specific

decorations are removed from the result. So in the above example if the pattern match produces

baz.cxx, then the prerequisite name is cxx{baz}, not cxx{baz.cxx}.

If the name generation cannot be performed because the base directory is unknown, target type is

unknown, or the target type is not directory or file-based, then the name pattern is returned as is

(that is, as an ordinary name). Project-qualified names are never considered to be patterns.

Revision 0.18, March 2025130 The build2 Build System

8 Name Patterns

9 config Module

This chapter is a work in progress and is incomplete.

9.1 Hermetic Build Configurations

Hermetic build configurations save environment variables that affect the project along with other

project configuration in the build/config.build file. These saved environment variables

are then used instead of the current environment when performing operations on the project, thus

making sure the project "sees" exactly the same environment as during configuration.

While currently hermetic configurations only deal with the environment, in the future this func­

tionality may be extended to also support disallowing changes to external resources (compilers,

system headers and libraries, etc).

To create a hermetic configuration we use the config.config.hermetic configuration

variable. For example:

$ b configure config.config.hermetic=true

Hermetic configurations are not the default because they are not without drawbacks. Firstly, a

hermetic configuration may break if the saved environment becomes incompatible with the rest of

the system. For example, you may re-install an external program (say, a compiler) into a different

location and update your PATH to match the new setup. However, a hermetic configuration will

"see" the first change but not the second.

Another issue is the commands printed during a hermetic build: they are executed in the saved

environment which may not match the environment in which the build system was invoked. As a

result, we cannot easily re-execute such commands, which is often handy during build trou­

bleshooting.

It is also important to keep in mind that a non-hermetic build configuration does not break or

produce incorrect results if the environment changes. Instead, changes to the environment are

detected and affected targets are automatically rebuilt.

The two use-cases where hermetic configurations are especially useful are when we need to save

an environment which is not generally available (for example, an environment of a Visual Studio

development command prompt) or when our build results need to exactly match the specific

configuration (for example, because parts of the overall result have already been built and

installed, as is the case with build system modules).

131Revision 0.18, March 2025 The build2 Build System

9 config Module

If we now examine config.build, we will see something along these lines:

$ cat build/config.build

config.config.hermetic = true
config.config.environment = CPATH CPLUS_INCLUDE_PATH PATH=...

Hermetic configuration support is built on top of the low-level config.config.environ­
ment configuration variable which allows us to specify custom environment variables and their

values. Specifically, it contains a list of environment variable "sets" (name=value) and "unsets"

(name). For example:

$ b configure \
 config.config.environment="PATH=/bin:/usr/bin LD_LIBRARY_PATH"

Specifying config.config.hermetic=true simply instructs the config module to

collect and save in config.config.environment environment variables that affect the

project. These include:

built-in variables (such as PATH and LD_LIBRARY_PATH or equivalent),

variables that affect external programs as reported by build system modules (such as

CPLUS_INCLUDE_PATH reported by the cxx module) or by imported programs via meta­

data,

variables reported by the project itself with the config.environment directive

(discussed below).

Reconfiguring a hermetic configuration preserves the saved environment unless re-hermetization

is explicitly requested with the config.config.hermetic.reload configuration vari­

able. For example:

$ b configure config.config.hermetic.reload=true

Note that config.config.hermetic.reload is transient and is not stored in

config.build. In other words, there is no way to create a hermetic configuration that is

re-hermetized by default during reconfiguration.

To de-hermetize a hermetic build configuration, reconfigure it with

config.config.hermetic=false.

The config.config.hermetic variable has essentially a tri-state value: true means keep

hermetized (save the environment in config.config.environment), false means keep

de-hermetized (clear config.config.environment) and null or undefined means don’t

touch config.config.environment.

Revision 0.18, March 2025132 The build2 Build System

9.1 Hermetic Build Configurations

We can adjust the set of environment variables saved in a hermetic configuration using the

config.config.hermetic.environment configuration variable. It contains a list of

inclusions (name) and exclusions (name@false) which are applied to the final set of environ­

ment variables that affect the project. For example:

LC_ALL=C b configure \
 config.config.hermetic=true \
 config.config.hermetic.environment="LC_ALL PATH@false"

Typically, the set of environment variables that affect the project is discovered automatically.

Specifically, modules that we use (such as cxx) are expected to report the environment variables

that affect the programs they invoke (such as the C++ compiler). Similarly, programs that we

import in our buildfiles (for example to use in ad hoc recipes) are expected to report envi­

ronment variables that affect them as part of their metadata.

However, there are situations where we need to report an environment variable manually. These

include calling the $getenv() function from a buildfile or invoking a program (either in

an ad hoc recipe, the run directive, or the $run*() function family) that either does not

provide the metadata or does not report the environment as part of it. In such cases we should

report the environment variable manually using the config.environment directive. For

example:

config.environment USE_FOO

foo = $getenv(USE_FOO)

if ($foo != [null])
 cxx.poptions += "-DUSE_FOO=$foo"

Additionally, if invoking a program in an ad hoc recipe that either does not provide the metadata

or does not report the environment as part of it, then we additionally should track the changes to

the relevant environment variables manually using the depdb env builtin. For example:

import! foo = foo%exe{foo} # Uses FOO and BAR environment variables.

config.environment FOO BAR

file{output}: file{input} $foo
{{
 diag foo $>
 depdb env FOO BAR
 $foo $path($<[0]) >$path($>)
}}

Normally, we would want to report variables that affect the build result rather than build byprod­

ucts (for example, diagnostics). This is, for example, the reason why locale-related environment

variables are not saved by default. Also, sometime environment variables only affect certain

modes of a program. If such modes are not used, then there is no need to report the corresponding

variables.

133Revision 0.18, March 2025 The build2 Build System

9.1 Hermetic Build Configurations

10 test Module

This chapter is a work in progress and is incomplete.

The targets to be tested as well as the tests/groups from testscripts to be run can be narrowed

down using the config.test variable. While this value is normally specified as a command

line override (for example, to quickly re-run a previously failed test), it can also be persisted in

config.build in order to create a configuration that will only run a subset of tests by default.

For example:

$ b test config.test=foo/exe{driver} # Only test foo/exe{driver} target.
$ b test config.test=bar/baz # Only run bar/baz testscript test.

The config.test variable contains a list of @-separated pairs with the left hand side being the

target and the right hand side being the testscript id path. Either can be omitted (along with @). If

the value contains a target type or ends with a directory separator, then it is treated as a target

name. Otherwise – an id path. The targets are resolved relative to the root scope where the

config.test value is set. For example:

$ b test config.test=foo/exe{driver}@bar

To specify multiple id paths for the same target we can use the pair generation syntax:

$ b test config.test=foo/exe{driver}@{bar baz}

If no targets are specified (only id paths), then all the targets are tested (with the testscript tests to

be run limited to the specified id paths). If no id paths are specified (only targets), then all the

testscript tests are run (with the targets to be tested limited to the specified targets). An id path

without a target applies to all the targets being considered.

A directory target without an explicit target type (for example, foo/) is treated specially. It

enables all the tests at and under its directory. This special treatment can be inhibited by specify­

ing the target type explicitly (for example, dir{foo/}).

The test execution time can be limited using the config.test.timeout variable. Its value

has the <operation-timeout>/<test-timeout> form where the timeouts are specified

in seconds and either of them (but not both) can be omitted. The left hand side sets the timeout

for the whole test operation and the right hand side – for individual tests. The zero value clears

the previously set timeout. For example:

$ b test config.test.timeout=20 # Test operation.
$ b test config.test.timeout=20/5 # Test operation and individual tests.
$ b test config.test.timeout=/5 # Individual tests.

Revision 0.18, March 2025134 The build2 Build System

10 test Module

The test timeout can be specified on multiple nested root scopes. For example, we can specify a

greater timeout for the entire build configuration and lesser ones for individual projects. The tests

must complete before the nearest of the enclosing scope timeouts. Failed that, the timed out tests

are terminated forcibly causing the entire test operation to fail. See also the timeout builtin

for specifying timeouts from within the tests and test groups.

The programs being tested can be executed via a runner program by specifying the

config.test.runner variable. Its value has the <path> [<options>] form. For

example:

$ b test config.test.runner="valgrind -q"

When the runner program is specified, commands of simple and Testscript tests are automatically

adjusted so that the runner program is executed instead, with the test command passed to it as

arguments. For ad hoc test recipes, the runner program has to be handled explicitly. Specifically,

if config.test.runner is specified, the test.runner.path and

test.runner.options variables contain the runner program path and options, respectively,

and are set to null otherwise. These variables can be used by ad hoc recipes to detect the pres­

ence of the runner program and, if so, arrange appropriate execution of desired commands. For

example:

exe{hello}:
% test
{{
 diag test $>

 cmd = ($test.runner.path == [null] \
 ? $> \
 : $test.runner.path $test.runner.options $path($>))

 $cmd ’World’ >>>?’Hello, World!’
}}

11 install Module

This chapter is a work in progress and is incomplete.

The install module provides support for installing and uninstalling projects.

As briefly discussed in the Installing section of the Introduction, the install module defines

the following standard installation locations:

name default config.install.*
 (c.i.*) override
---- ------- ----------------
root c.i.root

data_root root/ c.i.data_root

135Revision 0.18, March 2025 The build2 Build System

11 install Module

exec_root root/ c.i.exec_root

bin exec_root/bin/ c.i.bin
sbin exec_root/sbin/ c.i.sbin
lib exec_root/lib/<private>/ c.i.lib
libexec exec_root/libexec/<private>/<project>/ c.i.libexec
pkgconfig lib/pkgconfig/ c.i.pkgconfig

etc data_root/etc/ c.i.etc
include data_root/include/<private>/ c.i.include
include_arch include/ c.i.include_arch
share data_root/share/ c.i.share
data share/<private>/<project>/ c.i.data
buildfile share/build2/export/<project>/ c.i.buildfile

doc share/doc/<private>/<project>/ c.i.doc
legal doc/ c.i.legal
man share/man/ c.i.man
man<N> man/man<N>/ c.i.man<N>

The include_arch location is meant for architecture-specific files, such as configuration

headers. By default it’s the same as include but can be configured by the user to a different

value (for example, /usr/include/x86_64-linux-gnu/) for platforms that support

multiple architectures from the same installation location. This is how one would normally use it

from a buildfile:

The configuration header may contain target architecture-specific
information so install it into include_arch/ instead of include/.
#
h{*}: install = include/libhello/
h{config}: install = include_arch/libhello/

The buildfile location is meant for exported buildfiles that can be imported by other projects.

If a project contains any **.build buildfiles in its build/export/ directory (or

**.build2 and build2/export/ in the alternative naming scheme), then they are automat­

ically installed into this location (recreating subdirectories).

The <project>, <version>, and <private> substitutions in these config.install.*
values are replaced with the project name, version, and private subdirectory, respectively. If

either is empty, then the corresponding directory component is ignored.

The optional private installation subdirectory (<private>) mechanism can be used to hide the

implementation details of a project. This is primarily useful when installing an executable that

depends on a bunch of libraries into a shared location, such as /usr/local/. By hiding the

libraries in the private subdirectory we can make sure that they will not interfere with anything

that is already installed into such a shared location by the user and that any further such installa­

tions won’t interfere with our executable.

Revision 0.18, March 2025136 The build2 Build System

11 install Module

The private installation subdirectory is specified with the config.install.private vari­

able. Its value must be a relative directory and may include multiple components. For example:

$ b install \
 config.install.root=/usr/local/ \
 config.install.private=hello/

If you are relying on your system’s dynamic linker defaults to automatically find shared libraries

that are installed with your executable, then adding the private installation subdirectory will most

definitely cause this to stop working. The recommended way to resolve this problem is to use

rpath, for example:

$ b install \
 config.install.root=/usr/local/ \
 config.install.private=hello/ \
 config.bin.rpath=/usr/local/lib/hello/

11.1 Relocatable Installation

A relocatable installation can be moved to a directory other than its original installation location.

Note that the installation should be moved as a whole preserving the directory structure under its

root (config.install.root). To request a relocatable installation, set the

config.install.relocatable variable to true. For example:

$ b install \
 config.install.root=/tmp/install \
 config.install.relocatable=true

A relocatable installation is achieved by using paths relative to one filesystem entry within the

installation to locate another. Some examples include:

Paths specified in config.bin.rpath are made relative using the $ORIGIN (Linux,

BSD) or @loader_path (Mac OS) mechanisms.

Paths in the generated pkg-config files are made relative to the ${pcfiledir}
built-in variable.

Paths in the generated installation manifest (config.install.manifest) are made

relative to the location of the manifest file.

While these common aspects are handled automatically, if a projects relies on knowing its instal­

lation location, then it will most likely need to add manual support for relocatable installations.

As an example, consider an executable that supports loading plugins and requires the plugin

installation directory to be embedded into the executable during the build. The common way to

support relocatable installations for such cases is to embed a path relative to the executable and

complete it at runtime, normally by resolving the executable’s path and using its directory as a

base.

137Revision 0.18, March 2025 The build2 Build System

11.1 Relocatable Installation

If you would like to always use the relative path, regardless of whether the installation is relocat­

able of not, then you can obtain the library installation directory relative to the executable instal­

lation directory like this:

plugin_dir = $install.resolve($install.lib, $install.bin)

Alternatively, if you would like to continue using absolute paths for non-relocatable installations,

then you can use something like this:

plugin_dir = $install.resolve(\
 $install.lib, \
 ($install.relocatable ? $install.bin : [dir_path]))

Finally, if you are unable to support relocatable installations, the correct way to handle this is to

assert this fact in root.build of your project, for example:

assert (!$install.relocatable) ’relocatable installation not supported’

11.2 Installation Filtering

While project authors determine what gets installed at the buildfile level, the users of the

project can further filter the installation using the config.install.filter variable.

The value of this variable is a list of key-value pairs that specify the filesystem entries to include

or exclude from the installation. For example, the following filters will omit installing headers

and static libraries (notice the quoting of the wildcard).

$ b install config.install.filter=’include/@false "*.a"@false’

The key in each pair is a file or directory path or a path wildcard pattern. If a key is relative and

contains a directory component or is a directory, then it is treated relative to the corresponding

config.install.* location. Otherwise (simple path, normally a pattern), it is matched

against the leaf of any path. Note that if an absolute path is specified, it should be without the

config.install.chroot prefix.

The value in each pair is either true (include) or false (exclude). The filters are evaluated in

the order specified and the first match that is found determines the outcome. If no match is found,

the default is to include. For a directory, while false means exclude all the sub-paths inside this

directory, true does not mean that all the sub-paths will be included wholesale. Rather, the

matched component of the sub-path is treated as included with the rest of the components

matched against the following sub-filters. For example:

$ b install config.install.filter=’
 include/x86_64-linux-gnu/@true
 include/x86_64-linux-gnu/details/@false
 include/@false’

Revision 0.18, March 2025138 The build2 Build System

11.2 Installation Filtering

The true or false value may be followed by comma and the symlink modifier to only apply

to symlink filesystem entries. For example:

$ b config.install.filter=’"*.so"@false,symlink’

A filter can be negated by specifying ! as the first pair. For example:

$ b install config.install.filter=’! include/@false "*.a"@false’

Note that the filtering mechanism only affects what gets physically copied to the installation

directory without affecting what gets built for install or the view of what gets installed at the

buildfile level. For example, given the include/@false *.a@false filters, static

libraries will still be built (unless arranged not to with config.bin.lib) and the

pkg-config files will still end up with -I options pointing to the header installation directory.

Note also that this mechanism applies to both install and uninstall operations.

If you are familiar with the Debian or Fedora packaging, this mechanism is somewhat similar to

(and can be used for a similar purpose as) the Debian’s .install files and Fedora’s %files
spec file sections, which are used to split the installation into multiple binary packages.

As another example, the following filters will omit all the development-related files (headers,

pkg-config files, static libraries, and shared library symlinks; assuming the platform uses the

.a/.so extensions for the libraries):

$ b install config.install.filter=’
 include/@false
 pkgconfig/@false
 "lib/*.a"@false
 "lib/*.so"@false,symlink’

12 version Module

A project can use any version format as long as it meets the package version requirements. The

toolchain also provides additional functionality for managing projects that conform to the

build2 standard version format. If you are starting a new project that uses build2, you are

strongly encouraged to use this versioning scheme. It is based on much thought and, often

painful, experience. If you decide not to follow this advice, you are essentially on your own

where version management is concerned.

The standard build2 project version conforms to Semantic Versioning and has the following

form:

<major>.<minor>.<patch>[-<prerel>]

139Revision 0.18, March 2025 The build2 Build System

12 version Module

http://semver.org/

For example:

1.2.3
1.2.3-a.1
1.2.3-b.2

The build2 package version that uses the standard project version will then have the following

form (epoch is the versioning scheme version and revision is the package revision):

[+<epoch>-]<major>.<minor>.<patch>[-<prerel>][+<revision>]

For example:

1.2.3
1.2.3+1
+2-1.2.3-a.1+2

The major, minor, and patch should be numeric values between 0 and 99999 and all three

cannot be zero at the same time. For initial development it is recommended to use 0 for major,

start with version 0.1.0, and change to 1.0.0 once things stabilize.

In the context of C and C++ (or other compiled languages), you should increment patch when

making binary-compatible changes, minor when making source-compatible changes, and major

when making breaking changes. While the binary compatibility must be set in stone, the source

compatibility rules can sometimes be bent. For example, you may decide to make a breaking

change in a rarely used interface as part of a minor release (though this is probably still a bad idea

if your library is widely depended upon). Note also that in the context of C++ deciding whether a

change is binary-compatible is a non-trivial task. There are resources that list the rules but no

automated tooling yet. If unsure, increment minor.

If present, the prerel component signifies a pre-release. Two types of pre-releases are supported

by the standard versioning scheme: final and snapshot (non-pre-release versions are naturally

always final). For final pre-releases the prerel component has the following form:

(a|b).<num>

For example:

1.2.3-a.1
1.2.3-b.2

The letter ’a’ signifies an alpha release and ’b’ – beta. The alpha/beta numbers (num) should be

between 1 and 499.

Note that there is no support for release candidates. Instead, it is recommended that you use

later-stage beta releases for this purpose (and, if you wish, call them "release candidates" in

announcements, etc).

Revision 0.18, March 2025140 The build2 Build System

12 version Module

What version should be used during development? The common approach is to increment to the

next version and use that until the release. This has one major drawback: if we publish intermedi­

ate snapshots (for example, for testing) they will all be indistinguishable both between each other

and, even worse, from the final release. One way to remedy this is to increment the pre-release

number before each publication. However, unless automated, this will be burdensome and

error-prone. Also, there is a real possibility of running out of version numbers if, for example, we

do continuous integration by publishing and testing each commit.

To address this, the standard versioning scheme supports snapshot pre-releases with the prerel

component having the following extended form:

(a|b).<num>.<snapsn>[.<snapid>]

For example:

1.2.3-a.1.20180319215815.26efe301f4a7

In essence, a snapshot pre-release is after the previous final release but before the next (a.1 and,

perhaps, a.2 in the above example) and is uniquely identified by the snapshot sequence number

(snapsn) and optional snapshot id (snapid).

The num component has the same semantics as in the final pre-releases except that it can be 0.

The snapsn component should be either the special value ’z’ or a numeric, non-zero value that

increases for each subsequent snapshot. It must not be longer than 16 decimal digits. The snapid

component, if present, should be an alpha-numeric value that uniquely identifies the snapshot. It

is not required for version comparison (snapsn should be sufficient) and is included for reference.

It must not be longer than 16 characters.

Where do the snapshot number and id come from? Normally from the version control system. For

example, for git, snapsn is the commit date in the YYYYMMDDhhmmss form and UTC time­

zone and snapid is a 12-character abbreviated commit id. As discussed below, the build2

version module extracts and manages all this information automatically (but the use of git
commit dates is not without limitations; see below for details).

The special ’z’ snapsn value identifies the latest or uncommitted snapshot. It is chosen to be

greater than any other possible snapsn value and its use is discussed further below.

As an illustration of this approach, let’s examine how versions change during the lifetime of a

project:

0.1.0-a.0.z # development after a.0
0.1.0-a.1 # pre-release
0.1.0-a.1.z # development after a.1
0.1.0-a.2 # pre-release
0.1.0-a.2.z # development after a.2
0.1.0-b.1 # pre-release
0.1.0-b.1.z # development after b.1

141Revision 0.18, March 2025 The build2 Build System

12 version Module

0.1.0 # release
0.1.1-b.0.z # development after b.0 (bugfix)
0.2.0-a.0.z # development after a.0
0.1.1 # release (bugfix)
1.0.0 # release (jumped straight to 1.0.0)
...

As shown in the above example, there is nothing wrong with "jumping" to a further version (for

example, from alpha to beta, or from beta to release, or even from alpha to release). We cannot,

however, jump backwards (for example, from beta back to alpha). As a result, a sensible strategy

is to start with a.0 since it can always be upgraded (but not downgraded) at a later stage.

When it comes to the version control systems, the recommended workflow is as follows: The

change to the final version should be the last commit in the (pre-)release. It is also a good idea to

tag this commit with the project version. A commit immediately after that should change the

version to a snapshot, "opening" the repository for development.

The project version without the snapshot part can be represented as a 64-bit decimal value

comparable as integers (for example, in preprocessor directives). The integer representation has

the following form:

AAAAABBBBBCCCCCDDDE

AAAAA - major
BBBBB - minor
CCCCC - patch
DDD - alpha / beta (DDD + 500)
E - final (0) / snapshot (1)

If the DDDE value is not zero, then it signifies a pre-release. In this case one is subtracted from

the AAAAABBBBBCCCCC value. An alpha number is stored in DDD as is while beta – incre­

mented by 500. If E is 1, then this is a snapshot after DDD.

For example:

 AAAAABBBBBCCCCCDDDE
0.1.0 0000000001000000000
0.1.2 0000000001000020000
1.2.3 0000100002000030000
2.2.0-a.1 0000200001999990010
3.0.0-b.2 0000299999999995020
2.2.0-a.1.z 0000200001999990011

A project that uses standard versioning can rely on the build2 version module to simplify

and automate version managements. The version module has two primary functions: eliminate

the need to change the version anywhere except in the project’s manifest file and automatically

extract and propagate the snapshot information (sequence number and id).

Revision 0.18, March 2025142 The build2 Build System

12 version Module

The version module must be loaded in the project’s bootstrap.build. While being

loaded, it reads the project’s manifest and extracts its version (which must be in the standard

form). The version is then parsed and presented as the following build system variables (which

can be used in the buildfiles):

[string] version # +2-1.2.3-b.4.1234567.deadbeef+3

[string] version.project # 1.2.3-b.4.1234567.deadbeef
[uint64] version.project_number # 0000100002000025041
[string] version.project_id # 1.2.3-b.4.deadbeef

[bool] version.stub # false (true for 0[+<revision>])

[uint64] version.epoch # 2

[uint64] version.major # 1
[uint64] version.minor # 2
[uint64] version.patch # 3

[bool] version.alpha # false
[bool] version.beta # true
[bool] version.pre_release # true
[string] version.pre_release_string # b.4
[uint64] version.pre_release_number # 4

[bool] version.snapshot # true
[uint64] version.snapshot_sn # 1234567
[string] version.snapshot_id # deadbeef
[string] version.snapshot_string # 1234567.deadbeef
[bool] version.snapshot_committed # true

[uint64] version.revision # 3

As a convenience, the version module also extracts the summary and url manifest values

and sets them as the following build system variables (this additional information is used, for

example, when generating the pkg-config files):

[string] project.summary
[string] project.url

If the version is the latest snapshot (that is, it’s in the .z form), then the version module

extracts the snapshot information from the version control system used by the project. Currently

only git is supported with the following semantics.

If the project’s source directory (src_root) is clean (that is, it does not have any changed or

untracked files), then the HEAD commit date and id are used as the snapshot number and id,

respectively.

Otherwise (that is, the project is between commits), the HEAD commit date is incremented by one

second and is used as the snapshot number with no id. While we can work with such uncommit­

ted snapshots locally, we should not distribute or publish them since they are indistinguishable

143Revision 0.18, March 2025 The build2 Build System

12 version Module

from each other.

Finally, if the project does not have HEAD (that is, the project has no commits yet), the special

19700101000000 (UNIX epoch) commit date is used.

The use of git commit dates for snapshot ordering has its limitations: they have one second

resolution which means it is possible to create two commits with the same date (but not the same

commit id and thus snapshot id). We also need all the committers to have a reasonably accurate

clock. Note, however, that in case of a commit date clash/ordering issue, we still end up with

distinct versions (because of the commit id) – they are just not ordered correctly. As a result, we

feel that the risks are justified when the only alternative is manual version management (which is

always an option, nevertheless).

When we prepare a source distribution of a snapshot, the version module automatically adjusts

the package name to include the snapshot information as well as patches the manifest file in the

distribution with the snapshot number and id (that is, replacing .z in the version value with the

actual snapshot information). The result is a package that is specific to this commit.

Besides extracting the version information and making it available as individual components, the

version module also provides rules for installing the manifest file as well as automatically

generating version headers (or other similar version-based files).

By default the project’s manifest file is installed as documentation, just like other doc{}
targets (thus replacing the version file customarily shipped in the project root directory). The

manifest installation rule in the version module in addition patches the installed manifest file

with the actual snapshot number and id, just like during the preparation of distributions.

The version header rule is based on the in module rule and can be used to preprocess a template

file with version information. While it is usually used to generate C/C++ version headers (thus

the name), it can really generate any kind of files.

The rule matches a file-based target that has the corresponding in prerequisite and also

depends on the project’s manifest file. As an example, let’s assume we want to auto-generate

a header called version.hxx for our libhello library. To accomplish this we add the

version.hxx.in template as well as something along these lines to our buildfile:

lib{hello}: {hxx cxx}{** -version} hxx{version}

hxx{version}: in{version} $src_root/file{manifest}

The header rule is a line-based preprocessor that substitutes fragments enclosed between (and

including) a pair of dollar signs ($) with $$ being the escape sequence (see the in module for

details). As an example, let’s assume our version.hxx.in contains the following lines:

Revision 0.18, March 2025144 The build2 Build System

12 version Module

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION $libhello.version.project_number$ULL
#define LIBHELLO_VERSION_STR "$libhello.version.project$"

#endif

If our libhello is at version 1.2.3, then the generated version.hxx will look like this:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION 100002000030000ULL
#define LIBHELLO_VERSION_STR "1.2.3"

#endif

The first component after the opening $ should be either the name of the project itself (like

libhello above) or a name of one of its dependencies as listed in the manifest. If it is the

project itself, then the rest can refer to one of the version.* variables that we discussed earlier

(in reality it can be any variable visible from the project’s root scope).

If the name refers to one of the dependencies (that is, projects listed with depends: in the mani­

fest), then the following special substitutions are recognized:

$<name>.version$ - textual version constraint
$<name>.condition(<VERSION>[,<SNAPSHOT>])$ - numeric satisfaction condition
$<name>.check(<VERSION>[,<SNAPSHOT>])$ - numeric satisfaction check

Here VERSION is the version number macro and the optional SNAPSHOT is the snapshot number

macro. The snapshot is only required if you plan to include snapshot information in your depen­

dency constraints.

As an example, let’s assume our libhello depends on libprint which is reflected with the

following line in our manifest:

depends: libprint >= 2.3.4

We also assume that libprint provides its version information in the

libprint/version.hxx header and uses analogous-named macros. Here is how we can add

a version check to our version.hxx.in:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION $libhello.version.project_number$ULL
#define LIBHELLO_VERSION_STR "$libhello.version.project$"

#include <libprint/version.hxx>

$libprint.check(LIBPRINT_VERSION)$

#endif

145Revision 0.18, March 2025 The build2 Build System

12 version Module

After the substitution our version.hxx header will look like this:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION 100002000030000ULL
#define LIBHELLO_VERSION_STR "1.2.3"

#include <libprint/version.hxx>

#ifdef LIBPRINT_VERSION
if !(LIBPRINT_VERSION >= 200003000040000ULL)
error incompatible libprint version, libprint >= 2.3.4 is required
endif
#endif

#endif

The version and condition substitutions are the building blocks of the check substitution.

For example, here is how we can implement a check with a customized error message:

#if !($libprint.condition(LIBPRINT_VERSION)$)
error bad libprint, need libprint $libprint.version$
#endif

The version module also treats one dependency in a special way: if you specify the required

version of the build system in your manifest, then the module will automatically check it for you.

For example, if we have the following line in our manifest:

depends: * build2 >= 0.5.0

And someone tries to build our project with build2 0.4.0, then they will see an error like this:

build/bootstrap.build:3:1: error: incompatible build2 version
 info: running 0.4.0
 info: required 0.5.0

What version constraints should be used when depending on another project? We start with a

simple case where we depend on a release. Let’s say libprint 2.3.0 added a feature that we

need in our libhello. If libprint follows the source/binary compatibility guidelines

discussed above, then any 2.X.Y version should work provided X >= 3. And this how we can

specify it in the manifest:

depends: libprint ^2.3.0

Let’s say we are now working on libhello 2.0.0 and would like to start using features from

libprint 3.0.0. However, currently, only pre-releases of 3.0.0 are available. If you would

like to add a dependency on a pre-release (most likely from your own pre-release), then the

recommendation is to only allow a specific version, essentially "expiring" the combination as

soon as newer versions become available. For example:

Revision 0.18, March 2025146 The build2 Build System

12 version Module

version: 2.0.0-b.1
depends: libprint == 3.0.0-b.2

Finally, let’s assume we are feeling adventurous and would like to test development snapshots of

libprint (most likely from our own snapshots). In this case the recommendation is to only

allow a snapshot range for a specific pre-release with the understanding and a warning that no

compatibility between snapshot versions is guaranteed. For example:

version: 2.0.0-b.1.z
depends: libprint [3.0.0-b.2.1 3.0.0-b.3)

13 bin Module

This chapter is a work in progress and is incomplete.

13.1 Binary Target Types

The following listing shows the hierarchy of the target types defined by the bin module while

the following sections describe each target type in detail (target{} and file{} are standard

target types defined by the build2 core; see Target Types for details).

 target----------------.
 | |
 ... |
 | |
 .---------------file------------. lib
 | | | | | | libul
 | libue obje bmie hbmie def obj
liba libua obja bmia hbmia bmi
libs libus objs bmis hbmis hbmi

13.1.1 lib{}, liba{}, libs{}

The liba{} and libs{} target types represent static (archive) and shared libraries, respec­

tively.

The lib{} target type is a group with the liba{} and/or libs{} members. A rule that

encounters a lib{} prerequisite may pick a member appropriate for the target being built or it

may build all the members according to the bin.lib variable. See Library Exportation and

Versioning for background.

The lib*{} file extensions are normally automatically assigned by the matching rules based on

the target platform.

147Revision 0.18, March 2025 The build2 Build System

13 bin Module

13.1.2 libul{}, libue{}, libua{}, libus{}

The libu*{} target types represent utility libraries. Utility libraries are static libraries with

object files appropriate for linking an executable (libue{}), static library (libua{}), or

shared library (libus{}). Where possible, utility libraries are built in the "thin archive" mode.

The libul{} target type is a group with the libua{} and/or libus{} members. A rule that

encounters a libul{} prerequisite picks a member appropriate for the target being built.

The libu*{} file extensions are normally automatically assigned by the matching rules based

on the target platform.

13.1.3 obj{}, obje{}, obja{}, objs{}

The obj*{} target types represent object files appropriate for linking an executable (obje{}),

static library (obja{}), or shared library (objs{}).

In build2 we use distinct object files for the three types of binaries (executable, static library,

and shared library). The distinction between static and shared libraries is made to accommodate

build differences such as the need for position-independent code (-fPIC) in shared libraries.

While in most cases the same object file can be used for executables and static libraries, they are

kept separate for consistency and generality.

The obj{} target type is a group with the obje{}, and/or obja{}, and/or objs{} members.

A rule that encounters an obj{} prerequisite picks a member appropriate for the target being

built.

The obj*{} file extensions are normally automatically assigned by the matching rules based on

the target platform.

13.1.4 bmi{}, bmie{}, bmia{}, bmis{}

The bmi*{} target types represent binary module interfaces (BMI) for C++20 named modules

appropriate for linking an executable (bmie{}), static library (bmia{}), or shared library

(bmis{}).

The bmi{} target type is a group with the bmie{}, and/or bmia{}, and/or bmis{} members.

A rule that encounters an bmi{} prerequisite picks a member appropriate for the target being

built.

The bmi*{} file extensions are normally automatically assigned by the matching rules based on

the target platform.

Revision 0.18, March 2025148 The build2 Build System

13.1.2 libul{}, libue{}, libua{}, libus{}

13.1.5 hbmi{}, hbmie{}, hbmia{}, hbmis{}

The hbmi*{} target types represent binary module interfaces (BMI) for C++20 header units

appropriate for linking an executable (hbmie{}), static library (hbmia{}), or shared library

(hbmis{}).

The hbmi{} target type is a group with the hbmie{}, and/or hbmia{}, and/or hbmis{}
members. A rule that encounters an hbmi{} prerequisite picks a member appropriate for the

target being built.

The hbmi*{} file extensions are normally automatically assigned by the matching rules based

on the target platform.

13.1.6 def{}

The def{} target type represents Windows module definition files and has the fixed default

extension .def.

14 cc Module

This chapter is a work in progress and is incomplete.

This chapter describes the cc build system module which provides the common compilation and

linking support for C-family languages.

14.1 C-Common Configuration Variables

config.c
config.cxx
 cc.id

 cc.target
 cc.target.cpu
 cc.target.vendor
 cc.target.system
 cc.target.version
 cc.target.class

config.cc.poptions
 cc.poptions

config.cc.coptions
 cc.coptions

config.cc.loptions
 cc.loptions

config.cc.aoptions

149Revision 0.18, March 2025 The build2 Build System

14 cc Module

 cc.aoptions

config.cc.libs
 cc.libs

config.cc.internal.scope
 cc.internal.scope

config.cc.reprocess
 cc.reprocess

config.cc.pkgconfig.sysroot

config.cc.compiledb
config.cc.compiledb.name
config.cc.compiledb.filter
config.cc.compiledb.filter.input
config.cc.compiledb.filter.output

Note that the compiler mode options are "cross-hinted" between config.c and config.cxx
meaning that if we specify one but not the other, mode options, if any, will be added to the

absent. This may or may not be the desired behavior, for example:

Ok: config.c="gcc -m32"
$ b config.cxx="g++ -m32"

Not OK: config.c="clang -stdlib=libc++"
$ b config.cxx="clang++ -stdlib=libc++"

14.2 C-Common Target Types

The following listing shows the hierarchy of the target types defined by the cc module while the

following sections describe each target type in detail (file{} is a standard target type defined

by the build2 core; see Target Types for details). Every cc-based module (such as c and cxx)

will have these common target types defined in addition to the language-specific ones.

.--file--.
| |
h pc
 |
 pca
 pcs

While the h{} target type represents a C header file, there is hardly a C-family compilation

without a C header inclusion. As a result, this target types is defined by all cc-based modules.

For the description of the h{} target type refer to c{}, h{} in the C module documentation.

Revision 0.18, March 2025150 The build2 Build System

14.2 C-Common Target Types

14.2.1 pc{}, pca{}, pcs{}

The pc*{} target types represent pkg-config files. The pc{} target type represents the

common file and has the fixed default extension .pc. The pca{} and pcs{} target types repre­

sent the static and shared files and have the fixed default extensions .static.pc and

.shared.pc, respectively. See Importation of Installed Libraries for background.

14.3 Compilation Internal Scope

While this section uses the cxx module and C++ compilation as an example, the same function­

ality is available for C compilation – simply replace cxx with c in the module and variable

names.

The cxx module has a notion of a project’s internal scope. During compilation of a project’s

C/C++ translation units a header search path (-I) exported by a library that is outside of the

internal scope is considered external and, if supported by the compiler, the corresponding -I
option is translated to an appropriate "external header search path" option (-isystem for

GCC/Clang, /external:I for MSVC 16.10 and later). In particular, this suppresses compiler

warnings in such external headers (/external:W0 is automatically added unless a custom

/external:Wn is specified).

While the aim of this functionality is to control warnings in external libraries, the underlying

mechanisms currently provided by compilers have limitations and undesirable side effects. In

particular, -isystem paths are searched after -I so translating -I to -isystem alters the

search order. This should normally be harmless when using a development build of a library but

may result in a change of semantics for installed libraries. Also, marking the search path as

system has additional (to warning suppression) effects, see System Headers in the GCC docu­

mentation for details. On the MSVC side, /external:W0 currently does not suppress some

warnings (refer to the MSVC documentation for details).

Another issue is warnings in template instantiations. Each such warning could be either due to a

(potential) issue in the template itself or due to the template arguments we are instantiating it

with. By default, all such warnings are suppressed and there is currently no way to change this

with GCC/Clang -isystem. While MSVC provides /external:templates-, it cannot be

applied on the library by library basis, only globally for the entire compilation. See MSVC

/external:templates- documentation for more background on this issue.

In the future this functionality will be extended to side-building BMIs for external module inter­

faces and header units.

The internal scope can be specified by the project with the cxx.internal.scope variable

and overridden by the user with the config.cxx.internal.scope variable. Note that

cxx.internal.scope must be specified before loading the cxx module (cxx.config,

151Revision 0.18, March 2025 The build2 Build System

14.3 Compilation Internal Scope

https://gcc.gnu.org/onlinedocs/cpp/System-Headers.html

more precisely) and after which it contains the effective value (see below). For example:

root.build

cxx.std = latest
cxx.internal.scope = current

using cxx

Valid values for cxx.internal.scope are:

current -- current root scope (where variable is assigned)
base -- target’s base scope
root -- target’s root scope
bundle -- target’s bundle amalgamation
strong -- target’s strong amalgamation
weak -- target’s weak amalgamation
global -- global scope (everything is internal)

Valid values for config.cxx.internal.scope are the same except for current.

Note also that there are [config.]cc.internal.scope variables that can be used to

specify the internal scope for all the cc-based modules.

The project’s effective internal scope is chosen based on the following priority list:

1. config.cxx.internal.scope

2. config.cc.internal.scope

3. effective scope from bundle amalgamation

4. cxx.internal.scope

5. cc.internal.scope

In particular, item #3 allows an amalgamation that bundles a project to override its internal scope.

If no *.internal.scope is specified by the project, user, or bundle, then this functionality is

disabled and all libraries are treated as internal regardless of their location.

While it may seem natural to have this enabled by default, the limitations and side effects of the

underlying mechanisms as well as cases where it would be undesirable (such as in separate

*-tests projects, see below) all suggest that explicit opt-in is probably the correct choice.

The recommended value for a typical project is current, meaning that only headers inside the

project will be considered internal. The tests subproject, if present, will inherit its value from

the project (which acts as a bundle amalgamation), unless it is being built out of source (for

example, to test an installed library).

Revision 0.18, March 2025152 The build2 Build System

14.3 Compilation Internal Scope

A project can also whitelist specific libraries using the cxx.internal.libs variable. If a

library target name (that is, the name inside lib{}) matches any of the wildcard patterns listed

in this variable, then the library is considered internal regardless of its location. For example

(notice that the pattern is quoted):

root.build

cxx.std = latest
cxx.internal.scope = current
cxx.internal.libs = foo ’bar-*’

using cxx

Note that this variable should also be set before loading the cxx module and there is the common

cc.internal.libs equivalent. However, there are no config.* versions nor the override

by the bundle amalgamation semantics.

Typically you would want to whitelist libraries that are developed together but reside in separate

build system projects. In particular, a separate *-tests project for a library should whitelist the

library being tested if the internal scope functionality is in use. Another reason to whitelist is to

catch warnings in instantiations of templates that belong to a library that is otherwise

warning-free (see the MSVC /external:templates- option for background).

Note also that if multiple libraries are installed into the same location (or otherwise share the

same header search paths, for example, as a family of libraries), then the whitelist may not be

effective.

14.4 Automatic DLL Symbol Exporting

The bin.def module (automatically loaded by the c and cxx modules for the

*-win32-msvc targets) provides a rule for generating symbol-exporting .def files. This

allows automatically exporting all symbols for all the Windows targets/compilers using the

following arrangement (showing for cxx in this example):

lib{foo}: libul{foo}: {hxx cxx}{**} ...

libs{foo}: def{foo}: include = ($cxx.target.system == ’win32-msvc’)
def{foo}: libul{foo}

if ($cxx.target.system == ’mingw32’)
 cxx.loptions += -Wl,--export-all-symbols

That is, we use the .def file approach for MSVC (including when building with Clang) and the

built-in support (--export-all-symbols) for MinGW.

153Revision 0.18, March 2025 The build2 Build System

14.4 Automatic DLL Symbol Exporting

You will likely also want to add the generated .def file (or the blanket *.def) to your

.gitignore file.

Note that it is also possible to use the .def file approach for MinGW. In this case we need to

explicitly load the bin.def module (which should be done after loading c or cxx) and can use

the following arrangement:

root.build

using cxx

if ($cxx.target.class == ’windows’)
 using bin.def

lib{foo}: libul{foo}: {hxx cxx}{**} ...

libs{foo}: def{foo}: include = ($cxx.target.class == ’windows’)
def{foo}: libul{foo}

Note also that this only deals with exporting of the symbols from a DLL. In order to work, code

that uses such a DLL should be able to import the symbols without explicit

__declspec(dllimport) declarations. This works thanks to the symbol auto-importing

support in Windows linkers. Note, however, that auto-importing only works for functions and not

for global variables.

14.5 Importation of Installed Libraries

As discussed in Target Importation, searching for installed C/C++ libraries is seamlessly inte­

grated into the general target importation mechanism. This section provides more details on the

installed library search semantics and pkg-config integration. These details can be particu­

larly useful when dealing with libraries that were not built with build2 and which often use

idiosyncratic pkg-config file names.

The cc-based modules use the common installed library search implementation with the follow­

ing semantics. To illustrate the finer points, we assume the following import:

import libs = libbar%lib{Xfoo}

1. First, the ordered list of library search directories is obtained by combining two lists: the lists

of the compiler’s system library search directories (extracted, for example, with

-print-search-dirs GCC/Clang options) and the list of user library search directories

(specified, for example, with the -L options in *.loptions).

The key property of this combined list is that it matches the search semantics that would be

used by the compiler to find libraries specified with the -l option during linking.

Revision 0.18, March 2025154 The build2 Build System

14.5 Importation of Installed Libraries

2. Given the list obtained in the previous step, a library binary (shared and/or static library) is

searched for in the correct order and using the target platform-appropriate library prefix and

extension (for example, lib prefix and the .so/.a extensions if targeting Linux).

For example (continuing with the above import and assuming Linux), each directory will be

checked for the presence of libXfoo.so and libXfoo.a (where the Xfoo stem is the

imported target name).

If only a shared or static binary is found in a given directory, no further directories are

checked for the missing variant. Instead, the missing variant is assumed to be unavailable.

If neither a shared nor static library is found in a given directory, then it is also checked for

the presence of the corresponding pkg-config file as in the following step. If such a file

is found, then the library is assumed to be binless (header-only, etc).

3. If a static and/or shared library is found (or if looking for a binless library), the correspond­

ing pkg-config subdirectory (normally just pkgconfig/) is searched for the library’s

.pc file.

More precisely, we first look for the .static.pc file for a static library and for the

.shared.pc file for a shared library falling back to the common .pc if they don’t exist.

It is often required to use different options for consuming static and shared libraries. While

there is the Libs.private and Cflags.private mechanism in pkg-config, its

semantics is to append options to Libs and Cflags rather than to provide alternative

options. And often the required semantics is to provide different options for static and shared

libraries, such as to provide a macro which indicates whether linking static or shared in order

to setup symbol exporting.

As a result, in build2 we produce separate .pc files for static and shared libraries in addi­

tion to the "best effort" common .pc file for compatibility with other build systems. Simi­

larly, when consuming a library we first look for the .static.pc and .shared.pc files

falling back to the common .pc if they are not available.

To deal with idiosyncrasies in pkg-config file names, the following base names are tried

in order, where name is the imported target name (Xfoo in the above import), proj is the

imported project name (libbar in the above import), and ext is one of the

above-mentioned pkg-config extensions (static.pc, shared.pc, or pc). The

concrete name tried for the above import is shown in parenthesis as an example.

1. libname.ext (libXfoo.pc)

2. name.ext (Xfoo.pc)

3. lowercase libname.ext (libxfoo.pc)

4. lowercase name.ext (xfoo.pc)

155Revision 0.18, March 2025 The build2 Build System

14.5 Importation of Installed Libraries

5. proj.ext (libbar.pc; this test is omitted if not project-qualified)

In particular, the last try (for proj.ext) serves as an escape hatch for cases where the .pc file

name does not have anything to do with the names of library binaries. The canonical example of

this is zlib which names its library binaries libz.so/libz.a while its .pc file – zlib.pc.

To be able to import zlib that was not built with build2, we have to use the following import:

import libs = zlib%lib{z}

Note also that these complex rules (which are unfortunately necessary to deal with the lack of any

consistency in .pc file naming) can sometimes produce surprising interactions. For example, it

may appear that a clearly incorrect import nevertheless appears to somehow work, as in the

following example:

import libs = zlib%lib{znonsense}

What happens here is that while no library binary is found, zlib.pc is found and as a result the

library ends up being considered binless with the -lz (that is found in the Libs value of

zlib.pc) treated as a prerequisite library, resolved using the above algorithm, and linked. In

other words, in this case we end up with a binless library lib{znonsense} that depends on

lib{z} instead of a single lib{z} library.

14.5.1 Rewriting Installed Libraries System Root (sysroot)

Sometimes the installed libraries are moved to a different location after the installation. This is

especially common in embedded development where the code is normally cross-compiled and the

libraries for the target platform are placed into a host directory, called system root or sysroot, that

doesn’t match where these libraries were originally installed to. For example, the libraries might

have been installed into /usr/ but on the host machine they may reside in

/opt/target/usr/. In this example, /opt/target/ is the sysroot.

While such relocations usually do not affect the library headers or binaries, they do break the

pkg-config’s .pc files which often contain -I and -L options with absolute paths. Continue

with the above example, a .pc file as originally installed may contain -I/usr/include and

-L/usr/lib while now, that the libraries have been relocated to /opt/target/, they

somehow need to be adjusted to -I/opt/target/usr/include and

-L/opt/target/usr/lib.

While it is possible (and perhaps correct) to accomplish this by fixing the .pc files to match the

new location, it is not always possible or easy. As a result, build2 provides a mechanism for

automatically adjusting the system root in the -I and -L options extracted from .pc files.

Revision 0.18, March 2025156 The build2 Build System

14.5.1 Rewriting Installed Libraries System Root (sysroot)

This functionality is roughly equivalent to that provided with the

PKG_CONFIG_SYSROOT_DIR environment variable by the pkg-config utility.

Specifically, the config.cc.pkgconfig.sysroot variable can be used to specify an alter­

native system root. When specified, all absolute paths in the -I and -L options that are not

already in this directory will be rewritten to start with this sysroot.

Note that this mechanism is a workaround rather than a proper solution since it is limited to the

-I and -L options. In particular, it does not handle any other options that may contain absolute

paths nor pkg-config variables that may be queried.

As a result, it should only be used for dealing with issues in third-party .pc files that do not

handle relocation (for example, using the ${pcfiledir} built-in pkg-config variable). In

particular, for build2-generated .pc files a relocatable installation should be used instead.

14.6 Compilation Database

The cc-based modules provide support for generating and maintaining the JSON Compilation

Database which can be used by other tools (static analyzers, language servers, IDEs, etc) to

understand how a codebase is compiled. "Maintaining" in the previous sentence means that if

new source files get added to the project or old ones removed, or if any compilation options

change, then the corresponding entries in the compilation database will be automatically updated

when you update your project. This helps maintain the database in sync with the project state.

The generation of compilation databases and their configuration are controlled with a number of

config.cc.compiledb.* variables. The config.cc.compiledb variable provides a

simplified interface that enables the generation of one database per project with the resulting

database containing entries for all the source and object files. The rest of the variables provide a

more flexible interface that allows you to generate multiple databases in different locations as

well as filter the entries that end up in each database.

Let’s start with the simplified interface as provided by config.cc.compiledb. The value of

this configuration variable is a single name or a name and path pair in the name[@path]

form.

The name part is the compilation database name that can be used to refer to it in filters (see

below). If path is absent or is (syntactically) a directory, then name is also used to derive the

compilation database file by appending the .json extension to it.

If path is absent, then the compilation database is placed into the top-level amalgamation that

loads any cc-based module. Otherwise, the database is placed into the specified location.

157Revision 0.18, March 2025 The build2 Build System

14.6 Compilation Database

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

The special - name is interpreted as an instruction to dump the database to stdout.

Let’s see some examples of using config.cc.compiledb to handle a few common scenar­

ios. Here we will use bdep(1) to create amalgamations (configurations) and configure (initial­

ize) one or more projects. We will assume we have hello and libhello as if created like this:

$ bdep new -t exe hello
$ bdep new -t lib libhello

The most common scenario is likely having a compilation database per project:

$ cd libhello
$ bdep config create ../build-gcc @gcc cc config.cxx=g++
$ bdep init @gcc config.cc.compiledb=libhello
$ cd ..

$ cd hello
$ bdep config add ../build-gcc @gcc
$ bdep init @gcc config.cc.compiledb=hello
$ cd ..

$ b hello/ libhello/

Or if you prefer to create/add configuration as part of init (notice the -- separator):

$ bdep init -C ../build-gcc @gcc cc config.cxx=g++ -- \
 config.cc.compiledb=libhello

$ bdep init -A ../build-gcc @gcc config.cc.compiledb=hello

After the update (the last command), we will have hello.json and libhello.json in

build-gcc/ which contain the compilation command lines for each project.

Only source files that are compiled end up being added to the compilation database.

To illustrate this point, let’s assume our hello project imports and links libhello. And

instead of updating both as in the above example, we will first update only hello:

$ b hello/

In this case libhello.json will still be generated but it will only contain a subset of the

expected entries – only those that were caused to be compiled by hello. The missing entries can

be added by updating libhello:

$ b libhello/

In the above setup it feels natural to call each database after the project and place them into the

output directory. However, some consumers, such as IDEs and LSP servers, may not handle this

setup well. Specifically, they may only recognize the canonical compile_commands.json
file as the compilation database, opening all other files as generic JSON. They may also assume

Revision 0.18, March 2025158 The build2 Build System

14.6 Compilation Database

the directory where this file resides to be the project source directory root. To accommodate these

assumptions we can instead place each database into the project’s source directory and call it

compile_commands.json:

$ cd libhello
$ bdep init @gcc config.cc.compiledb=libhello@./compile_commands.json

$ cd hello
$ bdep init @gcc config.cc.compiledb=hello@./compile_commands.json

To facilitate this use-case, config.cc.compiledb supports another shortcut: if we specify

just name and it contains a directory component, then it is interpreted as path rather than name.

In this case name is taken to be the name of the last directory component in path (which would

typically be a project or package name). And if path is a directory, then the database file name

is taken to be compile_commands.json. Or, in other words, the following:

config.cc.compiledb=.../<dir>/

Is equivalent to:

config.cc.compiledb=<dir>@.../<dir>/compile_commands.json

This shortcut allows us to simplify the above init commands to read:

$ cd libhello
$ bdep init @gcc config.cc.compiledb=./

$ cd hello
$ bdep init @gcc config.cc.compiledb=./

Note also that in this case it will be your responsibility to remove the database files if and when

necessary. bdep-new(1) adds compile_commands.json to .gitignore it generates.

If instead of having a separate database for each project we wanted to place all the entries into a

single database (and in the output directory), then the relevant commands would change as

follows:

$ bdep init @gcc config.cc.compiledb=compiledb

$ bdep init @gcc config.cc.compiledb=compiledb

This would give us a single build-gcc/compiledb.json that contains the compilation

command lines for both projects.

In the above example only hello and libhello will end up in the database, but not any of

their dependencies. What if we wanted entries for everything in build-gcc/? In this case, we

should enable the compilation database for the entire configuration rather than for individual

projects:

159Revision 0.18, March 2025 The build2 Build System

14.6 Compilation Database

$ bdep config create ../build-gcc @gcc cc \
 config.cxx=g++ \
 config.cc.compiledb=compiledb
$ bdep init @gcc

$ bdep config add ../build-gcc @gcc
$ bdep init @gcc

If multiple linked configurations are involved, then we would often want projects initialized in

different configurations share the compilation database. The representative scenario here is a tool,

such as a source code generator, which is initialized in the host configuration, and its runtime

library plus tests/examples, which are initialized in the target configuration. Let’s assume that in

our example hello is the tool and libhello is the runtime library and both are part of the

same project. This is how we can arrange for them to share the compilation database:

$ bdep config create @host ../host-gcc --type host cc config.cxx=g++
$ bdep config create @target ../build-gcc cc config.cxx=g++

$ bdep init @host -d hello config.cc.compiledb=hello@../build-gcc/
$ bdep init @target -d libhello config.cc.compiledb=hello

$ bdep update @host @target

With this setup the hello.json database in build-gcc/ will contain entries for both

hello and libhello.

If instead of configuring and maintaining the compilation database in a file you want to dump it

somewhere once, the recommended approach is to write it to stdout. For example:

$ b -n hello/ libhello/ config.cc.compiledb=- >/tmp/compiledb.json

Note that writing to stdout forces recompilation of all the targets that would be updated in

order to make sure their entries end up in the database. If you don’t want the actual recompilation,

then you can use the dry run mode (-n option above).

If your projects are spread across multiple linked configurations and you would like to get compi­

lation command lines for all of them, then use the global override for

config.cc.compiledb:

$ b ’!config.cc.compiledb=-’ ...

As mentioned earlier, the entries that will end up in such a database are determined by what gets

updated.

Let’s now turn to the rest of the config.cc.compiledb.* configuration variables that

provide a lower-level but more flexible interface. The following listing shows their synopsis:

Revision 0.18, March 2025160 The build2 Build System

14.6 Compilation Database

config.cc.compiledb.name = <name>[@<path>]...
config.cc.compiledb.filter = [<name>@]<bool>...
config.cc.compiledb.filter.input = [<name>@]<target-type>...
config.cc.compiledb.filter.output = [<name>@]<target-type>...

The config.cc.compiledb.name variable specifies the name and location of one or more

compilation databases. The semantics of the name[@path] pair is the same as in

config.cc.compiledb discussed above, except that if path is absent, then the database is

placed into the project being configured rather than into the top-level amalgamation.

Also, unlike config.cc.compiledb, this variable does not automatically enable writing to

the specified databases. Instead, this is the job of config.cc.compiledb.filter. Split­

ting this logic into two steps allows us to configure the database name/location in one place, typi­

cally an outer amalgamation, and then enable writing to it in other places, typically specific

subprojects.

The config.cc.compiledb.filter.{input,output} variables allow us to filter the

entries that end up in the databases based on the input (c{}, cxx{}, etc) and output (obja{},

objs{}, etc) target types.

Note that in all three .filter variables the values are examined in the reverse order and the

first entry that matches determines the outcome. Entries without name apply to all databases and

the target types are matched taking into account inheritance (so target{} will match any type)

and groups (so obj{} will match any obj[eas]{}). If no target type filter (input or output) is

specified, then no corresponding target filtering is performed.

The config.cc.compiledb=<name> semantics can be expressed as the following set of

lower-level variables:

config.cc.compiledb.name = <name>@../path/to/amalgamation/
config.cc.compiledb.filter += <name>@true
config.cc.compiledb.filter.input += <name>@target
config.cc.compiledb.filter.output += <name>@target

The last three assignments only apply if the corresponding variable is not set to a custom value

for this project.

Let’s look at a few examples of using these lower-level configuration variables. The common use

for the output target filtering is getting rid of obja{} or objs{} entries in libraries. Unless

configured otherwise, when we build a library we end up with both static and shared variants.

And this means that each source file for the library is compiled twice, once to produce obja{}
that goes to the static library and once -- objs{}. And that, in turn, means that we will end up

with two compilation database entries for each such source file. If we don’t want that for some

reason (for instance, because the consumer of the database does not handle this well), then we can

filter one of them out. For example, below is how we can initialize libhello to achieve this

(notice that we also include obje{} to keep object files for executables, such as tests):

161Revision 0.18, March 2025 The build2 Build System

14.6 Compilation Database

$ bdep init @gcc \
 config.cc.compiledb=libhello \
 config.cc.compiledb.filter.output=’obje objs’

As an example of the input target type filtering, below is how we can keep entries only for the C

and C++ source files, filtering out everything else (assembler, Objective-C/C++), for instance,

because the consumer of our database does not recognize them:

$ bdep init @gcc \
 config.cc.compiledb=libhello \
 config.cc.compiledb.filter.input=’c cxx’

As an example of a more advanced configuration, consider a compilation database for a project

that use C++ modules. To know how such a project is compiled we not only need to know how

its own source files are compiled, but also how to compile all the module interfaces that it

consumes, including from other projects, transitively. One way to set this up would be to enable

writing entries of the bmi{} output target type to any database in the amalgamation:

$ bdep config create ../build-gcc @gcc cc \
 config.cxx=g++ \
 config.cc.compiledb.filter=true \
 config.cc.compiledb.filter.output=bmi \

$ bdep init @gcc config.cc.compiledb=libhello

$ bdep init @gcc config.cc.compiledb=hello

With this setup libhello.json and hello.json will contain module interface entries from

all the dependencies.

When debugging complex compilation database setups it can be helpful to increase diagnostics

verbosity to level 6 in order to get a trace of filtering decisions (the relevant lines will contain the

compiledb keyword).

14.7 GCC Compiler Toolchain

The GCC compiler id is gcc.

14.8 Clang Compiler Toolchain

The vanilla Clang compiler id is clang (including when targeting the MSVC runtime), Apple

Clang compiler id is clang-apple, and Clang’s cl compatibility driver (clang-cl) id is

msvc-clang.

Revision 0.18, March 2025162 The build2 Build System

14.7 GCC Compiler Toolchain

14.8.1 Clang Targeting MSVC

There are two common ways to obtain Clang on Windows: bundled with the MSVC installation

or as a separate installation. If you are using the separate installation, then the Clang compiler is

most likely already in the PATH environment variable. Otherwise, if you are using Clang that is

bundled with MSVC, the cc module will attempt various search strategies described below.

Note, however, that in both cases once the Clang compiler binary located, the mode (32 or 64-bit)

and the rest of the environment (locations of binary utilities as well as the system headers and

libraries) are obtained by querying Clang.

Normally, if Clang is invoked from one of the Visual Studio command prompts, then it will use

the corresponding Visual Studio version and environment (it is, however, still up to you to match

the mode with the -m32/-m64 options, if necessary). Otherwise, Clang will try to locate the

latest version of Visual Studio and Platform SDK and use that (in this case it matches the envi­

ronment to the -m32/-m64 options). Refer to Clang documentation for details.

If you specify the compiler as just config.c=clang or config.cxx=clang++ and it is

found in the PATH environment variable or if you specify it as an absolute path, then the cc
module will use that.

Otherwise, if you are building from one of the Visual Studio development command prompts, the

cc module will look for the corresponding bundled Clang (%VCIN­
STALLDIR%\Tools\Llvm\bin).

Finally, the cc module will attempt to locate the latest installed version of Visual Studio and look

for a bundled Clang in there.

The default mode (32 or 64-bit) depends on the Clang configuration and can be overridden with

the -m32/-m64 options. For example:

> b "config.cxx=clang++ -m64"

The default MSVC runtime selected by the cc module is multi-threaded shared (the /MD option

in cl). Unfortunately, the Clang driver does not yet provide anything equivalent to the cl /M*
options (see Clang bug #33273) and selection of an alternative runtime has to be performed

manually:

> rem /MD - multi-threaded shared (default)
> rem
> b "config.cxx=clang++ -nostdlib -D_MT -D_DLL" ^
 config.cc.libs=/DEFAULTLIB:msvcrt

> rem /MDd - multi-threaded debug shared
> rem
> b "config.cxx=clang++ -nostdlib -D_MT -D_DLL -D_DEBUG" ^
 config.cc.libs=/DEFAULTLIB:msvcrtd

163Revision 0.18, March 2025 The build2 Build System

14.8.1 Clang Targeting MSVC

https://bugs.llvm.org/show_bug.cgi?id=33273

> rem /MT - multi-threaded static
> rem
> b "config.cxx=clang++ -nostdlib -D_MT" ^
 config.cc.libs=/DEFAULTLIB:libcmt

> rem /MTd - multi-threaded debug static
> rem
> b "config.cxx=clang++ -nostdlib -D_MT -D_DEBUG" ^
 config.cc.libs=/DEFAULTLIB:libcmtd

By default the MSVC’s binary utilities (link and lib) are used when compiling with Clang. It

is, however, possible to use LLVM’s versions instead, for example:

> b config.cxx=clang++ ^
 config.bin.ld=lld-link ^
 config.bin.ar=llvm-lib

In particular, one benefit of using llvm-lib is support for thin archives which, if available, is

automatically enabled for utility libraries.

While there is basic support for Clang’s cl compatibility driver (clang-cl), its use is not

recommended. This driver is a very thin wrapper over the standard Clang interface that does not

always recreate the cl’s semantics exactly. Specifically, its diagnostics in the /showIncludes
mode does not match that of cl in the presence of missing headers. As a result, clang-cl’s

use, if any, should be limited to projects that do not have auto-generated headers.

If you need to link with other projects that use clang-cl, then the recommended approach is to

discover any additional cc1 options passed by clang-cl by comparing the -v output of a test

compilation with clang-cl and clang/clang++ and then passing them explicitly to

clang/clang++, potentially prefixed with -Xclang. For example:

b "config.cxx=clang++ -Xclang -fms-volatile ..."

Relevant additional options that are passed by clang-cl at the time of this writing:

-fno-strict-aliasing
-fstack-protector-strong
-Xclang -fms-volatile
-ffunction-sections

14.9 MSVC Compiler Toolchain

The Microsoft VC (MSVC) compiler id is msvc.

There are several ways to specify the desired MSVC compiler and mode (32 or 64-bit) as well as

the corresponding environment (locations of binary utilities as well as the system headers and

libraries).

Revision 0.18, March 2025164 The build2 Build System

14.9 MSVC Compiler Toolchain

Unlike other compilers, MSVC compiler (cl) binaries are target-specific, that is, there are no

-m32/-m64 options nor something like the /MACHINE option available in link.

If the compiler is specified as just cl in config.{c,cxx} and it is found in the PATH envi­

ronment variable, then the cc module assumes the build is performed from one of the Visual

Studio development command prompts and expects the environment (the PATH, INCLUDE, and

LIB environment variables) to already be setup.

If, however, cl is not found in PATH, then the cc module will attempt to locate the latest

installed version of Visual Studio and Platform SDK and use that in the 64-bit mode.

Finally, if the compiler is specified as an absolute path to cl, then the cc module will attempt to

locate the corresponding Visual Studio installation as well as the latest Platform SDK and use that

in the mode corresponding to the specified cl executable. Note that to specify an absolute path to

cl (which most likely contains spaces) we have to use two levels of quoting:

> b "config.cxx=’...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl’"

The latter two methods are only available for Visual Studio 15 (2017) and later and for earlier

versions the development command prompt must be used.

The default MSVC runtime selected by the cc module is multi-threaded shared (the /MD cl
option). An alternative runtime can be selected by passing one of the cl /M* options, for

example:

> b "config.cxx=cl /MT"

15 c Module

This chapter is a work in progress and is incomplete.

This chapter describes the c build system module which provides the C compilation and linking

support. Most of its functionality, however, is provided by the cc module, a common implemen­

tation for the C-family languages.

15.1 C Configuration Variables

The following listing summarizes the c module configuration variables as well as the correspond­

ing module-specific variables that are derived from their values. See also C-Common Configura­

tion Variables.

config.c
 c.path
 c.mode

165Revision 0.18, March 2025 The build2 Build System

15 c Module

config.c.id
 c.id
 c.id.type
 c.id.variant
 c.class

config.c.version
 c.version
 c.version.major
 c.version.minor
 c.version.patch
 c.version.build

config.c.target
 c.target
 c.target.cpu
 c.target.vendor
 c.target.system
 c.target.version
 c.target.class

config.c.std
 c.std

config.c.poptions
 c.poptions

config.c.coptions
 c.coptions

config.c.loptions
 c.loptions

config.c.aoptions
 c.aoptions

config.c.libs
 c.libs

config.c.internal.scope
 c.internal.scope

15.2 C Target Types

The following listing shows the hierarchy of the target types defined by the c module while the

following sections describe each target type in detail (file{} is a standard target type defined

by the build2 core; see Target Types for details). See also C-Common Target Types for target

types defined by all the cc-based modules.

.--file--.
| | |
c m S
h

Revision 0.18, March 2025166 The build2 Build System

15.2 C Target Types

The m{} target type represents an Objective-C source file, see Objective-C Compilation for

details.

The S{} target type represents an Assembler with C Preprocessor file, see Assembler with C

Preprocessor Compilation for details.

15.2.1 c{}, h{}

The c{} and h{} target types represent C source and header files. They have the default exten­

sions .c and .h, respectively, which can be customized with the extension variable.

15.3 Objective-C Compilation

The c module provides the c.objc submodule which can be loaded in order to register the m{}
target type and enable Objective-C compilation in the C compile rule. Note that c.objc must be

loaded after the c module and while the m{} target type is registered unconditionally, compila­

tion is only enabled if the C compiler supports Objective-C for the target platform. Typical usage:

root.build
#
using c
using c.objc

buildfile
#
lib{hello}: {h c}{*}
lib{hello}: m{*}: include = ($c.target.class == ’macos’)

Note also that while there is support for linking Objective-C executables and libraries, this is

done using the C compiler driver and no attempt is made to automatically link any necessary

Objective-C runtime library (such as -lobjc).

15.4 Assembler with C Preprocessor Compilation

The c module provides the c.as-cpp submodule which can be loaded in order to register the

S{} target type and enable Assembler with C Preprocessor compilation in the C compile rule.

Note that c.as-cpp must be loaded after the c module and while the S{} target type is regis­

tered unconditionally, compilation is only enabled if the C compiler supports Assembler with C

Preprocessor compilation. Typical usage:

root.build
#
using c
using c.as-cpp

167Revision 0.18, March 2025 The build2 Build System

15.3 Objective-C Compilation

buildfile
#
exe{hello}: {h c}{* -hello.c}

Use C implementation as a fallback if no assembler.
#
assembler = ($c.class == ’gcc’ && $c.target.cpu == ’x86_64’)

exe{hello}: S{hello}: include = $assembler
exe{hello}: c{hello}: include = (!$assembler)

/* hello.S
 */
#ifndef HELLO_RESULT
define HELLO_RESULT 0
#endif

text

.global hello
hello:
 /* ... */
 movq $HELLO_RESULT, %rax
 ret

#ifdef __ELF__
.section .note.GNU-stack, "", @progbits
#endif

The default file extension for the S{} target type is .S (capital) but that can be customized using

the standard mechanisms. For example:

root.build
#
using c
using c.as-cpp

h{*}: extension = h
c{*}: extension = c
S{*}: extension = sx

Note that *.coptions are passed to the C compiler when compiling Assembler with C Prepro­

cessor files because compile options may cause additional preprocessor macros to be defined.

Plus, some of them (such as -g) are passed (potentially translated) to the underlying assembler.

To pass additional options when compiling Assembler files use c.poptions and

c.coptions. For example (continuing with the previous example):

Revision 0.18, March 2025168 The build2 Build System

15.4 Assembler with C Preprocessor Compilation

if $assembler
{
 obj{hello}:
 {
 c.poptions += -DHELLO_RESULT=1
 c.coptions += -Wa,--no-pad-sections
 }
}

15.5 C Compiler Predefined Macro Extraction

The c module provides the c.predefs submodule which can be loaded in order to register a

rule that generates a C header with predefined compiler macros. Note that the c.predefs
module must be loaded after the c module and the rule will only match with an explicit rule hint.

Typical usage:

root.build
#
using c
using c.predefs

buildfile
#
[rule_hint=c.predefs] h{predefs}:

Note also that the MSVC compiler only supports the predefined macro extraction starting from

Visual Studio 2019 (16.0; cl.exe version 19.20). If support for earlier versions is required, then

you will need to provide a fallback implementation appropriate for your project. For example:

[rule_hint=c.predefs] h{predefs}:
% update
if ($c.id == ’msvc’ && \
 ($c.version.major < 19 || \
 ($c.version.major == 19 && $c.version.minor < 20)))
{{
 diag c-predefs $>

 cat <<EOF >$path($>)
 #define _WIN32
 EOF
}}

16 cxx Module

This chapter is a work in progress and is incomplete.

This chapter describes the cxx build system module which provides the C++ compilation and

linking support. Most of its functionality, however, is provided by the cc module, a common

implementation for the C-family languages.

169Revision 0.18, March 2025 The build2 Build System

16 cxx Module

16.1 C++ Configuration Variables

The following listing summarizes the cxx module configuration variables as well as the corre­

sponding module-specific variables that are derived from their values. See also C-Common

Configuration Variables.

config.cxx
 cxx.path
 cxx.mode

config.cxx.id
 cxx.id
 cxx.id.type
 cxx.id.variant
 cxx.class

config.cxx.version
 cxx.version
 cxx.version.major
 cxx.version.minor
 cxx.version.patch
 cxx.version.build

config.cxx.target
 cxx.target
 cxx.target.cpu
 cxx.target.vendor
 cxx.target.system
 cxx.target.version
 cxx.target.class

config.cxx.std
 cxx.std

config.cxx.poptions
 cxx.poptions

config.cxx.coptions
 cxx.coptions

config.cxx.loptions
 cxx.loptions

config.cxx.aoptions
 cxx.aoptions

config.cxx.libs
 cxx.libs

config.cxx.internal.scope
 cxx.internal.scope

config.cxx.translate_include
 cxx.translate_include

Revision 0.18, March 2025170 The build2 Build System

16.1 C++ Configuration Variables

16.2 C++ Target Types

The following listing shows the hierarchy of the target types defined by the cxx module while

the following sections describe each target type in detail (file{} is a standard target type

defined by the build2 core; see Target Types for details). See also C-Common Target Types

for target types defined by all the cc-based modules.

 .--file--.
 | |
cxx mm
hxx
ixx
txx
mxx

The mm{} target type represents an Objective-C++ source file, see Objective-C++ Compilation

for details.

16.2.1 cxx{}, hxx{}, ixx{}, txx{}, mxx{}

The cxx{}, hxx{}, ixx{}, txx{}, and mxx{} target types represent C++ source, header,

inline, template, and module interface files. They have the default extensions .cxx, .hxx,

.ixx, .txx, and .mxx, respectively, which can be customized with the extension variable.

For example (normally done in root.build):

using cxx

cxx{*}: extension = cpp
hxx{*}: extension = hpp
mxx{*}: extension = cppm

16.3 C++ Modules Support

This section describes the build system support for C++ modules.

16.3.1 Modules Introduction

The goal of this section is to provide a practical introduction to C++ Modules and to establish key

concepts and terminology. You can skip directly to Building Modules if you are already familiar

with this topic.

A pre-modules C++ program or library consists of one or more translation units which are

customarily referred to as C++ source files. Translation units are compiled to object files which

are then linked together to form a program or library.

171Revision 0.18, March 2025 The build2 Build System

16.2 C++ Target Types

Let’s also recap the difference between an external name and a symbol: External names refer to

language entities, for example classes, functions, and so on. The external qualifier means they are

visible across translation units.

Symbols are derived from external names for use inside object files. They are the cross-referenc­

ing mechanism for linking a program from multiple, separately-compiled translation units. Not all

external names end up becoming symbols and symbols are often decorated with additional infor­

mation, for example, a namespace. We often talk about a symbol having to be satisfied by linking

an object file or a library that provides it. Similarly, duplicate symbol issues may arise if more

than one object file or library provides the same symbol.

What is a C++ module? It is hard to give a single but intuitive answer to this question. So we will

try to answer it from three different perspectives: that of a module consumer, a module producer,

and a build system that tries to make those two play nice. But we can make one thing clear at the

outset: modules are a language-level not a preprocessor-level mechanism; it is import, not

#import.

One may also wonder why C++ modules, what are the benefits? Modules offer isolation, both

from preprocessor macros and other modules’ symbols. Unlike headers, modules require explicit

exportation of entities that will be visible to the consumers. In this sense they are a physical

design mechanism that forces us to think how we structure our code. Modules promise significant

build speedups since importing a module, unlike including a header, should be essentially free.

Modules are also the first step to not needing the preprocessor in most translation units. Finally,

modules have a chance of bringing to mainstream reliable and easy to setup distributed C++

compilation, since with modules build systems can make sure compilers on the local and remote

hosts are provided with identical inputs.

To refer to a module we use a module name, a sequence of dot-separated identifiers, for example

hello.core. While the specification does not assign any hierarchical semantics to this

sequence, it is customary to refer to hello.core as a submodule of hello. We discuss

submodules and provide the module naming guidelines below.

From a consumer’s perspective, a module is a collection of external names, called module inter­

face, that become visible once the module is imported:

import hello.core;

What exactly does visible mean? To quote the standard: An import-declaration makes exported

declarations [...] visible to name lookup in the current translation unit, in the same namespaces

and contexts [...]. [Note: The entities are not redeclared in the translation unit containing the

module import declaration. -- end note] One intuitive way to think about this visibility is as if

there were only a single translation unit for the entire program that contained all the modules as

well as all their consumers. In such a translation unit all the names would be visible to everyone

in exactly the same way and no entity would be redeclared.

Revision 0.18, March 2025172 The build2 Build System

16.3.1 Modules Introduction

This visibility semantics suggests that modules are not a name scoping mechanism and are

orthogonal to namespaces. Specifically, a module can export names from any number of names­

paces, including the global namespace. While the module name and its namespace names need

not be related, it usually makes sense to have a parallel naming scheme, as discussed below.

Finally, the import declaration does not imply any additional visibility for names declared

inside namespaces. Specifically, to access such names we must continue using the existing mech­

anisms, such as qualification or using declaration/directive. For example:

import hello.core; // Exports hello::say().

say (); // Error.
hello::say (); // Ok.

using namespace hello;
say (); // Ok.

Note also that from the consumer’s perspective a module does not provide any symbols, only

C++ entity names. If we use names from a module, then we may have to satisfy the correspond­

ing symbols using the usual mechanisms: link an object file or a library that provides them. In

this respect, modules are similar to headers and as with headers, module’s use is not limited to

libraries; they make perfect sense when structuring programs. Furthermore, a library may also

have private or implementation modules that are not meant to be imported by the library’s

consumers.

The producer perspective on modules is predictably more complex. In pre-modules C++ we only

had one kind of translation unit (or source file). With modules there are three kinds: module inter­

face unit, module implementation unit, and the original kind which we will call a non-module

translation unit.

There are two additional modular translation units: module interface partition and module imple­

mentation partition. While partitions are supported, they are not covered in this introduction. A

link to a complete example that uses both types of partitions will be given in the next section.

From the producer’s perspective, a module is a collection of module translation units: one inter­

face unit and zero or more implementation units. A simple module may consist of just the inter­

face unit that includes implementations of all its functions (not necessarily inline). A more

complex module may span multiple implementation units.

A translation unit is a module interface unit if it contains an exporting module declaration:

export module hello;

A translation unit is a module implementation unit if it contains a non-exporting module declara­

tion:

173Revision 0.18, March 2025 The build2 Build System

16.3.1 Modules Introduction

module hello;

While module interface units may use the same file extension as normal source files, we recom­

mend that a different extension be used to distinguish them as such, similar to header files. While

the compiler vendors suggest various (and predictably different) extensions, our recommendation

is .mxx for the .hxx/.cxx source file naming and .mpp for .hpp/.cpp. And if you are

using some other naming scheme, then perhaps now is a good opportunity to switch to one of the

above. Continuing using the source file extension for module implementation units appears

reasonable and that’s what we recommend.

A modular translation unit (that is, either module interface or implementation) that does not start

with one of the above module declarations must then start with the module introducer:

module;

...

export module hello;

The fragment from the module introducer and until the module declaration is called the global

module fragment. Any name declared in the global module fragment belongs to the global

module, an implied module containing "old" or non-modular declarations that don’t belong to any

named module.

A module declaration (exporting or non-exporting) starts a module purview that extends until the

end of the module translation unit. Any name declared in a module’s purview belongs to the said

module. For example:

module; // Start of global module fragment.

#include <cassert> // Not in purview.

export module hello; // Start of purview.

import std; // In purview.

void say_hello (const std::string&); // In purview.

A name that belongs to a module is invisible to the module’s consumers unless it is exported. A

name can be declared exported only in a module interface unit, only in the module’s purview, and

there are several syntactic ways to accomplish this. We can start the declaration with the export

specifier, for example:

export module hello;

export enum class volume {quiet, normal, loud};

export void say_hello (const char*, volume);

Revision 0.18, March 2025174 The build2 Build System

16.3.1 Modules Introduction

Alternatively, we can enclose one or more declarations into an exported group, for example:

export module hello;

export
{
 enum class volume {quiet, normal, loud};

 void say_hello (const char*, volume);
}

Finally, if a namespace definition is declared exported, then every name in its body is exported,

for example:

export module hello;

export namespace hello
{
 enum class volume {quiet, normal, loud};

 void say_hello (const char*, volume);
}

namespace hello
{
 void impl (const char*, volume); // Not exported.
}

Up until now we’ve only been talking about names belonging to a module. What about the corre­

sponding symbols? All the major C++ compilers have chosen to implement the so-called strong

ownership model, where for both exported and non-exported names, the corresponding symbols

are decorated with the module name. As a result, they cannot clash with symbols for identical

names from other named modules or the global module.

What about the preprocessor? Modules do not export preprocessor macros, only C++ names. A

macro defined in the module interface unit cannot affect the module’s consumers. And macros

defined by the module’s consumers cannot affect the module interface they are importing. In

other words, module producers and consumers are isolated from each other where the preproces­

sor is concerned. For example, consider this module interface:

export module hello;

#ifndef SMALL
#define HELLO
export void say_hello (const char*);
#endif

And its consumer:

175Revision 0.18, March 2025 The build2 Build System

16.3.1 Modules Introduction

// module consumer
//
#define SMALL // No effect.
import hello;

#ifdef HELLO // Not defined.
...
#endif

This is not to say that the preprocessor cannot be used by either the module interface or its

consumer, it just that macros don’t "leak" through the module interface. One practical conse­

quence of this model is the insignificance of the importation order.

If a module imports another module in its purview, the imported module’s names are not made

automatically visible to the consumers of the importing module. This is unlike headers and can be

surprising. Consider this module interface as an example:

export module hello;

import std;

export std::string formal_hello (const std::string&);

And its consumer:

import hello;

int
main ()
{
 std::string s (format_hello ("World"));
}

This example will result in a compile error and the diagnostics may confusingly indicate that

there is no member string in namespace std. But with the understanding of the difference

between import and #include the reason should be clear: while the module interface "sees"

std::string (because it imported its module), we (the consumer) do not (since we did not).

So the fix is to explicitly import std:

import std;
import hello;

int
main ()
{
 std::string s (format_hello ("World"));
}

A module, however, can choose to re-export a module it imports. In this case, all the names from

the imported module will also be visible to the importing module’s consumers. For example, with

this change to the module interface the first version of our consumer will compile without errors

Revision 0.18, March 2025176 The build2 Build System

16.3.1 Modules Introduction

(note that whether this is a good design choice is debatable, as discussed below):

export module hello;

export import std;

export std::string formal_hello (const std::string&);

One way to think of a re-export is as if an import of a module also "injects" all the imports the

said module re-exports, recursively. That’s essentially how most compilers implement it.

Module re-export is the mechanism for assembling bigger modules out of submodules. As an

example, let’s say we had the hello.core, hello.basic, and hello.extra modules. To

make life easier for users that want to import all of them we can create the hello module that

re-exports the three:

export module hello;

export
{
 import hello.core;
 import hello.basic;
 import hello.extra;
}

Besides starting a module purview, a non-exporting module declaration in the implementation

unit makes (non-internal linkage) names declared or made visible (via import) in the module

purview of an interface unit also visible in the module purview of the implementation unit. In this

sense a non-exporting module declaration acts as a special import. The following example

illustrates this point:

module;

import hello.impl; // Not visible (exports impl()).

#include <string.h> // Not visible (declares strlen()).

export module hello.extra; // Start of module purview (interface).

import hello.core; // Visible (exports core()).

void extra (); // Visible.

static void extra2 (); // Not visible (internal linkage).

And this is the implementation unit:

177Revision 0.18, March 2025 The build2 Build System

16.3.1 Modules Introduction

module hello.extra; // Start of module purview (implementation).

void
f ()
{
 impl (); // Error.
 strlen (""); // Error.
 core (); // Ok.
 extra (); // Ok.
 extra2 (); // Error.
}

In particular, this means that while the relative order of imports is not significant, the placement

of imports in the module interface unit relative to the module declaration can be.

The final perspective that we consider is that of the build system. From its point of view the

central piece of the module infrastructure is the binary module interface or BMI: a binary file that

is produced by compiling the module interface unit and that is required when compiling any

translation unit that imports this module as well as the module’s implementation units.

Then, in a nutshell, the main functionality of a build system when it comes to modules support is

figuring out the order in which all the translation units should be compiled and making sure that

every compilation process is able to find the binary module interfaces it needs.

Predictably, the details are more complex. Compiling a module interface unit produces two

outputs: the binary module interface and the object file. The latter contains object code for

non-inline functions, global variables, etc., that the interface unit may define. This object file has

to be linked when producing any binary (program or library) that uses this module.

Also, all the compilers currently implement module re-export as a shallow reference to the

re-exported module name which means that their binary interfaces must be discoverable as well,

recursively. In fact, currently, all the imports are handled like this, though a different implementa­

tion is at least plausible, if unlikely.

While the details vary between compilers, the contents of the binary module interface can range

from a stream of preprocessed tokens to something fairly close to object code. As a result, binary

interfaces can be sensitive to the compiler options and if the options used to produce the binary

interface (for example, when building a library) are sufficiently different compared to the ones

used when compiling the module consumers, the binary interface may be unusable. So while a

build system should strive to reuse existing binary interfaces, it should also be prepared to

compile its own versions "on the side".

This also suggests that binary module interfaces are not a distribution mechanism and should

probably not be installed. Instead, we should install and distribute module interface sources and

build systems should be prepared to compile them, again, on the side.

Revision 0.18, March 2025178 The build2 Build System

16.3.1 Modules Introduction

16.3.2 Building Modules

Compiler support for C++ modules is still experimental, incomplete, and often buggy. Also, in

build2, the presence of modules changes the C++ compilation model in ways that would intro­

duce unnecessary overheads for headers-only code. As a result, a project must explicitly enable

modules using the cxx.features.modules boolean variable. This is what the relevant

root.build fragment could look like for a modularized project:

cxx.std = latest
cxx.features.modules = true

using cxx

mxx{*}: extension = mxx
cxx{*}: extension = cxx

Note that you must explicitly enable modules in your project even if you are only importing other

modules, including standard library modules (std or std.compat).

To support C++ modules the cxx build system module defines several additional target types.

The mxx{} target is a module interface unit. As you can see from the above root.build frag­

ment, in this project we are using the .mxx extension for our module interface files. While you

can use the same extension as for cxx{} (source files), this is not recommended since some

functionality, such as wildcard patterns, will become unusable.

The bmi{} group and its bmie{}, bmia{}, and bmis{} members are used to represent binary

module interfaces targets. We normally do not need to mention them explicitly in our build­
files except, perhaps, to specify additional, module interface-specific compile options.

To build a modularized executable or library we simply list the module interfaces as its prerequi­

sites, just as we do for source files. As an example, let’s build the hello program that we have

started in the introduction (you can find the complete project in the cxx20-modules-exam­
ples repository under hello-module). Specifically, we assume our project contains the

following files:

// file: hello.mxx (module interface)

export module hello;

import std;

export namespace hello
{
 void say_hello (const std::string_view& name);
}

179Revision 0.18, March 2025 The build2 Build System

16.3.2 Building Modules

https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std
https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std

// file: hello.cxx (module implementation)

module hello;

namespace hello
{
 void say_hello (const std::string_view& n)
 {
 std::cout << "Hello, " << n << ’!’ << std::endl;
 }
}

// file: main.cxx

import hello;

int
main ()
{
 hello::say_hello ("World");
}

To build a hello executable from these files we can write the following buildfile:

exe{hello}: cxx{main} {mxx cxx}{hello}

Or, if you prefer to use wildcard patterns:

exe{hello}: {mxx cxx}{*}

Module partitions, both interface and implementation, are compiled to BMIs and as a result must

be listed as mxx{} prerequisites. See hello-partition in the cxx20-modules-exam­
ples repository for a complete example.

Alternatively, we can place the module into a library and then link the library to the executable

(see hello-library-module in the cxx20-modules-examples repository):

exe{hello}: cxx{main} lib{hello}
lib{hello}: {mxx cxx}{hello}

Note that a library consisting of only module interface units is by default always binful (see

Library Exportation and Versioning for background) since compiling a module interface always

results in an object file, even if the module interface does not contain any non-inline/template

functions or global variables. However, you can explicitly request for such a library to be treated

as binless:

lib{hello}: mxx{hello}
{
 bin.binless = true
}

Revision 0.18, March 2025180 The build2 Build System

16.3.2 Building Modules

https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std
https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std
https://github.com/build2/cxx20-modules-examples/tree/named-only-import-std

Note that if such a binless library has non-inline/template functions or global variables, then

whether it can used in all situations without causing duplicate symbols is platform-dependent.

As you might have surmised from this example, the modules support in build2 automatically

resolves imports to module interface units that are specified either as direct prerequisites or as

prerequisites of library prerequisites.

To perform this resolution without a significant overhead, the implementation delays the extrac­

tion of the actual module name from module interface units (since not all available module inter­

faces are necessarily imported by all the translation units). Instead, the implementation tries to

guess which interface unit implements each module being imported based on the interface file

path. Or, more precisely, a two-step resolution process is performed: first a best match between

the desired module name and the file path is sought and then the actual module name is extracted

and the correctness of the initial guess is verified.

The practical implication of this implementation detail is that our module interface files must

embed a portion of a module name, or, more precisely, a sufficient amount of "module name tail"

to unambiguously resolve all the modules used in a project. Note that this guesswork is only

performed for direct module interface prerequisites; for those that come from libraries the module

names are known and are therefore matched exactly. And the guesses are always verified before

the actual compilation, so misguesses cannot go unnoticed.

As an example, let’s assume our hello project had two modules: hello.core and

hello.extra. While we could call our interface files hello.core.mxx and

hello.extra.mxx, respectively, this doesn’t look particularly good and may be contrary to

the file naming scheme used in our project. To resolve this issue the match of module names to

file names is made "fuzzy": it is case-insensitive, it treats all separators (dots, dashes, under­

scores, etc) as equal, and it treats a case change as an imaginary separator. As a result, the follow­

ing naming schemes will all match the hello.core module name:

hello-core.mxx
hello_core.mxx
HelloCore.mxx
hello/core.mxx

We also don’t have to embed the full module name. In our case, for example, it would be most

natural to call the files core.mxx and extra.mxx since they are already in the project direc­

tory called hello/. This will work since our module names can still be guessed correctly and

unambiguously.

If a guess turns out to be incorrect, the implementation issues diagnostics and exits with an error

before attempting to build anything. To resolve this situation we can either adjust the interface

file names or we can specify the module name explicitly with the cxx.module_name variable.

The latter approach can be used with interface file names that have nothing in common with

module names, for example:

181Revision 0.18, March 2025 The build2 Build System

16.3.2 Building Modules

mxx{foobar}@./: cxx.module_name = hello

Note also that the standard library modules (std and std.compat) are treated specially and

are resolved in a compiler-specific manner.

When C++ modules are enabled and available, the build system makes sure the

__cpp_modules feature test macro is defined. However, if the compiler version being used

does not claim complete modules support, its value may not be 201907.

16.3.3 Module Symbols Exporting

When building a shared library, some platforms (notably Windows) require that we explicitly

export symbols that must be accessible to the library consumers. If you don’t need to support

such platforms, you can thank your lucky stars and skip this section.

When using headers, the traditional way of achieving this is via an "export macro" that is used to

mark exported APIs, for example:

LIBHELLO_EXPORT void say_hello (const string&);

This macro is then appropriately defined (often in a separate "export header") to export symbols

when building the shared library and to import them when building the library’s consumers (and

to nothing when either building or consuming the static library).

The introduction of modules changes this in a number of ways, at least as implemented by MSVC

and Clang. While we still have to explicitly mark exported symbols in our module interface unit,

there is no need (and, in fact, no way) to do the same when said module is imported. Instead, the

compiler automatically treats all such explicitly exported symbols (note: symbols, not names) as

imported.

While the automatic importing may look like the same mechanism as what’s used to support

Automatic DLL Symbol Exporting, it appears not to be since it also works for global variables,

not only functions. However, reportedly, it does appear to incur the same additional overhead as

auto-importing, at least for functions.

One notable aspect of this new model is the locality of the export macro: it is only defined when

compiling the module interface unit and is not visible to the consumers of the module. This is

unlike headers where the macro has to have a unique per-library name (that LIBHELLO_ prefix)

because a header from one library can be included while building another library.

We can continue using the same export macro and header with modules and, in fact, that’s the

recommended approach if maintaining the dual, header/module arrangement for backwards

compatibility. However, for modules-only codebases, we have an opportunity to improve the situ­

ation in two ways: we can use a single, keyword-like macro instead of a library-specific one and

we can make the build system manage it for us thus getting rid of the export header.

Revision 0.18, March 2025182 The build2 Build System

16.3.3 Module Symbols Exporting

To enable this functionality in build2 we set the cxx.features.symexport boolean vari­

able to true before loading the cxx module. For example:

cxx.std = latest
cxx.features.modules = true
cxx.features.symexport = true

using cxx

...

Once enabled, build2 automatically defines the __symexport macro to the appropriate value

depending on the platform and the type of library being built. As library authors, all we have to

do is use it in appropriate places in our module interface units, for example:

export module hello;

import std;

export __symexport void say_hello (const std::string&);

You may be wondering why can’t a module export automatically mean a symbol export? While

you will normally want to export symbols of all your module-exported names, you may also need

to do so for some non-module-exported ones. For example:

export module foo;

__symexport void f_impl ();

export __symexport inline void f ()
{
 f_impl ();
}

Furthermore, symbol exporting is a murky area with many limitations and pitfalls (such as

auto-exporting of base classes). As a result, it would not be unreasonable to expect such an auto­

matic module exporting to only further muddy the matter.

16.3.4 Modules Installation

As discussed in the introduction, binary module interfaces are not a distribution mechanism and

installing module interface sources appears to be the preferred approach.

Module interface units are by default installed in the same location as headers (for example,

/usr/include). However, instead of relying on a header-like search mechanism (-I paths,

etc.), an explicit list of exported modules is provided for each library in its .pc (pkg-config)

file.

183Revision 0.18, March 2025 The build2 Build System

16.3.4 Modules Installation

Specifically, the library’s .pc file contains the cxx.modules variable that lists all the exported

C++ modules in the <name>=<path> form with <name> being the module’s C++ name and

<path> – the module interface file’s absolute path. For example:

Name: libhello
Version: 1.0.0
Cflags:
Libs: -L/usr/lib -lhello

cxx.modules = hello.core=/usr/include/hello/core.mxx hello.extra=/usr/include/hello/extra.mxx

The : character in a module partition name is encoded as ... For example, for hello:core we

would have:

cxx.modules = hello..core=/usr/...

Additional module properties are specified with variables in the cxx.module_<prop­
erty>.<name> form, for example:

cxx.module_symexport.hello.core = true
cxx.module_preprocessed.hello.core = all

Currently, two properties are defined. The symexport property with the boolean value signals

whether the module uses the __symexport support discussed above.

The preprocessed property indicates the degree of preprocessing the module unit requires

and is used to optimize module compilation. Valid values are none (not preprocessed),

includes (no #include directives in the source), modules (as above plus no module decla­

rations depend on the preprocessor, for example, #ifdef, etc.), and all (the source is fully

preprocessed). Note that for all the source may still contain comments and line continuations.

16.3.5 Modules Design Guidelines

Modules are a physical design mechanism for structuring and organizing our code. Their explicit

exportation semantics combined with the way they are built make many aspects of creating and

consuming modules significantly different compared to headers. This section provides basic

guidelines for designing modules. We start with the overall considerations such as module granu­

larity and partitioning into translation units then continue with the structure of typical module

interface and implementation units. The following section discusses practical approaches to

modularizing existing code.

Unlike headers, the cost of importing modules should be negligible. As a result, it may be tempt­

ing to create "mega-modules", for example, one per library. After all, this is how the standard

library is modularized with its std and std.compat modules.

Revision 0.18, March 2025184 The build2 Build System

16.3.5 Modules Design Guidelines

There is, however, a significant drawback to this choice: every time we make a change, all

consumers of such a mega-module will have to be recompiled, whether the change affects them

or not. And the bigger the module the higher the chance that any given change does not (semanti­

cally) affect a large portion of the module’s consumers. Note also that this is not an issue for the

standard library modules since they are not expected to change often.

Another, more subtle, issue with mega-modules (which does affect the standard library) is the

inability to re-export only specific interfaces, as will be discussed below.

The other extreme in choosing module granularity is a large number of "mini-modules". Their

main drawback is the tediousness of importation by the consumers.

The sensible approach is then to create modules of conceptually-related and commonly-used enti­

ties possibly complemented with aggregate modules for ease of importation. This also happens to

be generally good design.

As an example, let’s consider a JSON library that provides support for both parsing and serializa­

tion. Since it is common for applications to only use one of the functionalities, it makes sense to

provide the json.parser and json.serializer modules. Depending on the representa­

tion of JSON we use in our library, it will most likely have some shared types so it probably

makes sense to have the json.types module that is re-exported by the parser and serializer

modules. While it is not too tedious to import both json.parser and json.serializer if

both a needed, for convenience we could also provide the json module that re-exports the two.

Something along these lines:

// types.mxx

export module json.types;

export class json
{
 ...
};

// parser.mxx

export module json.parser;

export import json.types;

export json parse (...);

// serializer.mxx

export module json.serializer;

export import json.types;

export ... serialize (const json&);

185Revision 0.18, March 2025 The build2 Build System

16.3.5 Modules Design Guidelines

// json.mxx

export module json;

export import json.types;
export import json.parser;
export import json.serializer;

Once we are past selecting an appropriate granularity for our modules, the next question is how to

partition them into translation units. A module can consist of just the interface unit and, as

discussed above, such a unit can contain anything an implementation unit can, including

non-inline function definitions. Some may then view this as an opportunity to get rid of the

header/source separation and have everything in a single file.

There are a number of drawbacks with this approach: Every time we change anything in the

module interface unit, all its consumers have to be recompiled. If we keep everything in a single

file, then every time we change the implementation we trigger recompilations that would have

been avoided had the implementation been factored out into a separate unit. Note that a build

system in cooperation with the compiler could theoretically avoid such unnecessary recompila­

tions in certain cases: if the compiler produces identical binary interface files when the module

interface is unchanged, then the build system could detect this and skip recompiling the module’s

consumers.

A related issue with single-file modules is the reduction in the build parallelization opportunities.

If the implementation is part of the interface unit, then the build system cannot start compiling the

module’s consumers until both the interface and the implementation are compiled. On the other

hand, had the implementation been split into a separate file, the build system could start compil­

ing the module’s consumers (as well as the implementation unit) as soon as the module interface

is compiled.

Another issues with combining the interface with the implementation is the readability of the

interface which could be significantly reduced if littered with implementation details. We could

keep the interface separate by moving the implementation to the bottom of the interface file but

then we might as well move it into a separate file and avoid the unnecessary recompilations or

parallelization issues.

The sensible guideline is then to have a separate module implementation unit except perhaps for

modules with a simple implementation that is mostly inline/template. Note that more complex

modules may have several implementation units, however, based on our granularity guideline,

those should be rare.

Once we start writing our first real module the immediate question that normally comes up is

where to put #include directives and import declarations and in what order. To recap, a

module unit, both interface and implementation, is split into two parts: before the module declara­

tion, called the global module fragment, which obeys the usual or "old" translation unit rules and

Revision 0.18, March 2025186 The build2 Build System

16.3.5 Modules Design Guidelines

after the module declaration which is the module purview. Inside the module purview all declara­

tions have their symbols invisible to any other module (including the global module). With this

understanding, consider the following module interface:

export module hello;

#include <string>

Do you see the problem? We have included <string> in the module purview which means all

its names (as well as all the names in any headers it might include, recursively) are now declared

as having the hello module linkage. The result of doing this can range from silent code blot to

strange-looking unresolved symbols.

The guideline this leads to should be clear: including a header in the module purview is almost

always a bad idea. There are, however, a few types of headers that may make sense to include in

the module purview. The first are headers that only define preprocessor macros, for example,

configuration or export headers. There are also cases where we do want the included declarations

to end up in the module purview. The most common example is inline/template function imple­

mentations that have been factored out into separate files for code organization reasons. As an

example, consider the following module interface that uses an export header (which presumably

sets up symbols exporting macros) as well as an inline file:

module;

#include <string>

export module hello;

#include <libhello/export.hxx>

export namespace hello
{
 ...
}

#include <libhello/hello.ixx>

A note on inline/template files: in header-based projects we could include additional headers in

those files, for example, if the included declarations are only needed in the implementation. For

the reasons just discussed, this does not work with modules and we have to move all the includes

into the interface file, into the global module fragment. On the other hand, with modules, it is safe

to use namespace-level using-directives (for example, using namespace std;) in

inline/template files (and, with care, even in the interface file).

What about imports, where should we import other modules? Again, to recap, unlike a header

inclusion, an import declaration only makes exported names visible without redeclaring them.

As result, in module implementation units, it doesn’t really matter where we place imports, in the

module purview or the global module fragment. There are, however, two differences when it

187Revision 0.18, March 2025 The build2 Build System

16.3.5 Modules Design Guidelines

comes to module interface units: only imports in the purview are visible to implementation units

and we can only re-export an imported module from the purview.

The guideline is then for interface units to import in the module purview unless there is a good

reason not to make the import visible to the implementation units. And for implementation units

to always import in the purview for simplicity. For example:

module;

#include <cassert>

export module hello;

import std;

#include <libhello/export.hxx>

export namespace hello
{
 ...
}

#include <libhello/hello.ixx>

By putting all these guidelines together we can then create a module interface unit template:

// Module interface unit.

module; // Start of global module fragment.

<header includes>

export module <name>; // Start of module purview.

<module imports>

<special header includes> // Configuration, export, etc.

<module interface>

<inline/template includes>

As well as the module implementation unit template:

Revision 0.18, March 2025188 The build2 Build System

16.3.5 Modules Design Guidelines

// Module implementation unit.

module; // Start of global module fragment.

<header includes>

module <name>; // Start of module purview.

<extra module imports> // Only additional to interface.

<module implementation>

Let’s now discuss module naming. Module names are in a separate "name plane" and do not

collide with namespace, type, or function names. Also, as mentioned earlier, the standard does

not assign a hierarchical meaning to module names though it is customary to assume module

hello.core is a submodule of hello and, unless stated explicitly otherwise, importing the

latter also imports the former.

It is important to choose good names for public modules (that is, modules packaged into libraries

and used by a wide range of consumers) since changing them later can be costly. We have more

leeway with naming private modules (that is, the ones used by programs or internal to libraries)

though it’s worth coming up with a consistent naming scheme here as well.

The general guideline is to start names of public modules with the library’s namespace name

followed by a name describing the module’s functionality. In particular, if a module is dedicated

to a single class (or, more generally, has a single primary entity), then it makes sense to use that

name as the module name’s last component.

As a concrete example, consider libbutl (the build2 utility library): All its components are

in the butl namespace so all its module names start with butl. One of its components is the

small_vector class template which resides in its own module called

butl.small_vector. Another component is a collection of string parsing utilities that are

grouped into the butl::string_parser namespace with the corresponding module called

butl.string_parser.

When is it a good idea to re-export a module? The two straightforward cases are when we are

building an aggregate module out of submodules, for example, json out of json.parser and

json.serializer, or when one module extends or supersedes another, for example, as

json.parser extends json.types. It is also clear that there is no need to re-export a

module that we only use in the implementation. The case when we use a module in our interface

is, however, a lot less clear cut.

But before considering the last case in more detail, let’s understand the issue with re-export. In

other words, why not simply re-export any module we import in our interface? In essence,

re-export implicitly injects another module import anywhere our module is imported. If we

re-export std then consumers of our module will also automatically "see" all the names exported

189Revision 0.18, March 2025 The build2 Build System

16.3.5 Modules Design Guidelines

by std. They can then start using names from std without explicitly importing std and every­

thing will compile until one day they no longer need to import our module or we no longer need

to import std. In a sense, re-export becomes part of our interface and it is generally good design

to keep interfaces minimal.

And so, at the outset, the guideline is then to only re-export the minimum necessary.

Let’s now discuss a few concrete examples to get a sense of when re-export might or might not

be appropriate. Unfortunately, there does not seem to be a hard and fast rule and instead one has

to rely on their good sense of design.

To start, let’s consider a simple module that uses std::string in its interface:

export module hello;

import std;

export namespace hello
{
 std::string format_hello (const std::string&);
}

Should we re-export std in this case? Most likely not. If consumers of our module want to refer

to std::string, then it is natural to expect them to explicitly import the necessary module. In

a sense, this is analogous to scoping: nobody expects to be able to use just string (without

std::) because of using namespace hello;.

So it seems that a mere usage of a name in an interface does not generally warrant a re-export.

The fact that a consumer may not even use this part of our interface further supports this conclu­

sion.

Let’s now consider a more interesting case (inspired by real events):

export module small_vector;

import std;

template <typename T, std::size_t N>
export class small_vector: public std::vector<T, ...>
{
 ...
};

Here we have the small_vector container implemented in terms of std::vector by

providing a custom allocator and with most of the functions derived as is. Consider now this

innocent-looking consumer code:

Revision 0.18, March 2025190 The build2 Build System

16.3.5 Modules Design Guidelines

import small_vector;

small_vector<int, 1> a, b;

if (a == b) // Error.
 ...

We don’t reference std::vector directly so presumably we shouldn’t need to import its

module. However, the comparison won’t compile: our small_vector implementation re-uses

the comparison operators provided by std::vector (via implicit to-base conversion) but they

aren’t visible.

There is a palpable difference between the two cases: the first merely uses std interface while

the second is based on and, in a sense, extends it which feels like a stronger relationship.

Re-exporting std (or, better yet, std.vector, if it were available) seems less unreasonable.

Note also that there is no re-export of headers nor header inclusion visibility in the implementa­

tion units. Specifically, in the previous example, if the standard library is not modularized and we

have to use it via headers, then the consumers of our small_vector will always have to

explicitly include <vector>. This suggest that modularizing a codebase that still consumes

substantial components (like the standard library) via headers can incur some development over­

head compared to the old, headers-only approach.

16.3.6 Modularizing Existing Code

The aim of this section is to provide practical guidelines to modularizing existing codebases.

Predictably, a well modularized (in the general sense) set of headers makes conversion to C++

modules easier. Inclusion cycles will be particularly hard to deal with (C++ modules do not allow

circular interface dependencies). Having a one-to-one header to module mapping will simplify

this task. As a result, it may make sense to spend some time cleaning and re-organizing your

headers prior to attempting modularization.

The recommended strategy for modularizing our own components is to identify and modularize

inter-dependent sets of headers one at a time starting from the lower-level components. This way

any newly modularized set will only depend on the already modularized ones. After converting

each set we can switch its consumers to using imports keeping our entire project buildable and

usable.

While ideally we would want to be able to modularize just a single component at a time, this does

not seem to work in practice because we will have to continue consuming some of the compo­

nents as headers. Since such headers can only be imported out of the module purview, it becomes

hard to reason (both for us and often the compiler) what is imported/included and where. For

example, it’s not uncommon to end up importing the module in its implementation unit which is

not something that all the compilers can handle gracefully.

191Revision 0.18, March 2025 The build2 Build System

16.3.6 Modularizing Existing Code

If our module needs to "export" macros then the recommended approach is to simply provide an

additional header that the consumer includes. While it might be tempting to also wrap the module

import into this header, some may prefer to explicitly import the module and include the header,

especially if the macros may not be needed by all consumers. This way we can also keep the

header macro-only which means it can be included freely, in or out of module purviews.

16.4 Objective-C++ Compilation

The cxx module provides the cxx.objcxx submodule which can be loaded in order to register

the mm{} target type and enable Objective-C++ compilation in the C++ compile rule. Note that

cxx.objcxx must be loaded after the cxx module and while the mm{} target type is registered

unconditionally, compilation is only enabled if the C++ compiler supports Objective-C++ for the

target platform. Typical usage:

root.build
#
using cxx
using cxx.objcxx

buildfile
#
lib{hello}: {hxx cxx}{*}
lib{hello}: mm{*}: include = ($cxx.target.class == ’macos’)

Note also that while there is support for linking Objective-C++ executables and libraries, this is

done using the C++ compiler driver and no attempt is made to automatically link any necessary

Objective-C runtime library (such as -lobjc).

16.5 C++ Compiler Predefined Macro Extraction

The cxx module provides the cxx.predefs submodule which can be loaded in order to regis­

ter a rule that generates a C++ header with predefined compiler macros. Note that the

cxx.predefs module must be loaded after the cxx module and the rule will only match with

an explicit rule hint. Typical usage:

root.build
#
using cxx
using cxx.predefs

buildfile
#
[rule_hint=cxx.predefs] hxx{predefs}:

Note also that the MSVC compiler only supports the predefined macro extraction starting from

Visual Studio 2019 (16.0; cl.exe version 19.20). If support for earlier versions is required, then

you will need to provide a fallback implementation appropriate for your project. For example:

Revision 0.18, March 2025192 The build2 Build System

16.4 Objective-C++ Compilation

[rule_hint=cxx.predefs] hxx{predefs}:
% update
if ($cxx.id == ’msvc’ && \
 ($cxx.version.major < 19 || \
 ($cxx.version.major == 19 && $cxx.version.minor < 20)))
{{
 diag c++-predefs $>

 cat <<EOF >$path($>)
 #define _WIN32
 #define __cplusplus 201402L
 EOF
}}

17 in Module

The in build system module provides support for .in (input) file preprocessing. Specifically,

the .in file can contain a number of substitutions – build system variable names enclosed with

the substitution symbol ($ by default) – which are replaced with the corresponding variable

values to produce the output file. For example:

build/root.build

using in

// config.hxx.in

#define TARGET "$cxx.target$"

buildfile

hxx{config}: in{config}

The in module defines the in{} target type and implements the in build system rule.

While we can specify the .in extension explicitly, it is not necessary because the in{} target

type implements target-dependent search by taking into account the target it is a prerequisite of.

In other words, the following dependency declarations produce the same result:

hxx{config}: in{config}
hxx{config.hxx}: in{config}
hxx{config.hxx}: in{config.hxx.in}

By default the in rule uses $ as the substitution symbol. This can be changed using the

in.symbol variable. For example:

// data.cxx.in

const char data[] = "@data@";

193Revision 0.18, March 2025 The build2 Build System

17 in Module

buildfile

cxx{data}: in{data}
{
 in.symbol = ’@’
 data = ’Hello, World!’
}

Note that the substitution symbol must be a single character.

The default substitution mode is strict. In this mode every substitution symbol is expected to start

a substitution with unresolved (to a variable value) names treated as errors. The double substitu­

tion symbol (for example, $$) serves as an escape sequence.

The substitution mode can be relaxed using the in.mode variable. Its valid values are strict
(default) and lax. In the lax mode a pair of substitution symbols is only treated as a substitution

if what’s between them looks like a build system variable name (that is, it doesn’t contain spaces,

etc). Everything else, including unterminated substitution symbols, is copied as is. Note also that

in this mode the double substitution symbol is not treated as an escape sequence.

The lax mode is mostly useful when trying to reuse existing .in files from other build systems,

such as autoconf. Note, however, that the lax mode is still stricter than autoconf’s seman­

tics which also leaves unresolved substitutions as is. For example:

buildfile

h{config}: in{config} # config.h.in
{
 in.symbol = ’@’
 in.mode = lax

 CMAKE_SYSTEM_NAME = $c.target.system
 CMAKE_SYSTEM_PROCESSOR = $c.target.cpu
}

The in rule tracks changes to the input file as well as the substituted variable values and auto­

matically regenerates the output file if any were detected. Substituted variable values are looked

up starting from the target-specific variables. Typed variable values are converted to string using

the corresponding builtin.string() function overload before substitution.

While specifying substitution values as buildfile variables is usually natural, sometimes this

may not be possible or convenient. Specifically, we may have substitution names that cannot be

specified as buildfile variables, for example, because they start with an underscore (and are

thus reserved) or because they refer to one of the predefined variables. Also, we may need to have

different groups of substitution values for different cases, for example, for different platforms,

and it would be convenient to pass such groups around as a single value.

Revision 0.18, March 2025194 The build2 Build System

17 in Module

To support these requirements the substitution values can alternatively be specified as key-value

pairs in the in.substitutions variable. Note that entries in this substitution map take prece­

dence over the buildfile variables. For example:

/* config.h.in */

#define _GNU_SOURCE @_GNU_SOURCE@
#define _POSIX_SOURCE @_POSIX_SOURCE@

buildfile

h{config}: in{config}
{
 in.symbol = ’@’
 in.mode = lax

 in.substitutions = _GNU_SOURCE@0 _POSIX_SOURCE@1
}

In the above example, the @ characters in in.symbol and in.substitutions are unre­

lated.

Using an undefined variable in a substitution is an error. Using a null value in a substitution is

also an error unless the fallback value is specified with the in.null variable. For example:

buildfile

h{config}: in{config}
{
 in.null = ’’ # Substitute null values with empty string.
}

To specify a null value using the in.substitutions mechanism omit the value, for

example:

in.substitutions = _GNU_SOURCE

A number of other build system modules, for example, autoconf, version, and bash, are

based on the in module and provide extended functionality. The in preprocessing rule matches

any file{}-based target that has the corresponding in{} prerequisite provided none of the

extended rules match.

18 bash Module

The bash build system module provides modularization support for bash scripts. It is based on

the in build system module and extends its preprocessing rule with support for import substitu­

tions in the @import <module>@ form. During preprocessing, such imports are replaced with

suitable source builtin calls. For example:

195Revision 0.18, March 2025 The build2 Build System

18 bash Module

https://github.com/build2/libbuild2-autoconf/

build/root.build

using bash

hello/say-hello.bash

function say_hello ()
{
 echo "Hello, $1!"
}

#!/usr/bin/env bash

hello/hello.in

@import hello/say-hello@

say_hello ’World’

hello/buildfile

exe{hello}: in{hello} bash{say-hello}

By default the bash preprocessing rule uses the lax substitution mode and @ as the substitution

symbol but this can be overridden using the standard in module mechanisms.

In the above example, say-hello.bash is a module. By convention, bash modules have the

.bash extension and we use the bash{} target type (defined by the bash build system

module) to refer to them in buildfiles.

The say-hello.bash module is imported by the hello script with the

@import hello/say-hello@ substitution. The import path (hello/say-hello in our

case) is a path to the module file within the project. Its first component (hello in our case) must

be both the project name and the top-level subdirectory within the project. The .bash module

extension can be omitted. The constraint placed on the first component of the import path is

required to implement importation of installed modules, as discussed below.

During preprocessing, the import substitution will be replaced with a source builtin call and the

import path resolved to one of the bash{} prerequisites from the script’s dependency declara­

tion. The actual module path used in source depends on whether the script is preprocessed for

installation. If it’s not (development build), then the absolute path to the module file is used.

Otherwise, a path relative to the sourcing script’s directory is derived. This allows installed

scripts and their modules to be moved around.

The derivation of the sourcing script’s directory works even if the script is executed via a

symbolic link from another directory. Implementing this, however, requires readlink(1) with

support for the -f option. One notable platform that does not provide such readlink(1) by

default is Mac OS. The script, however, can provide a suitable implementation as a function. See

the bash module tests for a sample implementation of such a function.

Revision 0.18, March 2025196 The build2 Build System

18 bash Module

By default, bash modules are installed into a subdirectory of the bin/ installation directory

named as the project name plus the .bash extension. For instance, in the above example, the

script will be installed as bin/hello and the module as

bin/hello.bash/say-hello.bash with the script sourcing the module relative to the

bin/ directory. Note that currently it is assumed the script and all its modules are installed into

the same bin/ directory.

Naturally, modules can import other modules and modules can be packaged into module libraries

and imported using the standard build system import mechanism. For example, we could factor

the say-hello.bash module into a separate libhello project:

build/export.build

$out_root/
{
 include libhello/
}

export $src_root/libhello/$import.target

libhello/say-hello.bash

function hello_say_hello ()
{
 echo "Hello, $1!"
}

And then import it in a module of our hello project:

hello/hello-world.bash.in

@import libhello/say-hello@

function hello_world ()
{
 hello_say_hello ’World’
}

#!/usr/bin/env bash

hello/hello.in

@import hello/hello-world@

hello_world

hello/buildfile

import mods = libhello%bash{say-hello}

exe{hello}: in{hello} bash{hello-world}
bash{hello-world}: in{hello-world} $mods

197Revision 0.18, March 2025 The build2 Build System

18 bash Module

The bash preprocessing rule also supports importation of installed modules by searching in the

PATH environment variable.

By convention, bash module libraries should use the lib name prefix, for example,

libhello. If there is also a native library (that is, one written in C/C++) that provides the same

functionality (or the bash library is a language binding for the said library), then it is customary

to add the .bash extension to the bash library name, for example, libhello.bash. Note

that in this case the top-level subdirectory within the project is expected to be called without the

bash extension, for example, libhello.

Modules can be private or public. Private modules are implementation details of a specific project

and are not expected to be imported from other projects. The

hello/hello-world.bash.in module above is an example of a private module. Public

modules are meant to be used by other projects and are normally packaged into libraries, like the

libhello/say-hello.bash module above.

Public modules must take care to avoid name clashes. Since bash does not have a notion of

namespaces, the recommended way is to prefix all module functions (and global variables, if any)

with the library name (without the lib prefix), like in the libhello/say-hello.bash
module above.

While using such decorated function names can be unwieldy, it is relatively easy to create wrap­

pers with shorter names and use those instead. For example:

@import libhello/say-hello@

function say_hello () { hello_say_hello "$@"; }

A module should normally also prevent itself from being sourced multiple times. The recom­

mended way to achieve this is to begin the module with a source guard. For example:

libhello/say-hello.bash

if ["$hello_say_hello"]; then
 return 0
else
 hello_say_hello=true
fi

function hello_say_hello ()
{
 echo "Hello, $1!"
}

The bash preprocessing rule matches exe{} targets that have the corresponding in{} and one

or more bash{} prerequisites as well as bash{} targets that have the corresponding in{}

prerequisite (if you need to preprocess a script that does not depend on any modules, you can use

the in module’s rule).

Revision 0.18, March 2025198 The build2 Build System

18 bash Module

19 Appendix A – JSON Dump Format

This appendix describes the machine-readable, JSON-based build system state dump format that

can be requested with the --dump-format=json-v0.1 build system driver option (see

b(1) for details).

The format is specified in terms of the serialized representation of C++ struct instances. See

JSON OUTPUT for details on the overall properties of this format and the semantics of the

struct serialization.

This format is currently unstable (thus the temporary -v0.1 suffix) and may be changed in ways

other than as described in JSON OUTPUT. In case of such changes the format version will be

incremented to allow detecting incompatibilities but no support for older versions is guaranteed.

The build system state can be dumped after the load phase (--dump=load), once the build state

has been loaded, and/or after the match phase (--dump=match), after rules have been matched

to targets to execute the desired action. The JSON format differs depending on after which phase

it is produced. After the load phase the format aims to describe the action-independent state,

essentially as specified in the buildfiles. While after the match phase it aims to describe the

state for executing the specified action, as determined by the rules that have been matched. The

former state would be more appropriate, for example, for an IDE that tries to use buildfiles
as project files. While the latter state could be used to determine the actual build graph for a

certain action, for example, in order to infer which executable targets are considered tests by the

test operation.

While it’s possible to dump the build state as a byproduct of executing an action (for example,

performing an update), it’s often desirable to only dump the build state and do it as quickly as

possible. For such cases the recommended option combinations are as follows (see the

--load-only and --match-only documentation for details):

$ b --load-only --dump=load --dump-format=json-v0.1 .../dir/

$ b --match-only --dump=match --dump-format=json-v0.1 .../dir/
$ b --match-only --dump=match --dump-format=json-v0.1 .../dir/type{name}

Note that a match dump for a large project can produce a large amount of data, especially for the

update operation (tens and even hundreds of megabytes is not uncommon). To reduce this size

it is possible to limit the dump to specific scopes and/or targets with the --dump-scope and

--dump-target options.

The complete dump (that is, not of a specific scope or target) is a tree of nested scope objects (see

Output Directories and Scopes for background). The scope object has the serialized representa­

tion of the following C++ struct scope. It is the same for both load and match dumps except

for the type of the targets member:

199Revision 0.18, March 2025 The build2 Build System

19 Appendix A – JSON Dump Format

struct scope
{
 string out_path;
 optional<string> src_path;

 vector<variable> variables; // Non-type/pattern scope variables.

 vector<scope> scopes; // Immediate children.

 vector<loaded_target|matched_target> targets;
};

For example (parts of the output are omitted for brevity):

The actual output is produced unindented to reduce the size.

$ cd /tmp
$ bdep new hello
$ cd hello
$ bdep new -C @gcc cc
$ b --load-only --dump=load --dump-format=json-v0.1
{
 "out_path": "",
 "variables": [...],
 "scopes": [
 {
 "out_path": "/tmp/hello-gcc",
 "variables": [...],
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello",
 "variables": [...],
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "variables": [...],
 "targets": [...]
 }
],
 "targets": [...]
 }
],
 "targets": [...]
 }
]
}

The out_path member is relative to the parent scope. It is empty for the special global scope,

which is the root of the tree. The src_path member is absent if it is the same as out_path (in

source build or scope outside of project).

Revision 0.18, March 2025200 The build2 Build System

19 Appendix A – JSON Dump Format

For the match dump, targets that have not been matched for the specified action are omitted.

In the load dump, the target object has the serialized representation of the following C++

struct loaded_target:

struct loaded_target
{
 string name; // Relative quoted/qualified name.
 string display_name; // Relative display name.
 string type; // Target type.
 optional<string> group; // Absolute quoted/qualified group target.

 vector<variable> variables; // Target variables.

 vector<prerequisite> prerequisites;
};

For example (continuing with the previous hello setup):

{
 "out_path": "",
 "scopes": [
 {
 "out_path": "/tmp/hello-gcc",
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello",
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "targets": [
 {
 "name": "exe{hello}",
 "display_name": "exe{hello}",
 "type": "exe",
 "prerequisites": [
 {
 "name": "cxx{hello}",
 "type": "cxx"
 },
 {
 "name": "testscript{testscript}",
 "type": "testscript"
 }
]
 }
]
 }
]
 }

201Revision 0.18, March 2025 The build2 Build System

19 Appendix A – JSON Dump Format

]
 }
]
}

The target name member is the target name that is qualified with the extension (if applicable and

known) and, if required, is quoted so that it can be passed back to the build system driver on the

command line. The display_name member is unqualified and unquoted. Note that both the

target name and display_name members are normally relative to the containing scope (if

any).

The prerequisite object has the serialized representation of the following C++ struct

prerequisite:

struct prerequisite
{
 string name; // Quoted/qualified name.
 string type;
 vector<variable> variables; // Prerequisite variables.
};

The prerequisite name member is normally relative to the containing scope.

In the match dump, the target object has the serialized representation of the following C++

struct matched_target:

struct matched_target
{
 string name;
 string display_name;
 string type;
 optional<string> group;

 optional<path> path; // Absent if not path target, not assigned.

 vector<variable> variables;

 optional<operation_state> outer_operation; // null if not matched.
 operation_state inner_operation; // null if not matched.
};

For example (outer scopes removed for brevity):

$ b --match-only --dump=match --dump-format=json-v0.1
{
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "targets": [
 {
 "name": "/tmp/hello/hello/cxx{hello.cxx}@./",
 "display_name": "/tmp/hello/hello/cxx{hello}@./",
 "type": "cxx",

Revision 0.18, March 2025202 The build2 Build System

19 Appendix A – JSON Dump Format

 "path": "/tmp/hello/hello/hello.cxx",
 "inner_operation": {
 "rule": "build.file",
 "state": "unchanged"
 }
 },
 {
 "name": "obje{hello.o}",
 "display_name": "obje{hello}",
 "type": "obje",
 "group": "/tmp/hello-gcc/hello/hello/obj{hello}",
 "path": "/tmp/hello-gcc/hello/hello/hello.o",
 "inner_operation": {
 "rule": "cxx.compile",
 "prerequisite_targets": [
 {
 "name": "/tmp/hello/hello/cxx{hello.cxx}@./",
 "type": "cxx"
 },
 {
 "name": "/usr/include/c++/12/h{iostream.}",
 "type": "h"
 },
 ...
]
 }
 },
 {
 "name": "exe{hello.}",
 "display_name": "exe{hello}",
 "type": "exe",
 "path": "/tmp/hello-gcc/hello/hello/hello",
 "inner_operation": {
 "rule": "cxx.link",
 "prerequisite_targets": [
 {
 "name": "/tmp/hello-gcc/hello/hello/obje{hello.o}",
 "type": "obje"
 }
]
 }
 }
]
}

The first four members in matched_target have the same semantics as in

loaded_target.

The outer_operation member is only present if the action has an outer operation. For

example, when performing update-for-test, test is the outer operation while update is

the inner operation.

203Revision 0.18, March 2025 The build2 Build System

19 Appendix A – JSON Dump Format

The operation state object has the serialized representation of the following C++ struct oper­
ation_state:

struct operation_state
{
 string rule; // null if direct recipe match.

 optional<string> state; // One of unchanged|changed|group.

 vector<variable> variables; // Rule variables.

 vector<prerequisite_target> prerequisite_targets;
};

The rule member is the matched rule name. The state member is the target state, if known

after match. The prerequisite_targets array is a subset of prerequisites resolved to

targets that are in effect for this action. The matched rule may add additional targets, for example,

dynamically extracted additional dependencies, like

/usr/include/c++/12/h{iostream.} in the above listing.

The prerequisite target object has the serialized representation of the following C++ struct

prerequisite_target:

struct prerequisite_target
{
 string name; // Absolute quoted/qualified target name.
 string type;
 bool adhoc;
};

The variables array in the scope, target, prerequisite, and prerequisite target objects contains

scope, target, prerequisite, and rule variables, respectively.

The variable object has the serialized representation of the following C++ struct variable:

struct variable
{
 string name;
 optional<string> type;
 json_value value; // null|boolean|number|string|object|array
};

For example:

{
 "out_path": "",
 "variables": [
 {
 "name": "build.show_progress",
 "type": "bool",
 "value": true
 },

Revision 0.18, March 2025204 The build2 Build System

19 Appendix A – JSON Dump Format

 {
 "name": "build.verbosity",
 "type": "uint64",
 "value": 1
 },
 ...
],
 "scopes": [
 {
 "out_path": "/tmp/hello-gcc",
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello",
 "scopes": [
 {
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "variables": [
 {
 "name": "out_base",
 "type": "dir_path",
 "value": "/tmp/hello-gcc/hello/hello"
 },
 {
 "name": "src_base",
 "type": "dir_path",
 "value": "/tmp/hello/hello"
 },
 {
 "name": "cxx.poptions",
 "type": "strings",
 "value": [
 "-I/tmp/hello-gcc/hello",
 "-I/tmp/hello"
]
 },
 {
 "name": "libs",
 "value": "/tmp/hello-gcc/libhello/libhello/lib{hello}"
 }
]
 }
]
 }
]
 }
]
}

The type member is absent if the variable value is untyped.

The value member contains the variable value in a suitable JSON representation. Specifically:

205Revision 0.18, March 2025 The build2 Build System

19 Appendix A – JSON Dump Format

null values are represented as JSON null.

bool values are represented as JSON boolean.

int64 and uint64 values are represented as JSON number.

string, path, dir_path values are represented as JSON string.

Untyped simple name values are represented as JSON string.

Pairs of above values are represented as JSON objects with the first and second
members corresponding to the pair elements.

Untyped complex name values are serialized as target names and represented as JSON

string.

Containers of above values are represented as JSON arrays corresponding to the container

elements.

An empty value is represented as an empty JSON object if it’s a typed pair, as an empty

JSON array if it’s a typed container or is untyped, and as an empty string otherwise.

One expected use-case for the match dump is to determine the set of targets for which a given

action is applicable. For example, we may want to determine all the executables in a project that

can be tested with the test operation in order to present this list to the user in an IDE plugin or

some such. To further illuminate the problem, consider the following buildfile which

declares a number of executable targets, some are tests and some are not:

exe{hello1}: ... testscript # Test because of testscript prerequisite.

exe{hello2}: test = true # Test because of test=true.

exe{hello3}: ... testscript # Not a test because of test=false.
{
 test = false
}

As can be seen, trying to infer this information is not straightforward and doing so manually by

examining prerequisites, variables, etc., while possible, will be complex and likely brittle.

Instead, the recommended approach is to use the match dump and base the decision on the

state target object member. Specifically, a rule which matched the target but determined that

nothing needs to be done for this target, returns the special noop recipe. The build2 core

recognizes this situation and sets such target’s state to unchanged during match. Here is what

the match dump will look like for the above three executables:

$ b --match-only --dump=match --dump-format=json-v0.1 test
{
 "out_path": "hello",
 "src_path": "/tmp/hello/hello",
 "targets": [
 {
 "name": "exe{hello1.}",
 "display_name": "exe{hello1}",
 "type": "exe",
 "path": "/tmp/hello-gcc/hello/hello/hello1",

Revision 0.18, March 2025206 The build2 Build System

19 Appendix A – JSON Dump Format

 "inner_operation": {
 "rule": "test"
 }
 },
 {
 "name": "exe{hello2.}",
 "display_name": "exe{hello2}",
 "type": "exe",
 "path": "/tmp/hello-gcc/hello/hello/hello2",
 "inner_operation": {
 "rule": "test"
 }
 },
 {
 "name": "exe{hello3}",
 "display_name": "exe{hello3}",
 "type": "exe",
 "inner_operation": {
 "rule": "test",
 "state": "unchanged"
 }
 }
]
}

207Revision 0.18, March 2025 The build2 Build System

19 Appendix A – JSON Dump Format

	Preface
	1 Introduction
	1.1 Hello, World
	1.2 Project Structure
	1.3 Output Directories and Scopes
	1.4 Operations
	1.4.1 Configuring
	1.4.2 Testing
	1.4.3 Installing
	1.4.4 Distributing

	1.5 Target Importation
	1.6 Library Exportation and Versioning
	1.7 Subprojects and Amalgamations
	1.8 Buildfile Language
	1.8.1 Expansion and Quoting
	1.8.2 Conditions (if-else)
	1.8.3 Pattern Matching (switch)
	1.8.4 Repetitions (for)

	1.9 Implementing Unit Testing
	1.10 Diagnostics and Debugging

	2 Project Configuration
	2.1 config Directive
	2.2 Configuration Report
	2.3 Configuration Propagation

	3 Targets and Target Types
	3.1 Target Types
	3.1.1 target{}
	3.1.2 alias{} and dir{}
	3.1.3 fsdir{}
	3.1.4 mtime_target{} and path_target{}
	3.1.5 group{}
	3.1.6 file{}
	3.1.7 doc{}, legal{}, and man{}
	3.1.8 exe{}

	4 Variables
	5 Functions
	5.1 Builtin Functions
	5.1.1 $builtin.defined()
	5.1.2 $builtin.visibility()
	5.1.3 $builtin.type()
	5.1.4 $builtin.null()
	5.1.5 $builtin.empty()
	5.1.6 $builtin.first(), $builtin.second()
	5.1.7 $builtin.quote()
	5.1.8 $builtin.getenv()

	5.2 String Functions
	5.2.1 $string.icasecmp()
	5.2.2 $string.contains()
	5.2.3 $string.starts_with()
	5.2.4 $string.ends_with()
	5.2.5 $string.replace()
	5.2.6 $string.trim()
	5.2.7 $string.lcase(), $string.ucase()
	5.2.8 $string.size()
	5.2.9 $string.sort()
	5.2.10 $string.find()
	5.2.11 $string.find_index()
	5.2.12 $string.keys()

	5.3 Integer Functions
	5.3.1 $integer.string()
	5.3.2 $integer.integer_sequence()
	5.3.3 $integer.size()
	5.3.4 $integer.sort()
	5.3.5 $integer.find()
	5.3.6 $integer.find_index()

	5.4 Bool Functions
	5.4.1 $bool.string()

	5.5 Path Functions
	5.5.1 $path.string()
	5.5.2 $path.posix_string()
	5.5.3 $path.representation()
	5.5.4 $path.posix_representation()
	5.5.5 $path.absolute()
	5.5.6 $path.simple()
	5.5.7 $path.sub_path()
	5.5.8 $path.super_path()
	5.5.9 $path.directory()
	5.5.10 $path.root_directory()
	5.5.11 $path.leaf()
	5.5.12 $path.relative()
	5.5.13 $path.base()
	5.5.14 $path.extension()
	5.5.15 $path.complete()
	5.5.16 $path.canonicalize()
	5.5.17 $path.normalize(), $path.try_normalize()
	5.5.18 $path.actualize(), $path.try_actualize()
	5.5.19 $path.size()
	5.5.20 $path.sort()
	5.5.21 $path.find()
	5.5.22 $path.find_index()
	5.5.23 $path.match()

	5.6 Name Functions
	5.6.1 $name.name()
	5.6.2 $name.extension()
	5.6.3 $name.directory()
	5.6.4 $name.target_type()
	5.6.5 $name.project()
	5.6.6 $name.is_a()
	5.6.7 $name.filter(), $name.filter_out()
	5.6.8 $name.size()
	5.6.9 $name.sort()
	5.6.10 $name.find()
	5.6.11 $name.find_index()

	5.7 Target Functions
	5.7.1 $target.path()
	5.7.2 $target.process_path()

	5.8 Regex Functions
	5.8.1 $regex.match()
	5.8.2 $regex.find_match()
	5.8.3 $regex.filter_match(), $regex.filter_out_match()
	5.8.4 $regex.search()
	5.8.5 $regex.find_search()
	5.8.6 $regex.filter_search(), $regex.filter_out_search()
	5.8.7 $regex.replace()
	5.8.8 $regex.replace_lines()
	5.8.9 $regex.split()
	5.8.10 $regex.merge()
	5.8.11 $regex.apply()

	5.9 JSON Functions
	5.9.1 $json.value_type()
	5.9.2 $json.value_size()
	5.9.3 $json.member_name()
	5.9.4 $json.member_value()
	5.9.5 $json.object_names()
	5.9.6 $json.array_size()
	5.9.7 $json.array_find()
	5.9.8 $json.array_find_index()
	5.9.9 $json.load()
	5.9.10 $json.parse()
	5.9.11 $json.serialize()
	5.9.12 $json.size()
	5.9.13 $json.keys()

	5.10 Process Functions
	5.10.1 $process.run()
	5.10.2 $process.run_regex()

	5.11 Filesystem Functions
	5.11.1 $filesystem.file_exists()
	5.11.2 $filesystem.directory_exists()
	5.11.3 $filesystem.path_search()

	5.12 Project Name Functions
	5.12.1 $project_name.string()
	5.12.2 $project_name.base()
	5.12.3 $project_name.extension()
	5.12.4 $project_name.variable()

	5.13 Process Path Functions
	5.13.1 $process_path.recall()
	5.13.2 $process_path.effect()
	5.13.3 $process_path.name()
	5.13.4 $process_path.checksum()
	5.13.5 $process_path.env_checksum()

	5.14 Target Triplet Functions
	5.14.1 $target_triplet.string()
	5.14.2 $target_triplet.representation()

	6 Directives
	6.1 define
	6.2 include
	6.3 source

	7 Attributes
	8 Name Patterns
	9 config Module
	9.1 Hermetic Build Configurations

	10 test Module
	11 install Module
	11.1 Relocatable Installation
	11.2 Installation Filtering

	12 version Module
	13 bin Module
	13.1 Binary Target Types
	13.1.1 lib{}, liba{}, libs{}
	13.1.2 libul{}, libue{}, libua{}, libus{}
	13.1.3 obj{}, obje{}, obja{}, objs{}
	13.1.4 bmi{}, bmie{}, bmia{}, bmis{}
	13.1.5 hbmi{}, hbmie{}, hbmia{}, hbmis{}
	13.1.6 def{}

	14 cc Module
	14.1 C-Common Configuration Variables
	14.2 C-Common Target Types
	14.2.1 pc{}, pca{}, pcs{}

	14.3 Compilation Internal Scope
	14.4 Automatic DLL Symbol Exporting
	14.5 Importation of Installed Libraries
	14.5.1 Rewriting Installed Libraries System Root (sysroot)

	14.6 Compilation Database
	14.7 GCC Compiler Toolchain
	14.8 Clang Compiler Toolchain
	14.8.1 Clang Targeting MSVC

	14.9 MSVC Compiler Toolchain

	15 c Module
	15.1 C Configuration Variables
	15.2 C Target Types
	15.2.1 c{}, h{}

	15.3 Objective-C Compilation
	15.4 Assembler with C Preprocessor Compilation
	15.5 C Compiler Predefined Macro Extraction

	16 cxx Module
	16.1 C++ Configuration Variables
	16.2 C++ Target Types
	16.2.1 cxx{}, hxx{}, ixx{}, txx{}, mxx{}

	16.3 C++ Modules Support
	16.3.1 Modules Introduction
	16.3.2 Building Modules
	16.3.3 Module Symbols Exporting
	16.3.4 Modules Installation
	16.3.5 Modules Design Guidelines
	16.3.6 Modularizing Existing Code

	16.4 Objective-C++ Compilation
	16.5 C++ Compiler Predefined Macro Extraction

	17 in Module
	18 bash Module
	19 Appendix A š JSON Dump Format

