The build2 Toolchain Introduction

Copyright © 2014-2025 the build2 authors.
Permission is granted to copy, distribute and/or modify this document under the terms of the
MIT License.

Revision 0.18, June 2025
This revision of the document describes the build2 toolchain 0.18 . x series.

Table of Contents

Table of Contents

(1 Gettmg Started Gu1de| e 1
(1.1 Hello, World] 1
[1.2 Package Repositories| . . . 07
[1.3 Adding and Removing Dependen01es| O
[1.4 Upgrading and Downgrading Dependencies| 18
(1.5 Build-Time Dependencies and Linked Configurations| 20
[1.6 Versioning and Release Management. 25
[1.7 Developing Multiple Packages and Projectsf 31
[1.8 Package Consumption| . . e
[1.9 Using System-Installed Dependen01es| " | |
[1.10 Using Unpackaged Dependenciesy 44
[2 Canonical Project Structure| 45
[2.1 Source Subdirectory] 47
[2.2 Source Naming] -) |
2.3 Source Contents| 5
2.5 Build Qutpud¢ 55

Revision 0.18, June 2025 The build2 Toolchain Introduction i

Preface

Preface

This document is an overall introduction to the build2 toolchain that shows how the main
components, namely the build system, the package dependency manager, and the project
dependency manager are used together to handle the entire C/C++ project development lifecy-
cle: creation, development, testing, and delivery. For additional information, including docu-
mentation for individual toolchain components, man pages, HOWTOs, etc., refer to the
build2 project[Documentation|page.

1 Getting Started Guide

The aim of this guide is to get you started developing C/C++ projects with the build2
toolchain. All the examples in this section include the relevant command output so if you just
want to get a sense of what build2 is about, then you don’t have to install the toolchain and
run the commands in order to follow along. Or, alternatively, you can take a short detour to
the [Installation Instructions|and then try the examples for yourself.

One of the primary goals of the build2 toolchain is to provide a uniform interface across all
the platforms and compilers. While most of the examples in this document assume a
UNIX-like operation system, they will look pretty similar if you are on Windows. You just
have to use appropriate paths, compilers, and options.

The question we will try to answer in this section can be summarized as:

$ git clone .../hello.git && now-what?

That is, we clone an existing C/C++ project or would like to create a new one and then start
hacking on it. We want to spend as little time and energy as possible on the initial and
ongoing infrastructure maintenance: setting up build configurations, managing dependencies,
continuous integration and testing, release management, etc. Or, as one C++ user aptly put it,
"All I want to do is program."

1.1 Hello, World

Let’s see what programming with build2 feels like by starting with a customary "Hello,
World!" program (here we assume our current working directory is /tmp):

$ bdep new -1 c++ -t exe hello
created new executable project hello in /tmp/hello/

The bdep—-new (1) command creates a build2 project. In this case it is an executable
implemented in C++.

To create a library, pass -t 1ib. By default new also initializes a git repository and gener-
ates suitable .gitignore files (pass —s none if you don’t want that). And for details on
naming your projects, see Package Name.

Revision 0.18, June 2025 The build2 Toolchain Introduction 1

https://build2.org/doc.xhtml
https://build2.org/install.xhtml

1.1 Hello, World

Note to Windows users: the build2-baseutils package includes core git utilities that
are sufficient for the bdep functionality.

Let’s take a look inside our new project:

$ tree hello

hello/

-— .git/

-— .bdep/

-— build/

—-— hello/
|—— hello.cxx
|-- buildfile
-—— testscript

—-— buildfile

-— manifest

—— README .md

-—— repositories.manifest

See [Canonical Project Structure] for a detailed discussion and rationale behind this layout.
While it is recommended, especially for new projects, build2 is flexible enough to support
various arrangements used in today’s C and C++ projects. Furthermore, the bdep—new (1)
command provides a number of customization options and chances are good you will be able
to create your preferred layout automatically. See SOURCE LAYOUT for more information
and examples.

Similar to version control tools, we normally run all build2 tools from the project’s source
directory or one of its subdirectories, so:

$ cd hello

While the project layout is discussed in more detail in later sections, let’s examine a couple of
interesting files to get a sense of what’s going on. We start with the source file which should
look familiar:
$ cat hello/hello.cxx
#include <iostream>
int main (int argc, char* argvl[])
{
using namespace std;
if (argc < 2)
{
cerr << "error: missing name" << endl;
return 1;

}

cout << "Hello, " << argv[l] << "!’7 << endl;

If you prefer the . ?pp extensions over . ?xx for your C++ source files, pass -1 c++, cpp
to the new command. See bdep—new (1) for details on this and other customization options.

2 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

Let’s take a look at the accompanying buildfile:
$ cat hello/buildfile

libs =
#import libs += libhello%$lib{hello}

exe{hello}: {hxx ixx txx cxx}{**} $libs testscript
As the name suggests, this file describes how to build things. While its content might look a

bit cryptic, let’s try to infer a couple of points without going into too much detail (for details
see the build system Introduction).

That exe{hello} on the left of : is a rarget (executable named hel1lo) and what we have
on the right are prerequisites (C++ source files, libraries, etc). This buildfile uses wild-
card patterns (that **) to automatically locate all the C++ source files. This means we don’t
have to edit our buildfile every time we add, remove, or rename a source file in our
project. There also appears to be some (commented out) infrastructure for importing and
linking libraries (that 1ibs variable). We will see how to use it in a moment.

In simple projects that follow the canonical structure we can often completely ignore the pres-
ence of the build definition files thus approaching the build system-less workflow found in
languages like Rust and Go.

Finally, the buildfile also lists testscript as a prerequisite of hello. This file tests
our target. Let’s take a look inside:

$ cat hello/testscript

: basics

;* 'World’ >"Hello, World!’
: missing—-name

$* 2>>EOQOE != 0

error: missing name
EOE

Again, we are not going into detail here (see Testscript Introduction for a proper introduction),
but to give you an idea, here we have two tests: the first (with id basics) verifies that our
program prints the expected greeting while the second makes sure it handles the missing name
error condition. Tests written in Testscript are concise, portable, and executed in parallel.

Nextup ismanifest:

Revision 0.18, June 2025 The build2 Toolchain Introduction 3

1.1 Hello, World

$ cat manifest

: 1

name: hello

version: 0.1.0-a.0.z
language: c++

summary: hello C++ executable
license: other: proprietary
description-file: README.md
url: https://example.org/hello
email: you@example.org
#depends: libhello ~1.0.0

The manifest file is what makes a build system project a package. It contains all the meta-
data that a user of a package might need to know: its name, version, license, dependencies,
etc., all in one place.

Refer to Manifest Format for the general format of build2 manifest files and to Package
Manifest for details on the package manifest values.

As you can see, manifest created by bdep—new (1) contains some dummy values which
you would want to adjust before publishing your package. Specifically, you would want to
review summary, license, url, and email as well as the README . md file referenced
by description-file. Let’s, however, resist the urge to adjust that strange looking
0.1.0-a.0.z until we discuss package versioning.

Next to manifest you might have noticed the repositories.manifest file — we will
discuss its function later, when we talk about dependencies and where they come from.

Project in hand, let’s build it. Unlike other programming languages, C++ development usually
involves juggling a handful of build configurations: several compilers and/or targets
(build2 is big on cross-compiling), debug/release, different sanitizers and/or static analysis
tools, and so on. As a result, build2 is optimized for multi-configuration usage. However,
as we will see shortly, one build configuration can be designated as the default with additional
conveniences.

The bdep—-init (1) command is used to initialize a project in a build configuration. As a
shortcut, it can also create a new build configuration in the process, which is just what we
need here.

To create build configurations separately from initialization and to manage them after that,
use the bdep-config (1) subcommands.

Let’s start with GCC (remember we are in the project’s root directory):

$ bdep init -C ../hello-gcc Qgcc cc config.cxx=g++
initializing in project /tmp/hello/
created configuration @gcc /tmp/hello-gcc/ default,auto-synchronized
synchronizing:
new hello/0.1.0-a.0.19700101000000

4 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

The ——config-create|-C option instructs init to create a new configuration in the
specified directory (. . /hello—gcc in our case). To make referring to configurations easier,
we can give it a name, which is what we do with @gcc.

Note to Windows users: a command line argument with leading @ has a special meaning in
PowerShell. To work around this, you can use the alternative —@gcc syntax or the -n gcc
option.

The next argument (cc, stands for C-common) is the build system module we would like to
configure. It implements compilation and linking rules for the C and C++ languages. Finally,
config.cxx=g++ is (one of) this module’s configuration variables that specifies the C++
compiler we would like to use (the corresponding C compiler will be determined automati-
cally). Let’s for now also ignore that synchronizing: ... bit along with strange-looking
19700101000000 in the version — it will become clear what’s going on here in a moment.

If you would like to generate a JSON compilation database for this project so that, for
example, you can edit its source files from your IDE, then change the above init command
to read:

$ bdep init -C ../hello-gcc Qgcc cc config.cxx=g++ —— \
config.cc.compiledb=./

Once you build this project for the first time (see below), you will find the
compile_commands. json file in its root directory. See Compilation Database for details
on this functionality.

Now the same for Clang:

$ bdep init -C ../hello-clang Q@clang cc config.cxx=clang++
initializing in project /tmp/hello/
created configuration @clang /tmp/hello-clang/ auto-synchronized
synchronizing:

new hello/0.1.0-a.0.19700101000000

If we check the parent directory, we should now see two build configurations next to our
project:

$ 1s ..
hello/
hello—-gcc/
hello-clang/

If, as in the above examples, our configuration directories are next to the project and their
names are in the pr j—name—cfg—-name form, then we can use the shortcut version of the
init command:

$ bdep init -C Qclang cc config.cxx=clang++

Things will also look pretty similar if you are on Windows instead of a UNIX-like operating
system. For example, to initialize our project on Windows with Visual Studio, start a
command prompt and then run:

Revision 0.18, June 2025 The build2 Toolchain Introduction 5

1.1 Hello, World

> bdep init -C ..\hello-debug @debug cc *
"config.cxx=cl /MDd" ~
"config.cc.coptions=/0d /Zi" ~
config.cc.loptions=/DEBUG:FULL

> bdep init -C ..\hello-release Q@release cc *
config.cxx=cl ~
config.cc.coptions=/02

For Visual Studio, build2 by default will use the latest available version and build for the
x86_64 target (x64 in the Microsoft’s terminology). You can, however, override these
defaults by either running from a suitable Visual Studio development command prompt or by
specifying an absolute path to c1 . exe that you wish to use. For example:

> bdep init -C ..\hello-debug-32 Qdebug-32 cc ”
"config.cxx=...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl.exe"

In case of the command prompt, you may also want to make your configuration hermetic
(Hermetic Build Configurations):

> bdep init -C ... cc ... config.config.hermetic=true

Hermetically configuring our project in a suitable Visual Studio command prompt makes us
free to build it from any other prompt or shell, IDE, etc.

Besides the coptions (compile options) and loptions (link options), other commonly
used cc module configuration variables are poptions (preprocess options) and libs
(extra libraries to link). Here is the complete list with their rough make equivalents:

* .poptions preprocess CPPFLAGS

* . coptions compile CFLAGS/CXXFLAGS
*.loptions link LDFLAGS
*.aoptions archive ARFLAGS

*.libs extra libraries LIBS/LDLIBS

We can also use their config.c.* (C compilation) and config.cxx.* (C++ compila-
tion) variants if we only want them applied during the respective language compila-
tion/linking. For example:

$ bdep init ... cc \
config.cxx=g++ \
config.cc.poptions=-D_FORTIFY_SOURCE=2 \
config.cxx.poptions=-D_GLIBCXX_ASSERTIONS

Finally, we can specify the "compiler mode" options as part of the compiler executable in
config.c and config.cxx. Such options cannot be modified by buildfiles and they will
appear last on the command lines. For example:

$ bdep init ... cc \
config.c="clang -m32" \
config.cxx="clang++ —-m32 -stdlib=libc++"

6 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

The compiler mode options are also the correct place to specify system-like header (-I) and
library (=L, /LIBPATH) search paths. Where by system-like we mean common installation
directories like /usr/include or /usr/local/lib which may contain older versions
of the libraries we are trying to build and/or use. By specifying these paths as part of the mode
options (as opposed to config.*.poptions and config.*.loptions) we make sure
they will be considered last, similar to the compiler’s build-in search paths. For example:

$ bdep init ... cc config.cxx="g++ -L/opt/install"

One difference you might have noticed when creating the gcc and clang configurations
above is that the first one was designated as the default. The default configuration is used by
bdep commands if no configuration is specified explicitly (see
bdep-projects—-configs (1) for details). It is also the configuration that is used if we
run the build system in the project’s source directory. So, normally, you would make your
every day development configuration the default. Let’s try that:

$ bdep status
hello configured 0.1.0-a.0.19700101000000

$ b

c++ hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}
1d ../hello-gcc/hello/hello/exe{hello}

1n ../hello-gcc/hello/hello/exe{hello} -> hello/

$ b test
test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

$ hello/hello World
Hello, World!

To see the actual compilation command lines, run b -v and for even more details, runb -V.
See b (1) for more information on these and other build system options.

In contrast, the Clang configuration has to be requested explicitly:

$ bdep status @Qclang
hello configured 0.1.0-a.0.19700101000000

$ b ../hello-clang/hello/
c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}
1d ../hello-clang/hello/hello/exe{hello}

$ b test: ../hello-clang/hello/
test ../hello-clang/hello/hello/exe{hello} +
hello/testscript{testscript}

$../hello-clang/hello/hello/hello World
Hello, World!

As you can see, using the build system directly on configurations other than the default
requires explicitly specifying their paths. It would have been more convenient if we could
refer to them by names. The bdep—update (1) and bdep-test (1) commands allow us
to do exactly that:

Revision 0.18, June 2025 The build2 Toolchain Introduction 7

1.1 Hello, World

$ bdep test @clang

c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}

1d ../hello-clang/hello/hello/exe{hello}

test ../hello-clang/hello/hello/exe{hello} +
hello/testscript{testscript}

And we can also perform the desired build system operation on several (or ——all|-a)
configurations at once:

$ bdep test @gcc @clang
in configuration @gcc:
test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

in configuration @clang:
test ../hello-clang/hello/hello/exe{hello} +
hello/testscript{testscript}

As we will see later, the bdep-test (1) command also allows us to test immediate
(-—immediate | —1i) or all (--recursive | —-r) dependencies of our project. We call it
deep testing.

While we are here, let’s also check how hard it would be to cross-compile:

$ bdep init -C @mingw cc config.cxx=x86_64-w64-mingw32-g++
initializing in project /tmp/hello/
created configuration @mingw /tmp/hello-mingw/ auto-synchronized
synchronizing:

new hello/0.1.0-a.0.19700101000000

$ bdep update @mingw
c++ hello/cxx{hello} -> ../hello-mingw/hello/hello/obje{hello}
1d ../hello-mingw/hello/hello/exe{hello}

As you can see, cross-compiling in build2 is nothing special. In our case, on a properly
setup GNU/Linux machine (that automatically uses wine as an .exe interpreter) we can
even run tests (in build?2 this is called cross-testing):

$ bdep test @mingw
test ../hello-mingw/hello/hello/exe{hello} +
hello/testscript{testscript}

$../hello-mingw/hello/hello/hello.exe Windows
Hello, Windows!

Let’s review what it takes to initialize a project’s infrastructure and perform the first build.
For an existing project:

$ git clone .../hello.git

$ cd hello

$ bdep init -C ../hello-gcc Qgcc cc config.cxx=g++
$ b

For a new project:

8 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

$ bdep new -1 c++ -t exe hello

$ cd hello

$ bdep init -C ../hello-gcc Qgcc cc config.cxx=g++
$ b

If you prefer, the new and init steps can be combined into a single command:

$ bdep new -1 c++ -t exe hello -C hello-gcc @gcc cc config.cxx=g++

And if you need to deinitialize a project in one or more build configurations, there is the
bdep-deinit (1) command for that:

$ bdep deinit @gcc @clang
deinitializing in project /tmp/hello/
in configuration @gcc:
synchronizing:

drop hello

in configuration @clang:
synchronizing:
drop hello

By default bdep initializes a project for development by automatically passing
config.<project>.develop=true unless a custom value is specified. For example:

$ bdep init ... @gcc cc config.cxx=g++ config.hello.develop=false

To change the development mode of an already initialized project, use bdep—sync (1) :

$ bdep sync @gcc config.hello.develop=false
See Project Configuration for background on the development mode.

As mentioned earlier, by default bdep—new (1) initializes a git repository for us. Now that
we have successfully built and tested our project, it might be a good idea to make a first
commit and publish it to a remote repository where others can find it. Using GitHub as an
example:

$ git add .

$ git commit -m "Initial implementation"

$ git remote add origin git@github.com:john-doe/hello.git
$ git push -u

We could have also done it the other way around: first created a project on one of the hosting
services (GitHub, GitLab, etc) cloned it, and then ran new on that. One advantage of this
approach is the new command’s ability to automatically extract the license and description
from the existing LICENSE and README . md files and use that to generate the manifest
file. This way we only need to specify things once and everything is nice and consistent. Here
is an example of this streamlined project creation workflow (notice also the omitted project
name in the new command):

Revision 0.18, June 2025 The build2 Toolchain Introduction 9

1.1 Hello, World

Create a project with LICENSE and README.md on one of the Git
hosting services (GitHub, GitLab, etc) and then:

$ git clone .../hello.git
$ cd hello

$ bdep new -1 c++ -t exe

While we have managed to test a couple of platforms (Linux and Windows) and compiler
versions (Clang and GCC) locally, there are quite a few combinations that we haven’t tried
(Mac OS with Apple Clang and Windows with MSVC, to name the major ones). We could
test them manually, some with the help of virtualization while for others (such as Mac OS) we
may need physical hardware. Add a few versions for each compiler and we are looking at a
dozen build configurations. Needless to say, testing on all of them manually is a lot of work.
Now that we have our project available from a public remote repository, we can instead use
the remote testing functionality offered by the bdep—ci (1) command. For example:

$ bdep ci
submitting:
to: https://ci.cppget.org
in: https://github.com/john-doe/hello.git#master@93eldbc94baa

package: hello
version: 0.1.0-a.0.20180907091517.93eldbc94baa
continue? [y/n] y
FHAFEHSHHF AR E A FEH AR 100.0%
CI request is queued:
https://ci.cppget.org/Q@d6ee90f4-21a9-47a0-ab5a-7cd2£521d3d8

Let’s see what’s going on here. By default ci submits a test request to a public
CI service run by the bui1d2 project (see available [Build Configurations| and [Use Policies).

In our case it will be testing the current working tree state (branch and commit) of our
package which should be available from our remote repository (on GitHub in this example)
since that’s where the CI service expects to get it from. In response we get a URL where we
can see the build and test results, logs, etc.

This push CI model works particularly well with the "feature branch" development workflow.
Specifically, you would develop a new feature in a separate branch, publishing and
remote-testing it as necessary. When the feature is ready, you would merge any changes from
master, test the result one more time, and then merge (fast-forward) the feature into master.

Now is a good time to get an overview of the build2 toolchain. After all, we have already
used two of its tools (bdep and b) without a clear understanding of what they actually are.

Unlike most other programming languages that encapsulate the build system, package depen-
dency manager, and project dependency manager into a single tool (such as Rust’s cargo or
Go’s go), build2 is a hierarchy of several tools that you will be using directly and which
together with your version control system (VCS) will constitute the core of your project
management toolset.

10 The build2 Toolchain Introduction Revision 0.18, June 2025

https://ci.cppget.org/
https://ci.cppget.org?build-configs/
https://ci.cppget.org?ci/

1.1 Hello, World

While build?2 can work without a VCS, this will result in reduced functionality.

At the bottom of the hierarchy is the build2 build system, which we invoke using the b (1)
driver. Next comes the package dependency manager, bpkg (1). It is primarily used for
package consumption and depends on the build system. The top of the hierarchy is the project
dependency manager, bdep (1) . It is used for project development and relies on bpkg for
building project packages and their dependencies.

The main reason for this separation is modularity and the resulting flexibility: there are situa-
tions where we only need the build system (for example, when building a package for a
system package manager where all the dependencies should be satisfied from the system
repository), or only the build system and package manager (for example, when a build bot is
building a package for testing).

Note also that strictly speaking build2 is not C/C++-specific; its build model is general
enough to handle any DAG-based operations and its package/project dependency manage-
ment can be used for any compiled language.

As we will see in a moment, build2 also integrates with your VCS in order to automate
project versioning. Note that currently only git (1) is supported.

Now that we understand the tooling, let’s also revisit the notion of build configuration (those
hello-gcc and hello-clang directories). While we often talk of build configurations in
the abstract, as a set of common options used to build our code, in build2 this term also has
a very concrete meaning — a directory where our projects and their dependencies are built with
such a set of common options.

The concept of a build configuration appears prominently throughout the toolchain: a bdep
build configuration is actually a bpkg build configuration which, in the build system terms, is
a special kind of an amalgamation — a project that contains subprojects. In our case, the
subprojects in these amalgamations will be the projects we have initialized with init and, as
we will see in a moment, packages that they depend on. For example, here is what our
hello—gcc contains:

$ tree hello-gcc
hello—-gcc/
|-- .bpkg/
|-- build/
| -—— config.build
== hello/
|-- build/
| -—— config.build
== hello/
|-- hello
-—— hello.o

Underneath bdep-init (1) with the --config-create|-C option calls
bpkg-cfg—-create (1) which, in turn, performs the build system create meta-operation
(see b (1) for details).

Revision 0.18, June 2025 The build2 Toolchain Introduction 11

1.2 Package Repositories

The important point here is that the bdep build configuration is not a black box that you
should never look inside of. On the contrary, it is a well-defined concept of the package
manager and the build system and as long as you understand what you are doing, you should
feel free to interact with it directly.

Let’s now move on to the reason why there is dep in the bdep name: dependency manage-
ment.

1.2 Package Repositories

Say we have realized that writing "Hello, World!" programs is a fairly common task and that
someone must have written a library to help with that. So let’s see if we can find something
suitable to use in our project.

Where should we look? That’s a good question. But before we can try to answer it, we need to
understand where build2 can source dependencies. In build2 packages usually come
from package repositories. Two commonly used repository types are version control and
archive-based (see bpkg—repository—-types (1) for details).

As the name suggests, a version control-based repository uses a VCS as its distribution mech-
anism. Currently, only git is supported. Such a repository normally contains multiple
versions of a single package or, perhaps, of a few related packages.

An archive-based repository contains multiple, potentially unrelated packages/versions as
archives along with some metadate (package list, prerequisite/complement repositories, signa-
tures, etc) that are all accessible via HTTP(S).

Version control and archive-based repositories have different trade-offs. Version
control-based repositories are great for package developers since with services like GitHub
they are trivial to setup. In fact, your project’s (already existing) VCS repository will normally
be the build2 package repository — you might need to add a few files, but that’s about it.

However, version control-based repositories are not without drawbacks: It will be hard for
your users to discover your packages (try searching for "hello library" on GitHub — most of
the results are not even in C++ let alone packaged for build2). There is also the issue of
continuous availability: users can delete their repositories, services may change their policies
or go out of business, and so on. Version control-based repositories also lack repository
authentication and package signing. Finally, obtaining the available package list for such
repositories can be slow.

A central, archive-based repository would address all these drawbacks: It would be a single
place to search for packages. Published packages will never disappear and can be easily
mirrored. Packages are signed and the repository is authenticated (see bpkg—reposi-
tory-signing (1) for details). And, last, but not least, archive-based repositories are fast.

12 The build2 Toolchain Introduction Revision 0.18, June 2025

1.2 Package Repositories

is the build2 community’s central package repository. While centralized, it is
also easy to mirror since its contents are accessible via plain HTTPS (you can browse
[pkg.cppget.orgl to get an idea). As an added benefit, packages on are continuously
[built and tested| on all the major platform/compiler combinations with the results available as
part of the package description.

The main drawback of archive-based repositories is the setup cost. Getting a basic repository
going is relatively easy — all you need is an HTTP(S) server. Adding a repository web inter-
face like that on will require running And adding CI will require running a
bunch of build bots (obot). Note also that in build2 archive-based repositories can be
federated with different sections of the repository being hosted/managed potentially indepen-
dently.

To summarize, version control-based repositories are great for package developers while a
central, archive-based repository is convenient for package consumers. A reasonable strategy
then is for package developers to publish their releases to a central repository. Package
consumers can then decide which repository to use based on their needs. For example, one
could use as a (fast, reliable, and secure) source of stable versions but also add,
say, git repositories for select packages (perhaps with the #HEAD fragment filter to improve
download speed) for testing development snapshots. In this model the two repository types
complement each other.

Publishing of packages to archive-based repositories is discussed in [Versioning and Release |

anagement

Let’s see how all this works in practice. Go over to and type "hello library" in the
search box. At the top of the search result you should see the package and if you
follow the link you will see the package description page along with a list of available
versions. Pick a version that you like and you will see the package version description page
with quite a bit of information, including the list of platform/compiler combinations that this
version has been successfully (or unsuccessfully) tested with. If you like what you see, copy
the repository value — this is the repository location where this package version can be
sourced from.

The repository is split into several sections: stable, testing, beta, alpha
and legacy, with each section having its own repository location (see the repository’s
page for details on each section’s policies). Note also that testing is complemented by
stable, beta by testing, and so on, so you only need to choose the lowest stability
level and you will automatically "see" packages from the more stable sections.

The stable sections will always contain the 1ibhello library version 1.0.X
that was generated using the following bdep—new (1) command line:

$ bdep new -1 c++ -t 1lib libhello

Revision 0.18, June 2025 The build2 Toolchain Introduction 13

https://cppget.org/
https://pkg.cppget.org/
https://cppget.org/
https://cppget.org/?builds
https://cppget.org/
https://cppget.org/brep
https://cppget.org/bbot
https://cppget.org/
https://cppget.org/
https://cppget.org/libhello
https://cppget.org/
https://cppget.org/?about
https://cppget.org/

1.3 Adding and Removing Dependencies

It can be used as a predictable test dependency when setting up new projects.

Let’s say we’ve visited the 1ibhello project’s (for example by following a link
from the package details page) and noticed that it is being developed in a git repository.
How can we see what’s available there? If the releases are tagged, then we can infer the avail-
able released versions from the tags. But that doesn’t tell us anything about what’s happening
on the HEAD or in the branches. For that we can use the package manager’s
bpkg-rep-info (1) command:

$ bpkg rep-info https://git.build2.org/hello/libhello.git
libhello/1.0.0
libhello/1.1.0

As you can see, besides 1.0.0 that we have seen in cppget .org/stable, there is also
1.1.0 (which is perhaps being tested in cppget.org/testing). We can also check
what might be available on the HEAD (see bpkg—repository-types (1) for details on
the git repository URL format):

$ bpkg rep-info https://git.build2.org/hello/libhello.git#HEAD
libhello/1.1.1-a.0.20180504111511.2e82£7378519

We can also use the rep—info command on archive-based repositories, however, if avail-
able, the web interface is usually more convenient and provides more information.

To summarize, we found two repositories for the 1ibhello package: the archive-based
that contains the released versions as well as its development git repository
where we can get the bleeding edge stuff. Let’s now see how we can add 1ibhello to our
project.

1.3 Adding and Removing Dependencies

So we found 1ibhello that we would like to use in our hello project. First, we edit the
repositories.manifest file found in the root directory of our project and add one of

the 1ibhello repositories as a prerequisite. Let’s start with [cppget.org}

role: prerequisite
location: https://pkg.cppget.org/l/stable

Refer to Repository Manifest for details on the repository manifest values.

Next, we edit the manifest file (again, found in the root of our project) and specify the
dependency on 1ibhello with optional version constraint. For example:

depends: libhello "~1.0.0

Let’s briefly discuss version constraints (for details see the depends value documentation).
A version constraint can be expressed with a comparison operator (==, >, <, >=, <=), a range
shortcut operator (~ and "), or a range. Here are a few examples:

14 The build2 Toolchain Introduction Revision 0.18, June 2025

https://git.build2.org/cgit/hello/libhello/
https://cppget.org/
https://cppget.org/

1.3 Adding and Removing Dependencies

depends: libhello == 1.2.3
depends: libhello >= 1.2.3

depends: libhello ~1.2.3
depends: libhello *1.2.3

depends: libhello [1.2.3 1.2.9)

You may already be familiar with the tilde (~) and caret (*) constraints from dependency
managers for other languages. To recap, tilde allows upgrades to any further patch versions
while caret also allows upgrades to further minor versions. They are equivalent to the follow-
ing ranges:

~X.Y.Z [X.Y.Z X.Y+1.0)

AX.Y.Z [X.Y.Z X+1.0.0) 4if X >
~0.Y.Z2 [0.Y.Z 0.Y+1.0) if X ==

0
0

Zero major version component is customarily used during early development where the minor
version effectively becomes major. As a result, the caret constraint has a special treatment of
this case.

Unless you have good reasons not to (for example, a dependency does not use semantic
versioning), we suggest that you use the ~ constraint which provides a good balance between
compatibility and upgradability with ~ being a more conservative option.

Besides the version constraint, the dependency declaration supports a number of more
advanced features, including conditional dependencies, dependency alternatives, and depen-
dency configuration. For details, see the depends value documentation.

Ok, we’ve specified where our package comes from (repositories.manifest) and
which versions we find acceptable (manifest). The next step is to edit hello/build-
file and import the 1ibhello library into our build:

import libs += libhello%lib{hello}
Finally, we modify our source code to use the library:
#include <libhello/hello.hxx>

int main (int argc, char* argvl[])

{

hello::say_hello (cout, argv([l]);
}

You are probably wondering why we have to specify this repeating information in so many
places. Let’s start with the source code: we can’t specify the version constraint or location
there because it will have to be repeated in every source file that uses the dependency.

Revision 0.18, June 2025 The build2 Toolchain Introduction 15

1.3 Adding and Removing Dependencies

Moving up, buildfile is also not a good place to specify this information for the same
reason (a library can be imported in multiple buildfiles) plus the build system doesn’t really
know anything about version constraints or repositories which is the purview of the depen-
dency management tools.

Finally, we have to separate the version constraint and the location because the same package
can be present in multiple repositories with different policies. For example, when a package
from a version control-based repository is published in an archive-based repository, its
repositories.manifest file is ignored and all its dependencies should be available
from the archive-based repository itself (or its fixed set of prerequisite repositories). In other
words, manifest belongs to a package while repositories.manifest — to a reposi-
tory.

Also note that this is unlikely to become burdensome since adding new dependencies is not
something that happens often. There are also ideas to automate this with a bdep-add (1)
command in the future.

To summarize, these are the files we had to modify to add a dependency to our project:

repositories.manifest # add https://pkg.cppget.org/l/stable
manifest # add ’"depends: libhello 71.0.0’
buildfile # import libhello library

#

hello.cxx include libhello header (or import module)

While the repository URL and package name are easy to find on the [cppget.orgl's package
description page, the C/C++ library ecosystem unfortunately does not follow any predictable
library or header naming scheme. If the library documentation does not provide any clues,
then another place to check are the library tests and examples that can often be found in the
package source directory (or source repository). In particular, every library in the stable

section of the [cppget.org] repository should provide at least a basic test.

With a new dependency added, let’s check the status of our project:

$ bdep status

fetching pkg:cppget.org/stable (prerequisite of dir:/tmp/hello)

warning: authenticity of the certificate for pkg:cppget.org/stable
cannot be established

certificate is for cppget.org, "Code Synthesis" <admin@cppget.org>

certificate SHA256 fingerprint:

70:64:FE:E4:E0:F3:60:F1:B4:<...>:E5:C2:68:63:4C:A6:47:39:43

trust this certificate? [y/n] y

hello configured 0.1.0-a.0.19700101000000
available 0.1.0-a.0.19700101000000#1

The bdep-status (1) command has detected that the dependency information has
changed and tells us that a new iteration of our project (that #1) is now available for synchro-
nization with the build configuration.

16 The build2 Toolchain Introduction Revision 0.18, June 2025

https://cppget.org/
https://cppget.org/

1.3 Adding and Removing Dependencies

We’ve also been prompted to authenticate the prerequisite repository. This will have to
happen once for every build configuration we initialize our project in and can quickly become
tedious. To overcome this, we can mention the certificate fingerprint that we wish to automat-
ically trust in the repositories.manifest file (replace it with the actual fingerprint
from the repository’s about page):

role: prerequisite
location: https://pkg.cppget.org/l/stable
trust: 70:64:FE:E4:E0:F3:60:F1:B4:<...>:E5:C2:68:63:4C:A6:47:39:43

To synchronize a project with one or more build configurations we use the bdep-sync (1)
command:

$ bdep sync

synchronizing:
new libhello/1.0.0 (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#1

Or we could just build the project without an explicit sync — if necessary, it will be automati-
cally synchronized:

$ b
synchronizing:
new libhello/1.0.0 (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#1
c++ ../hello-gcc/libhello-1.0.0/1libhello/cxx{hello} —>
../hello—-gcc/libhello-1.0.0/1libhello/objs{hello}
1d ../hello-gcc/libhello-1.0.0/1libhello/libs{hello}
c++ hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}
1d ../hello-gcc/hello/hello/exe{hello}
1ln ../hello-gcc/hello/hello/exe{hello} -> hello/

The synchronization as performed by the sync command is two-way: dependency packages
are first added, removed, upgraded, or downgraded in build configurations according to the
project’s version constraints and user input. Then the actual versions of the dependencies
present in the build configurations are recorded in the project’s lockfile so that if desired,
the build can be reproduced exactly. The 1lockfile functionality is not yet implemented.
For a new dependency the latest available version that satisfies the version constraint is used.

Synchronization is also the last step in the bdep—init (1) command’s logic.

Let’s now examine the status in all (-—all | —a) the build configurations and include the
immediate dependencies (——immediate | -1):

$ bdep status -ai

in configuration @Qgcc:

hello configured 0.1.0-a.0.19700101000000#1
libhello 71.0.0 configured 1.0.0

in configuration @clang:

hello configured 0.1.0-a.0.19700101000000
available 0.1.0-a.0.19700101000000#1

Revision 0.18, June 2025 The build2 Toolchain Introduction 17

1.4 Upgrading and Downgrading Dependencies

Since we didn’t specify a configuration explicitly, only the default (gcc) was synchronized.
Normally, you would try a new dependency in one configuration, make sure everything looks
good, then synchronize the rest with ——all|-a (or, again, just build what you need
directly). Here are a few examples (see bdep—-projects—configs (1) for details):

$ bdep sync -a
$ bdep sync @gcc @clang
$ bdep sync -c ../hello-mingw

After adding a new (or upgrading/downgrading existing) dependency, it’s a good idea to
deep-test our project: run not only our own tests but also of its immediate (——immedi-
ate|-i)oreven all (-—recursive|-r) dependencies. For example:

$ bdep test -ai

in configuration @gcc:

test ../hello-gcc/libhello-1.0.0/tests/basics/exe{driver}

test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

in configuration @clang:

test ../hello-clang/libhello-1.0.0/tests/basics/exe{driver}

test ../hello-clang/hello/hello/exe{hello} +
hello/testscript{testscript}

To get rid of a dependency, we simply remove it from the manifest file and synchronize
the project. For example, assuming 1ibhello is no longer mentioned as a dependency in
ourmanifests:

$ bdep status
hello configured
available

.0.19700101000000#1

0.1.0-a
0.1.0-a.0.19700101000000#2

$ bdep sync
synchronizing:
drop libhello/1.0.0 (unused)
upgrade hello/0.1.0-a.0.19700101000000#2

If instead of building a dependency from source you would prefer to use a version that is
installed by your system package manager, see [Using System-Installed Dependencies} And
for information on using dependencies that are not bui1d2 packages refer to|Using Unpack|
[aged Dependencies|

1.4 Upgrading and Downgrading Dependencies

Let’s say we would like to try that 1.1.0 version we have seen in the 1ibhello git
repository. First, we need to add the repository to the repositories.manifest file:

role: prerequisite
location: https://git.build2.org/hello/libhello.git

Note that we don’t need the t rust value since git repositories are not authenticated.

18 The build2 Toolchain Introduction Revision 0.18, June 2025

1.4 Upgrading and Downgrading Dependencies

To refresh the list of available dependency versions we use the bdep—fetch (1) command
(or the ——fetch | -f option to status):

$ bdep fetch
$ bdep status libhello
libhello configured 1.0.0 available [1.1.0]

To upgrade (or downgrade) dependencies we again use the bdep—sync (1) command. We
can upgrade one or more specific dependencies by listing them as arguments to sync:

$ bdep sync libhello

synchronizing:
new libformat/1.0.0 (required by libhello)
new libprint/1.0.0 (required by libhello)
upgrade libhello/1.1.0
upgrade hello/0.1.0-a.0.19700101000000#3

Without an explicit version or the ——patch|-p option, sync will upgrade the specified
dependencies to the latest available versions. For example, if we don’t like version 1.1.0,
we can downgrade it back to 1.0.0 by specifying the version explicitly (we pass
——old-available|-oto status to see the old versions):

$ bdep status -o libhello
libhello configured 1.1.0 available (1.1.0) [1.0.0]

$ bdep sync libhello/1.0.0
synchronizing:
drop libprint/1.0.0 (unused)
drop libformat/1.0.0 (unused)
downgrade libhello/1.0.0
reconfigure hello/0.1.0-a.0.19700101000000#3

The available versions are listed in the descending order with [] indicating that the version is
only available as a dependency and () marking the current version.

Instead of specific dependencies we can also upgrade (--upgrade|-u) or patch
(-—patch |-p) immediate (——immediate|-i) or all (-~—recursive|-r) dependencies
of our project.

As a more realistic example, version 1.1.0 of 1ibhello depends on two other libraries:
libformat and libprint. Here is our project’s dependency tree while we were still
using that version:

$ bdep status -r
hello configured 0.1.0-a.0.19700101000000#3
libhello 71.0.0 configured 1.1.0
libformat 71.0.0 configured 1.0.0
libprint 71.0.0 configured 1.0.0

A typical conservative dependency management workflow would look like this:

Revision 0.18, June 2025 The build2 Toolchain Introduction 19

1.5 Build-Time Dependencies and Linked Configurations

$ bdep status —-fi # refresh and examine immediate dependencies
hello configured 0.1.0-a.0.19700101000000#3
libhello configured 1.1.0 available [2.0.0] [1.2.0] [1.1.2] [1.1.1]

$ bdep sync -pi # upgrade immediate to latest patch version
synchronizing:

upgrade libhello/1.1.2

reconfigure hello/0.1.0-a.0.19700101000000#3
continue? [Y/n] y

Notice that in case of such mass upgrades you are prompted for confirmation before anything
is actually changed (unless you pass ——yes | -y).

In contrast, the following would be a fairly aggressive workflow where we upgrade every-
thing to the latest available version (version constraints permitting; here we assume ~1.0.0
was used for all the dependencies):

$ bdep status —-fr # refresh and examine all dependencies
hello configured 0.1.0-a.0.19700101000000#3
libhello configured 1.1.0 available [2.0.0] [1.2.0] [1.1.1]
libprint configured 1.0.0 available [2.0.0] [1.1.0] [1.0.1]
libformat configured 1.0.0 available [2.0.0] [1.1.0] [1.0.1]

$ bdep sync -ur # upgrade all to latest available version
synchronizing:

upgrade libprint/1.1.0

upgrade libformat/1.1.0

upgrade libhello/1.2.0

reconfigure hello/0.1.0-a.0.19700101000000#3
continue? [Y/n] y

We can also have something in between: patch all (sync -pr), upgrade immediate
(sync -ui), or even upgrade immediate and patch the rest (sync -ui followed by

sync —pr).

1.5 Build-Time Dependencies and Linked Configurations

The 1libhello dependency we’ve been playing with in the previous two sections is a
runtime dependency, that 1s, our hello executable needs it at run-time. This is typical of
libraries and most of our dependencies will be of this kind. However, sometimes we may only
wish to use a dependency during the build, typically a tool, such as a source code generator.
This kind of dependency is called a build-time dependency.

Build-time dependencies are an advanced topic and if you don’t have an immediate need for
this functionality, you may skip this section without any loss of continuity.

Why do we need to distinguish between the two kinds of dependencies? The primary reason is
cross-compilation: if we build a tool in the same (cross-compiling) build configuration as our
project, then we will not be able to execute it during the build (since it’s built for a different
target than what we are running). But even if you are not planning to cross-compile, there are
other good reasons: if you have multiple build configurations for your project, you may want
to share a single build of your tool between them (why waste time building the same thing

20 The build2 Toolchain Introduction Revision 0.18, June 2025

1.5 Build-Time Dependencies and Linked Configurations

multiple times). And even if you only have a single build of your project, you may want to
build the tool with different options (for example, optimized instead of debug).

You can probably see where this is going: in order to properly support build-time dependen-
cies, we need to distinguish them from runtime and we need an ability to build them in a sepa-
rate build configuration.

Let’s see how all this works using the [xxd]tool as an example. If you are not familiar, xxd is
a hexdump utility which can be used to embed external binary data into C/C++ code in a
portable manner. Specifically, it can read a binary file and produce a C array definition of its
contents. For example:

$ xxd —-i names.txt

unsigned char names_txt[] = {
0x57, Oxe6f, 0x72, Ox6c, 0x64, 0x0a, 0x55, 0Ox6e, 0x69, 0x76, 0x65,
0x72, 0x73, 0x65, 0x0a, 0x50, 0x65, 0Ox6f, 0x70, Ox6c, 0x65, 0xO0a,
0Ox4d, 0x61, 0x72, 0x74, 0x69, 0x61l, Ox6e, 0x73, 0x0a

}i

unsigned int names_txt_len = 31;

While the above output is a bit old school (using unsigned int instead of size_t) and
the array/length names are derived from the input file name (including directories), xxd can
also produce just the array values allowing us to wrap it into an array of our choice. See the
[xxd| package description for examples of build2 recipes that do that.

So here is an idea: instead of failing if the user did not specify the name to greet, let’s improve
our hello program to greet a random generic name from a pre-defined list. To make this list
easier to maintain, let’s keep it in a separate file called names . txt and use xxd to embed it
into our hello executable. We can use the one name per line format, for example:

$ cat names.txt
World

Universe

People

Martians

The first step in our plan is to add a build-time dependency on xxd to our project’s mani-—
fest, similar to how we did for 1ibhello:

depends: libhello 71.0.0
depends: * xxd >= 8.2.0

The * mark in front of the xxd name indicates that it’s a build-time dependency.

Next we import xxd in our buildfile:

Revision 0.18, June 2025 The build2 Toolchain Introduction 21

https://cppget.org/xxd
https://cppget.org/xxd

1.5 Build-Time Dependencies and Linked Configurations

import libs += libhello%lib{hello}

import! [metadata] xxd = xxd%exe{xxd}

There are two main differences compared to the way we import the 1ibhello library: we
request metadata ([metadata]) and we do immediate importation (import!). Let’s
briefly discuss what this means (for details, refer to Target Importation in the build system
manual). Metadata for an executable contains information that helps the build system do a
better job when an executable is used as part of the build. For example, it includes the uniform
program name to be used for low-verbosity diagnostics as well as the version, checksum, and
environment that are used to detect changes. And immediate importation instructs the build
system to skip rule-specific importation (for example, search for libraries in compiler-specific
search paths) and import the target here and now, failing if that’s not possible. It is usually
appropriate for importing executables. Note also that the metadata can only be requested in
immediate importation.

While requesting the metadata means that you will have a simpler buildfile and a more
reliable build, it also likely means that you won’t be able to use the system-installed version
of the executable since it needs to be patched to provide the metadata.

Now that we have the xxd tool, let’s use it from an ad hoc recipe to convert names . txt to
names . cxx. Here is the complete buildfile for our hello executable:

libs =
import libs += libhello%lib{hello}

import! [metadata] xxd = xxd%exe{xxd}
exe{hello}: {hxx ixx txx cxx}{** —-names} cxx{names} $libs testscript

cxx{names}: file{names.txt} S$xxd
{{

i = S$path($<[0])

env —-cwd S$directory ($i) —-- $xxd -i $leaf($i) >S$path($>)
+}

The last bit that we need to do is to modify hello.cxx to use the list of fallback names (the
actual implementation is left as an exercise for the reader):

#include <iostream>

extern unsigned char names_txt|[];
extern unsigned int names_txt_len;

int main (int argc, char* argvl[])
{

using namespace std;
if (argc < 2)
{

// TODO: pick a random name from names_txt using newline as

22 The build2 Toolchain Introduction Revision 0.18, June 2025

1.5 Build-Time Dependencies and Linked Configurations

// a name separator.

Let’s recap what we’ve achieved so far: we’ve added a build-time dependency on xxd, we’ve
imported it in our buildfile and used it in an ad hoc recipe to generate names . cxx, and
we’ve modified hello.cxx to use the generated list of names. The only step left is to actu-
ally try to build it. But before doing that, let’s also print the list of build configurations we
currently have associated with our project (see the 1list subcommand in
bdep-config(1l)):

$ bdep config list
@gcc /tmp/hello-gcc/ 1 target default, forwarded, auto-synchronized
@clang /tmp/hello-clang/ 2 target auto-synchronized

$Sb
creating configuration of host type in /tmp/hello-host/ and
associating it with project(s):
/tmp/hello/
as 1f by executing command(s) :
bdep config create Qhost —--type host —-—-no-default /tmp/hello-host \
cc config.config.load=~host
while searching for configuration for build-time dependency xxd of
package hello/0.1.0-a.0.197001010000004#4
while synchronizing configuration /tmp/hello-gcc/
continue? [Y/n] y

synchronizing /tmp/hello-gcc/:
new xxd/8.2.3075 [/tmp/hello-host/] (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#4

¢ ../hello-host/xxd-8.2.3075+1/c{xxd} —>
../hello-host/xxd-8.2.3075+1/0obje{xxd}

1d ../hello-host/xxd-8.2.3075/exe{xxd}

xxd hello/file{names.txt} —-> ../hello-gcc/hello/hello/cxx{names}

c++ ../hello-gcc/hello/hello/cxx{names} —>

../hello—-gcc/hello/hello/obje{names}
c++ hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}
1d ../hello-gcc/hello/hello/exe{hello}

While the diagnostics is hopefully fairly self-explanatory, let’s go over the key points. The
first part goes exactly as in the previous section: because we’ve added a new dependency, the
build configuration needs to be synchronized with the project state. However, this is a
build-time dependency and build-time dependencies are built in configurations of type host.
So bdep first looks for such a configuration among the configurations already associated
with the project. In our case there isn’t one (from the listing above we can see that all our
configurations are of type target). In this case, bdep offers to create one automatically.
We accept this offer by answering y at the prompt and the rest should again look familiar: the
new dependency is configured and built (but now in the host configuration) and our project is
updated (which involves running the new dependency). If we now again print the list of build
configurations associated with our project, we will see the new configuration among them:

Revision 0.18, June 2025 The build2 Toolchain Introduction 23

1.5 Build-Time Dependencies and Linked Configurations

$ bdep config list

@gcc /tmp/hello-gcc/ 1 target default, forwarded, auto-synchronized
@clang /tmp/hello-clang/ 2 target auto-synchronized

@host /tmp/hello-host/ 3 host forwarded, auto-synchronized

Let’s also try to update our project in the c1ang configuration:

$ bdep update @Qclang
synchronizing:
upgrade hello/0.1.0-a.0.19700101000000#4

xxd hello/file{names.txt} -> ../hello-clang/hello/hello/cxx{names}

c++ ../hello-clang/hello/hello/cxx{names} —->
../hello-clang/hello/hello/obje{names}

c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}

1d ../hello-clang/hello/hello/exe{hello}

This time we are neither prompted to create another configuration nor is a new instance of
xxd built — as we would have expected, the existing host configuration with the already built
xxd is reused.

From the above output we can see that bdep creates the host configuration using the default
host compiler and build options (~host) which means the result will most likely be opti-
mized. But if we don’t like something about the host configuration that bdep offers us to
create, we can answer n at the prompt, create one ourselves (by perhaps copying and tweak-
ing the command line bdep was going to use), and then restart the build.

Besides the target and host types, the third pre-defined configuration type is build2,
which is used for build system modules. If you would like to try a build-time dependency on a
build system module, there is a dummy libbuild2-hello module that you can use.
Simply add the following line to your manifest:

depends: * libbuild2-hello

And the following line somewhere in your buildfile:

using hello
Then build the project and see what happens.

The target type signifies a configuration for the end-result of our build. If no type is speci-
fied during the configuration creation with the ——type option (or ——config-type if
using bdep-new), then target is assumed.

The host type signifies a configuration corresponding to the host machine, that is, the
machine on which the build is performed. It is expected that an executable built in the host
configuration can be executed. Oftentimes, target and host are the same. In this case, if you
would prefer not to have separate configurations, then you can make your target configuration
self-hosted by using the host type rather than target. For example:

24 The build2 Toolchain Introduction Revision 0.18, June 2025

1.6 Versioning and Release Management

$ bdep init -C ../hello-gcc Qgcc —--type host cc config.cxx=g++

The build2 type is a special kind of host configuration that is used to build build system
modules. It cannot be self-hosted.

Building build-time dependencies in separate configurations is just one application of the
more general configuration linking mechanism which allows us to build a package in one
configuration while its dependencies — in one or more linked configurations. This, for
example, can be used to create a "base" configuration with common dependencies that are
shared between multiple configurations (sometimes also referred to as build configuration
overlaying).

Let’s see how this works on our hello project. Imagine 1ibhello that we depend on is
very big and takes a while to compile. We also aren’t really interested in building it in both
gcc and clang configurations (it’s our project that we are interested in building with differ-
ent compilers). Since these two compilers are ABI-compatible (at least on Linux), we could
build 1ibhello with just one of them and reuse the result with the other. Let’s see how we
can achieve this with linked configurations (refer to bdep—config (1) for details on
subcommands involved):

$ bdep config create ../hello-base @base —--no-default cc config.cxx=g++
$ bdep config create ../hello-gcc @gcc —--default cc config.cxx=g++
$ bdep config create ../hello-clang @clang cc config.cxx=clang++

$ bdep config link @gcc @base
$ bdep config link @clang @base

$ bdep init @gcc { @base }+ ?libhello
$ bdep init @clang

Most of the commands are hopefully self-explanatory except for the { Q@base }+
?libhello part. Here ? is a package flag that instructs bdep to treat 1ibhello as a
dependency. And { @base }+ tells it to build this dependency in the base configuration
(we don’t have to do the same for clang since the dependency is already built). See
bdep-sync (1) for details on this syntax.

1.6 Versioning and Release Management

Let’s now discuss versioning and release management and, yes, that strange-looking
0.1.0-a.0.19700101000000 we keep seeing. While a build system project doesn’t
need a version and a bpkg package can use custom versioning schemes (see Package
Version), a project managed by bdep must use standard versioning. A dependency, which is
a bpkg package, need not use standard versioning.

Standard versioning (stdver) is a [semantic versioning| (semver) scheme with a more precisely
defined pre-release component and without any build metadata.

Revision 0.18, June 2025 The build2 Toolchain Introduction 25

https://semver.org/

1.6 Versioning and Release Management

If you believe that semver is just ma jor.minor.patch, then in your worldview stdver
would be the same as semver. In reality, semver also allows loosely defined pre-release and
build metadata components. For example, 1.2.3-beta.l+build.23456 is a valid
semver.

A standard version has the following form:
major.minor.patch|[—prerel]

The ma jor, minor, and patch components have the same meaning as in semver. The
prerel component is used to provide continuous versioning of our project between releases.
Specifically, during development of a new version we may want to publish several
pre-releases, for example, alpha or beta. In between those we may also want to publish a
number of snapshots, for example, for CI. With continuous versioning all these releases,
pre-releases, and snapshots are assigned unique, properly ordered versions.

Continuous versioning is a cornerstone of the build2 project dependency management. In
case of snapshots, an appropriate version is assigned automatically in cooperation with your
VCS.

The prerel component for a pre-release has the following form:
(a|b) . num

Here a stands for alpha, b stands for beta, and num is the alpha/beta number. For example:

1.1.0 # final release for 1.1.0
1.2.0-a.l # first alpha pre-release for 1.2.0
1.2.0-a.2 # second alpha pre-release for 1.2.0
1.2.0-b.1 # first Dbeta pre-release for 1.2.0
1.2.0 # final release for 1.2.0

The prerel component for a snapshot has the following form:
(a | b) . num. snapsn|.snapid]

Where snapsn is the snapshot sequence number and snapid is the snapshot id. In case of
git, snapsn is the commit timestamp in the YYYYMMDDhhmmss form and UTC timezone
while snapidis a 12-character abbreviated commit id. For example:

1.2.3-a.1.20180319215815.26efe301f4a7

Notice also that a snapshot version is ordered after the corresponding pre-release version.
That is, 1.2.3-a.1 < 1.2.3-a.1l.1. As aresult, it is customary to start the develop-
ment of a new version with X.Y.Z-a.0.z, that is, a snapshot after the (non-existent)
zero’th alpha release. We will explain the meaning of z in this version momentarily. The
following chronologically-ordered versions illustrate a typical release flow of a project that
uses git asits VCS:

26 The build2 Toolchain Introduction Revision 0.18, June 2025

1.6 Versioning and Release Management

0.1.0-a.0.19700101000000 # snapshot (no commits yet)
0.1.0-a.0.20180319215815.26efe301f4a7 # snapshot (first commit)
.. # more commits/snapshots
0.1.0-a.1 # pre-release (first alpha)
0.1.0-a.1.20180319221826.a6£f0f41205b8 # snapshot
.. # more commits/snapshots
0.1.0-a.2 # pre-release (second alpha)
0.1.0-a.2.20180319231937.b701052316c9 # snapshot
.. # more commits/snapshots
0.1.0-b.1 # pre-release (first beta)
0.1.0-b.1.20180319242038.c812163417da # snapshot

.. # more commits/snapshots
0.1.0 # release
0.2.0-a.0.20180319252139.d923274528eb # snapshot (first in 0.2.0)

For a more detailed discussion of standard versioning and its support in build2 refer to
version Module.

Let’s now see how this works in practice by publishing a couple of versions for our hello
project. By now it should be clear what that 0.1.0-a.0.19700101000000 means — it is
the first snapshot version of our project. Since there are no commits yet, it has the UNIX
epoch as its commit timestamp. Let’s see what changes after we’ve made our first commit:

$ git add .
$ git commit -m "Initial implementation"

$ bdep status
hello configured
available

.0.19700101000000
.0.20180507062614.ee006880fc7e

0.1.0-a
0.1.0-a
Just like with changes to dependency information, status has detected that a new (snap-
shot) version of our project is available for synchronization.

Another way to view the project’s version (which works even if we are not using bdep) is
with the build system’s info meta-operation:

$ b info

project: hello

version: 0.1.0-a.0.20180507062614.ee006880£fc7e
summary: hello C++ executable

Let’s synchronize with the default build configuration:

$ bdep sync
synchronizing:
upgrade hello/0.1.0-a.0.20180507062614.ee006880fc7e

$ bdep status
hello configured 0.1.0-a.0.20180507062614.ee006880fc7e

Notice that we didn’t have to manually change the version anywhere. All we had to do was
commit our changes and a new snapshot version was automatically derived by build2 from
the new git commit. Without this automation continuous versioning would hardly be practi-
cal.

Revision 0.18, June 2025 The build2 Toolchain Introduction 27

1.6 Versioning and Release Management

If we now make another commit, we will see a similar picture:

$ bdep status
hello configured 0.1.0-a.0.20180507062614.ee006880fc7e
available 0.1.0-a.0.20180507062615.8fb9de05b38f

Note that you don’t need to manually run sync after every commit. As discussed earlier, you
can simply run the build system to update your project and things will get automatically
synchronized if necessary.

Ok, time for our first release. Let’s start with 0.1 .0-a. 1. Unlike snapshots, for pre-releases
as well as final releases we have to change the version in the manifest file:

version: 0.1.0-a.l

The manifest file is the singular place where we specify the package version. The build
system’s version module makes it available in various forms in buildfiles and even source
code.

To ensure continuous versioning, this change to version must be the last commit for this
(pre-)release which itself must be immediately followed by a second change to the version
starting the development of the next (pre-)release. We also recommend that you tag the
release commit with a tag name in the vX. Y. Z form.

Having regular release tag names with the v prefix allows one to distinguish them from other
tags, for example, with wildcard patterns.

Here is the release workflow for our example:

$ git commit -a -m "Release version 0.1.0-a.l1"
$ git tag -a v0.1.0-a.l -m "Tag version 0.1.0-a.1"
$ git push --follow-tags

Version 0.1.0-a.l is now public.

$ edit manifest # change ’'version: 0.1
$ git commit -a -m "Change version to O.
$ git push

Master is now open for business.

Notice also that when specifying a snapshot version in manifest we use the special z snap-
shot value (for example, 0.1.0-a.1.z) which is recognized and automatically replaced by
build2 with, in case of git, the current commit timestamp and id (refer to version
Module for details).

While not particularly complicated, performing the release steps manually is both tedious and
error-prone. Instead, this process can be automated with the bdep—release (1) command.
Specifically, in its default mode, this command will update the version in the manifest file,
commit and tag this change, open the next development cycle (again, by changing mani-
fest and committing), and, finally, if ——push is specified, push everything to the remote.
So, instead of the above manual steps, we could have simply run:

28 The build2 Toolchain Introduction Revision 0.18, June 2025

1.6 Versioning and Release Management

$ bdep release --alpha —--push

releasing:
package: hello
current: 0.1.0-a.0
release: 0.1.0-a.l
O0-a.l

open: 0.1.0- .Z

commit: vyes

tag: v0.1.0-a.l

push: origin/master
continue? [y/n] y
[master 82a7e65] Release version 0.1.0-a.l
[master e6cf3c0] Change version to 0.1.0-a.l.z
pushing branch master, tag v0.1.0-a.l
To github.com: john-doe/hello.git

26ec5c9..e6cf3c0 master -> master
* [new tag] v0.1.0-a.1 —> v0.1.0-a.1

The release command has a number of alternative modes, such as for releasing a package
revision, as well as a number of options that control which version will be released and which
version will be opened. See bdep—release (1) for details.

Publishing the final release to the version control repository is exactly the same. This time,
however, let’s see how we can also publish it to an archive-based repository. The first step is
again to make the release, which we will do with the help of the release command. Except
now we will delay opening the next development cycle by passing ——no-open (there is also
no ——alpha since this is the final release):

$ bdep release --no-open —--push
releasing:

package: hello

current: 0.1.0-a.l.z

release: 0.1.0

commit: vyes
tag: v0.1.0
push: origin/master

continue? [y/n] y
[master 00ed45a] Release version 0.1.0
pushing branch master, tag v0.1.0
To github.com: john-doe/hello.git
5d5094c..00ed45a master —-> master
* [new tag] v0.1.0 —> v0.1.0

To publish our project to an archive-based repository we use the bdep—publish (1)
command. For example:

$ bdep publish

publishing:
to: https://cppget.org
as: John Doe <john@example.org>

package: hello

version: 0.1.0

project: hello

section: alpha

control: https://github.com/john-doe/hello.git
continue? [y/n] y
pushing branch build2-control

Revision 0.18, June 2025 The build2 Toolchain Introduction 29

1.6 Versioning and Release Management

submitting hello-0.1.0.tar.gz

FHAFEHSHHFHRH A FEH AR SRS S 100.0%
package submission is queued: https://queue.cppget.org/hello/0.1.0
reference: 0c596fca2017

Let’s see what’s going on here. By default pub1ish submits to the cppget.org| repository. On
cppget .org package names are assigned on a first come first serve basis. But instead of
using logins or emails to authenticate package ownership, cppget .org uses your version
control repository as a proxy. In a nutshell, when we submit a package for the first time, its
control repository is associated with its name and all subsequent submissions have to use the
same control repository (the authentication part). When submitting a package, publish also
adds a file to the build2-control branch of the control repository with the package
archive checksum. On the other side, cppget .org checks for the presence of this file to
make sure that whomever is making this submission has write access to the control repository
(the authorization part). See bdep—publish (1) for details.

The rest should be pretty straightforward: publish prepares and uploads a distribution of
our package which goes into the alpha section of the repository (because it has 0 major
version). In response we get a URL which we can use to check the status of our submission on
[queue.cppget.orgl And after some basic testing and verification, our package should appear on
cppget . org (the exact steps are described in [Submission Policies). Note also that package
submissions to cppget .org are public and permanent and cannot be removed under any
circumstances.

Finally, we also shouldn’t forget to increment the version for the next development cycle. For
that we can use the ——open mode of the release command. For example:

$ bdep release —--open —--push
opening:

package: hello

current: 0.1.0

open: 0.2.0-a.0.z
commit: vyes
push: origin/master

continue? [y/n] y

[master ace2f6e] Change version to 0.2.0-a.0.z

pushing branch master

To github.com: john-doe/hello.git
00ed45a..ace2f6e master —-> master

One sticky point of continuous versioning is choosing the next version. For example, above
should we continue with 0.1.1-a.0,0.2.0-a.0,0r 1.0.0-a.0? The important rule to
keep in mind is that we can jump forward to any further version at any time and without
breaking continuous versioning. But we can never jump backwards.

For example, we can start with 0.2 .0-a. 0 but if we later realize that this will actually be a
new major release, we can easily change itto 1.0.0-a. 0. As a result, the general guideline
is to start conservatively by either incrementing the patch or the minor version component.
And the recommended strategy is to increment the minor component and, if required, release
patch versions from a separate branch (created by branching off from the release commit).
This is the default behavior of the release command.

30 The build2 Toolchain Introduction Revision 0.18, June 2025

https://cppget.org/
https://queue.cppget.org/
https://cppget.org?submit/

1.7 Developing Multiple Packages and Projects

Note also that you don’t have to make any pre-releases if you don’t need them. While during
development you would still keep the version as X.Y.Z-a. 0, at release you simply change it
directly to the final X.Y. Z.

When publishing the final release you may also want to clean up now obsolete pre-release
tags. For example:

$ git tag -1 ’v0.1.0-*" | xargs git push --delete origin
$ git tag -1 ’v0.1.0-*' | xargs git tag —--delete

While at first removing such tags may seem like a bad idea, pre-releases are by nature tempo-
rary and their use only makes sense until the final release is published.

Also note that having a git repository with a large number of published but unused version
tags may result in a significant download overhead.

Let’s also briefly discuss in which situations we should increment each of the version compo-
nents. While semver gives basic guidelines, there are several ways to apply them in the
context of C/C++ where there is a distinction between binary and source compatibility. We
recommend that you reserve patch releases for specific bug fixes and security issues that you
can guarantee with a high level of certainty to be binary-compatible. Otherwise, if the changes
are source-compatible, increment minor. And if they are breaking (that is, the user code likely
will need adjustments), increment major. During early development, when breaking changes
are frequent, it is customary to use the 0.Y.Z versions where Y effectively becomes the
major component. Again, refer to the version Module for a more detailed discussion of this
topic.

1.7 Developing Multiple Packages and Projects

How does a library like 1ibhello get developed? It’s possible someone woke up one day
and realized that they were going to build a useful library that everyone was going to use. But
somehow this doesn’t feel like how it really works. In the real world things start organically:
someone had a project like hello and then needed the same functionality in another project.
Or someone else needed it and asked the author to factor it out into a library. For this
approach to work, however, moving such common functionality into a library and then
continue its parallel development must be a simple, frictionless process. Let’s see how this
works in build2.

First, we need to decide whether to make 1ibhello another package in our hello project
(that is, in the same git repository) or a separate project (with a separate repository). Both
arrangements are equally well supported.

A multi-package project works best if all the packages have the same version and are released
together. While the packages themselves can have different versions (since each has its own
manifest), in this scenario following the release tagging recommendations discussed earlier
will be problematic.

Revision 0.18, June 2025 The build2 Toolchain Introduction 31

1.7 Developing Multiple Packages and Projects

Let’s start with a separate project since it is simpler. As the first step we use bdep—new (1)
to create a new library project next to our hello:

$ bdep new -1 c++ -t 1lib libhello
created new library project libhello in /tmp/libhello/

$ 1s

hello/
libhello/
hello—-gcc/
hello-clang/

$ tree libhello

libhello/

-— build/

—— libhello/
|—— hello.hxx
|—— hello.cxx
-—— buildfile

—-— buildfile

-— manifest

—— README .md

-—— repositories.manifest

Similar to the executable project, this layout is not mandatory and bdep—new (1) can create
a number of alternative library structures. For example, if you prefer the include/src
split, try:

$ bdep new -1 c++ -t lib,split libhello
See SOURCE LAYOUT for more examples.

Let’s edit the generated manifest file and add the project value (customarily after
version) to indicate that our library belongs to the same overall project as our executable:

$ cat libhello/manifest

: 1

name: libhello

version: 0.1.0-a.0.z
project: hello

summary: hello C++ library

The project value is used to group related packages together in order to help with their
organization and discovery. For example, if later we create libhello2 or
libhello-extra, then it would make sense for them to also belong to the hello project.
See the project value documentation for details.

Our two projects will be sharing the same set of build configurations, so next we initialize
libhello in hello-gcc and hello-clang (notice the use of ——config—add| -A
instead of ——config-create|-C):

32 The build2 Toolchain Introduction Revision 0.18, June 2025

1.7 Developing Multiple Packages and Projects

$ cd libhello

$ bdep init -A ../hello-gcc @gcc
initializing in project /tmp/libhello/
added configuration Qgcc /tmp/hello-gcc/ default,auto-synchronized
synchronizing:
new libhello/0.1.0-a.0.19700101000000

$ bdep init -A ../hello-clang Qclang
initializing in project /tmp/libhello/
added configuration Qclang /tmp/hello-clang/ auto-synchronized
synchronizing:
new libhello/0.1.0-a.0.19700101000000

If two or more projects share the same build configuration, then all of them are always
synchronized at once, regardless of the originating project. It also makes sense to have the
same default configuration and use identical configuration names in all the projects.

The last step is to move the desired functionality from hello to 1ibhello and at the same
time add a dependency on libhello, just as we did earlier (add a depends entry to
manifest, then import the library in buildfile, and so on). One interesting question is
what to put as a prerequisite repository in repositories.manifest. Our own setup will
work even if we don’t put anything there — the dependency will be automatically resolved to
our local version of 1ibhello since we have initialized it in all our build configurations.
However, in case our hello repository is used by someone else, it’s a good idea to add the
remote git repository for Libhello as a prerequisite.

By now you have probably realized that our project directory is just another type of package
repository. See bpkg—repository—-types (1) for more information.

And that’s it, now we can build and test our new arrangement:

$ cd ../hello # back to hello project root

$ bdep test -i

c++ ../libhello/libhello/cxx{hello} ->
../hello-gcc/libhello/libhello/objs{hello}

c++ ../libhello/tests/basics/cxx{driver} ->
../hello-gcc/libhello/tests/basics/obje{driver}

c++ hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}

1d ../hello-gcc/libhello/libhello/libs{hello}

1d ../hello-gcc/libhello/tests/basics/exe{driver}

1d ../hello-gcc/hello/hello/exe{hello}

test ../hello-gcc/libhello/tests/basics/exe{driver}

test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

This is also the approach we would use if we wanted to fix a bug in someone else’s library.
That is, we would clone their library repository and initialize it in the build configurations of
our project which will "upgrade" the dependency to use the local version. Then we make the
fix, submit it upstream, and continue using the local version until our fix is merged/published,
at which point we deinitialize their library repository and our project will be automatically
switched back to using the new upstream version of the library. Here is the summary of the
steps in this workflow:

Revision 0.18, June 2025 The build2 Toolchain Introduction 33

1.7 Developing Multiple Packages and Projects

$ cd hello/ # Our project.
$ bdep init -C Qgcc ... # Configures libhello as a dependency.
$ git clone .../libhello.git # Need to fix a bug in libhello.

$ cd libhello
$ bdep init -A ../hello-gcc @gcc # Upgrades libhello to local version.

Fix the bug in libhello, test, and submit upstream.
Continue using local libhello until the bugfix is published.

$ cd libhello # Bugfix has been published.
$ bdep deinit @gcc # Switches libhello back to dependency.
$ rm -r libhello # If no longer needed.

Let’s now examine the second option: making 1ibhello a package inside hello. Here is
the original structure of our hello project:

hello/
-— .git/
-— build/
—-— hello/
|—— hello.cxx
-—— buildfile
—-— buildfile
-— manifest
—— README .md
-—— repositories.manifest

As the first step, we move the hello program into its own subdirectory:

hello/
-— .git/
—-— hello/
|-- build/
|-- hello/
| |—— hello.cxx
| -—— buildfile
|-- buildfile
|-- manifest
+-—— README.md
-—— repositories.manifest

Next we again use bdep—new (1) to create a new library but this time as a package inside an
already existing project:

$ cd hello
$ bdep new —--package -1 c++ -t lib libhello
created new library package libhello in /tmp/hello/libhello/

Let’s see what our project looks like now:

34 The build2 Toolchain Introduction Revision 0.18, June 2025

1.7 Developing Multiple Packages and Projects

hello/
-— .git/
—— hello/
-—— manifest
—— libhello/
-—— manifest
—-— buildfile
—-— packages.manifest
-—— repositories.manifest

Notice that, as discussed earlier, repositories.manifest belongs to the project (repos-
itory) while manifest — to the package.

Besides the 1ibhello directory the new command also created the buildfile and
packages.manifest files in the root directory of our project. First let’s take a look inside
buildfile:

import pkgs = */

./: $pkgs

This is what we call a glue buildfile. Its purpose is to "pull” together several packages so
that we are able to invoke the build system driver from the project root. See Target Importa-
tion for details.

Now let’s examine packages .manifest:

$ cat packages.manifest
: 1
location: libhello/

Up until now our hello was a simple, single-package project that didn’t need this file —
manifest in its root directory was sufficient (see bpkg—repository-types (1) for
details on the project repository structure). But now it contains several packages and we need
to specify where they are located within the project. So let’s go ahead and add the location of
the hello package:

$ cat packages.manifest

: 1

location: libhello/

location: hello/

Packages in a project can reside next to each other or in subdirectories but they cannot nest.
When published to an archive-based repository, each such package will be placed into its own
archive.

Next we initialize the new package in all our build configurations:

Revision 0.18, June 2025 The build2 Toolchain Introduction 35

1.7 Developing Multiple Packages and Projects

$ cd libhello

$ bdep init -a

initializing in project /tmp/hello/

in configuration @Qgcc:

synchronizing:
upgrade hello/0.1.0-a.0.19700101000000#1
new libhello/0.1.0-a.0.19700101000000

in configuration @clang:

synchronizing:
upgrade hello/0.1.0-a.0.19700101000000#1
new libhello/0.1.0-a.0.19700101000000

Notice that the hel1lo package has been "upgraded" to reflect its new location.

Finally, as before, we move the desired functionality from hello to 1ibhello and at the
same time add a dependency on 1ibhello. Note, however, that in this case we don’t need to
add anything to repositories.manifest since both packages are in the same project
(repository). And that’s it, now we can build and test our new arrangement:

$ cd .. # back to hello project root

$ bdep test

c++ libhello/libhello/cxx{hello} ->
../hello—-gcc/libhello/libhello/objs{hello}

c++ libhello/tests/basics/cxx{driver} ->
../hello-gcc/libhello/tests/basics/obje{driver}

c++ hello/hello/cxx{hello} —-> ../hello—-gcc/hello/hello/obje{hello}

1d ../hello-gcc/libhello/libhello/libs{hello}

1d ../hello-gcc/libhello/tests/basics/exe{driver}

1d ../hello-gcc/hello/hello/exe{hello}

test ../hello-gcc/libhello/tests/basics/exe{driver}

test ../hello-gcc/hello/hello/exe{hello} +
hello/hello/testscript{testscript}

A multi-package project could have several files, such as README . md and LICENSE, which,
while shared by all the packages, must nevertheless reside within each package’s directory.
The recommended way to avoid the duplication is to use symlinks. For example:

hello/

-— .git/

—-— hello/
|- ...
|-- LICENSE -> ../LICENSE
-—— manifest

—— libhello/
|- ...
|-- LICENSE -> ../LICENSE
-—— manifest

—— LICENSE

—-— buildfile

—-— packages.manifest

-—— repositories.manifest

See[Using Symlinks in build2 Projects|for details.

36 The build2 Toolchain Introduction Revision 0.18, June 2025

https://build2.org/article/symlinks.xhtml

1.8 Package Consumption

1.8 Package Consumption

Ok, now that we have published a few releases of hel1lo, how would the users of our project
get them? While they could clone the repository and use bdep just like we did, this is more of
a development than a consumption workflow. For consumption it is much easier to use the
package dependency manager, bpkg (1), directly.

Note that this approach also works for libraries in case you wish to use them in a project with
a build system other than build2. See |[Using Unpackaged Dependencies| for background on
cross-build system library consumption.

First, we create a suitable build configuration with the bpkg—cfg—create (1) command.
We can use the same place for building all our tools so let’s call the directory tools. Seeing
that we are only interested in using (rather than developing) such tools, let’s build them opti-
mized and also configure a suitable installation location:

$ bpkg create -d tools cc
config.cxx=g++
config.cc.coptions=-03
config.install.root=/usr/local
config.install.sudo=sudo

created new configuration in /tmp/tools/

\
\
\
\

The same step on Windows using Visual Studio would look like this:
$ bpkg create -d tools cc *
config.cxx=cl

config.cc.coptions=/02
config.install.root= C:\install

A

A

To fetch and build packages (as well as all their dependencies) we use the
bpkg-pkg-build (1) command. We can use either an archive-based repository like

or build directly from git:
$ cd tools

$ bpkg build hello@Qhttps://git.build2.org/hello/hello.git
fetching from https://git.build2.org/hello/hello.git
new libformat/1.0.0 (required by libhello)
new libprint/1.0.0 (required by libhello)
new libhello/1.1.0 (required by hello)
new hello/1.0.0
continue? [Y/n] y
configured libformat/1.0.0
configured libprint/1.0.0
configured libhello/1.1.0
configured hello/1.0.0
c++ libprint-1.0.0/libprint/cxx{print} ->
libprint-1.0.0/libprint/objs{print}
c++ hello-1.0.0/hello/cxx{hello} -> hello-1.0.0/hello/obje{hello}
c++ libhello-1.1.0/libhello/cxx{hello} ->
libhello-1.1.0/1libhello/objs{hello}
c++ libformat-1.0.0/libformat/cxx{format} —->
libformat-1.0.0/libformat/objs{format}
1d libprint-1.0.0/libprint/libs{print}

Revision 0.18, June 2025 The build2 Toolchain Introduction 37

https://cppget.org/

1.8 Package Consumption

1d libformat-1.0.0/libformat/libs{format}
1d libhello-1.1.0/libhello/libs{hello}

1d hello-1.0.0/hello/exe{hello}

updated hello/1.0.0

Passing a repository URL to the build command is a shortcut to the following sequence of
commands:

$ bpkg add https://git.build2.org/hello/hello.git # add repository
$ bpkg fetch # fetch package list
$ bpkg build hello # build package by name

If building a package involves building a build-time dependency and no configuration of type
host (or build?2, if the dependency is a build system module) is linked with the target
configuration, then a private configuration of a suitable type is automatically created and
linked. See [Build-Time Dependencies and Linked Configurations| for background on
build-time dependencies and bpkg—-cfg-create (1) for more information on bpkg
configuration linking.

Once built, we can install the package to the location that we have specified with
config.install.root using the bpkg—pkg—install (1) command:

$ bpkg install hello

install libformat-1.0.0/libformat/libs{format} -> /usr/local/lib/
install libprint-1.0.0/libprint/libs{print} -> /usr/local/lib/
install libhello-1.1.0/l1libhello/libs{hello} -> /usr/local/lib/
install hello-1.0.0/hello/exe{hello} -> /usr/local/bin/

$ hello World
Hello, World!

If on your system the installed executables don’t run from /usr/local because of the unre-
solved shared libraries (or if you are installing somewhere else, such as /opt), then the
easiest way to fix this is with rpath. Simply add the following configuration variable when
creating the build configuration (or as an argument to the install command):

config.bin.rpath=/usr/local/lib

Note to Windows users: this is not an issue on this platform since executables and shared
(DLL) libraries are installed into the same subdirectory (bin) of the installation directory.

The installation contents and layout under config.install.root would be along these
lines:

38 The build2 Toolchain Introduction Revision 0.18, June 2025

1.8 Package Consumption

/usr/local/
|-- bin/
|A A& --- hello

|A A& |-- libformat-1.0.so
|A A& |-- libhello-1.1l.so
|A A --- libprint-1.0.so
-—— share/
-—— doc/
+—— hello/
|—— manifest
+-—— README.md

The installation locations of various types of files (executables, libraries, headers, documenta-
tion, etc) can be customized using a number of the config.install. * variables with the
most commonly used ones and their defaults (relative to config.install.root) listed
below (see the install build system module documentation for the complete list).

config.install.bin = root/bin/
config.install.lib = root/lib/
config.install.doc = root/share/doc/
config.install.man = root/share/man/
config.install.include = root/include/

If we need to uninstall a previously installed package, there is the bpkg—-pkg—unin-
stall (1) command:

$ bpkg uninstall hello

uninstall hello-1.0.0/hello/exe{hello} <- /usr/local/bin/

uninstall libhello-1.1.0/libhello/libs{hello} <- /usr/local/lib/
uninstall libprint-1.0.0/libprint/libs{print} <- /usr/local/lib/
uninstall libformat-1.0.0/libformat/libs{format} <- /usr/local/lib/

From the above listing we can gather that only the shared library binaries were installed. In
particular, neither static library binaries nor headers and other development-related files (such
as non-versioned shared library symlinks, pkg-config . pc files, etc) were installed.

The reason for this behavior is that by default the bpkg—pkg—install (1) command only
instructs the build system to install packages that were specified on the command line
(hello in out case) while the build system in turn installs from dependency packages only
what’s necessary for the packages it was instructed to install. In our case, installing the
hello also requires installing the shared library binaries that it uses but none of the develop-
ment-related files (we don’t need library headers in order to run an executable).

However, this default behavior of bpkg-pkg—install(1l) (and bpkg-pkg—-unin-
stall (1)) can be changed with the ——recursive option, which instructs bpkg to addi-
tionally fully install/uninstall dependency packages.

Rather than installing the package locally we could instead generate a binary distribution
package for it using the bpkg—pkg-bindist (1) command. Such a binary package can
then be installed on a different machine. Currently, the bindist command supports produc-
ing Debian (and alike, such as Ubuntu) and Fedora (and alike, such as RHEL) packages as

Revision 0.18, June 2025 The build2 Toolchain Introduction 39

1.8 Package Consumption

well as installation archives for all operating systems. For example, to generate a Debian
package for our hello (running on Debian or alike):

$ bpkg bindist —--recursive=auto —--private -o /tmp/hello-deb/ hello

generated debian package for hello/1.0.0:
/tmp/hello-deb/hello_1.0.0-0~debianl2_amd64.deb
/tmp/hello-deb/hello-dbgsym_1.0.0-0~debianl2_amd64.deb
/tmp/hello-deb/hello_1.0.0-0~debianl2_amd64.buildinfo
/tmp/hello-deb/hello_1.0.0-0~debianl2_amd64.changes

$ sudo apt—-get install /tmp/hello-deb/hello_1.0.0-0~debianl2_amdé64.deb

And to generate a Fedora package (running on Fedora or alike):
$ bpkg bindist —--recursive=auto —--private hello

generated fedora package for hello/1.0.0:
~/rpmbuild/RPMS/x86_64/hello-1.0.0-1.£fc38.x86_64.rpm
~/rpmbuild/RPMS/x86_64/hello-debuginfo-1.0.0-1.£fc38.x86_64.rpm

$ sudo dnf install ~/rpmbuild/RPMS/x86_64/hello-1.0.0-1.fc38.x86_64.rpm

And to generate an installation archive (running on Windows in this example):

$ bpkg bindist —--recursive=auto
—--private
——distribution=archive
-0 C:\tmp\hello-zip\ ~
config.install.relocatable=true
hello

generated archive package for hello/1.0.0:
C:\tmp\hello-zip\hello-1.0.0-x86_64-windowsl0.zip

To upgrade or downgrade packages we again use the build command. Here is a typical
upgrade workflow:

$ bpkg fetch # refresh available package list

$ bpkg status # see if new versions are available
$ bpkg uninstall hello # uninstall old version

$ bpkg build hello # upgrade to the latest version

$ bpkg install hello # install new version

Similar to bdep, to downgrade we have to specify the desired version explicitly. There are
also the —-upgrade|-u and —-patch|-p as well as —--immediate|-i and
——recursive|-r options that allow us to upgrade or patch packages that we have built
and/or their immediate or all dependencies (see bpkg—pkg-build (1) for details). For
example, to make sure everything is patched, run:

$ bpkg fetch
$ bpkg build -pr

40 The build2 Toolchain Introduction Revision 0.18, June 2025

1.9 Using System-Installed Dependencies

If a package is no longer needed, we can remove it from the configuration with
bpkg-pkg—-drop (1):

$ bpkg drop hello
following dependencies were automatically built but
will no longer be used:
libhello
libformat
libprint
drop unused packages? [Y/n] y
drop hello
drop libhello
drop libformat
drop libprint
continue? [Y/n] y
purged hello
purged libhello
purged libformat
purged libprint

1.9 Using System-Installed Dependencies

Our operating system might already have a package manager (which we will refer to as
system package manager) and for various reasons we may want to use the system-installed
version of a dependency rather than building one from source.

Using system-installed versions works best for mature rather than rapidly-developed packages
since for the latter you often need to track the latest version (which may not yet be available
from the system repository) and/or test with multiple versions (which is not something that
many system package managers support).

We can also have some build configurations using a system-installed version of a dependency
while in others building it from source, for example, for testing.

We can instruct build2 to configure a dependency package as available from the system
rather than building it from source. Specifically, we can install a suitable version manually
(for example, using the system package manager) and then communicate this fact as well as
the version installed to build2 so that it can use this information when resolving version
constraints. Furthermore, for Debian (and alike, such as Ubuntu) and Fedora (and alike, such
as RHEL) build2 can automatically query the system package manager for the installed
version and, if requested, automatically install a suitable version from the system repository if
none is already installed.

Let’s see how all this works in an example. Say, we want to use|libsglite3|inour hello
project.

The first step is to add it as a dependency, just like we did for 1ibhello. That is, add
another depends entry to manifest, then import it in buildfile, and so on.

Revision 0.18, June 2025 The build2 Toolchain Introduction 41

https://cppget.org/libsqlite3

1.9 Using System-Installed Dependencies

Now, if we just run sync or try to build our project, build2 will download and build the
new dependency from source, just like it did for 1ibhello. Instead, we can issue an explicit
sync command that configures the 1ibsglite3 package as coming from the system:

$ bdep sync ?sys:libsglite3

Here 2 is a package flag that instructs build2 to treat it as a dependency and sys is a
package scheme that tells build2 it comes from the system. See bpkg-pkg-build (1)
for details.

Now what exactly happens in this case depends on which operating system we are running as
well as whether 1ibsglite3 is already installed. Let’s examine each combination in turn.

If we are running on an operating system for which there is build2 support for the system
package manager interactions (currently Debian, Fedora, or alike) and libsglite3 is
already installed, then build2 will get its version from the system package manager and use
that when resolving version constraints. For example, running the above command on Debian
with 1ibsglite3-dev version 3.42. 0 already installed:

$ bdep sync ?sys:libsqglite3

synchronizing:
configure sys:libsglite3/3.42.0 (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#3

If, on the other hand, we are running on an operating system for which there is build2
support for the system package manager interactions but 1ibsglite3 is not installed, then
build2 will fail:

$ bdep sync ?sys:libsqglite3
error: no installed system package for libsglite3
info: specify --sys-install to try to install it
info: specify libsglite3/* if package is not installed with system
package manager
info: specify —--sys—-no-query to disable system package manager
interactions

As you can see, build2 will not attempt to automatically install system packages unless
explicitly requested with the ——sys—-install option. Let’s try to add that (again, running
on Debian):

$ bdep sync --sys-install ?sys:libsqglite3

updating debian package index...

synchronizing:
sys—install libsglite3-0/3.42.0-1 (required by sys:libsqglite3)
configure sys:libsglite3/3.42.0 (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#3

installing debian packages...

The following NEW packages will be installed:
libsglite3-dev

The following packages will be upgraded:
libsglite3-0 sglite3

Do you want to continue? [Y/n] y

42 The build2 Toolchain Introduction Revision 0.18, June 2025

1.9 Using System-Installed Dependencies

Setting up libsqglite3-0:amd64 (3.42.0-1)
Setting up libsglite3-dev:amd64 (3.42.0-1)
Setting up sglite3 (3.42.0-1)

You can suppress the system package manager confirmation prompt with the ——sys-yes
option. By default build2 uses sudo for system package manager interactions that
normally require administrative privileges (fetch package metadata, install packages, etc).
This can be customized with the ——sys—-sudo option.

Finally, if we are running on an operating system for which there is no build2 support for
the system package manager interactions, then, as mentioned earlier, it is the user’s responsi-
bility to make sure a suitable package is installed and, optionally, communicate its version. In
this case, unless we specify the installed version explicitly, a system-installed package is
assumed to satisfy any dependency constraint (indicated with the * wildcard instead of the
version):

$ bdep sync ?sys:libsglite3

synchronizing:
configure sys:libsglite3/* (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#3

You can reduce the supported system package manager case to this case by disabling the
system package manager interactions with the ——sys—-no—-query option.

The system-installed dependency doesn’t really have to come from the system package
manager. It can also be manually installed and, as discussed in [Using Unpackaged Dependen-|
not necessarily into the system-default location like /usr/local.

In the above examples our dependency (1ibsglite3) still has to be packaged and available
from one of the project’s prerequisite repositories. But it can be a stub — a package that does
not contain any source code and that can only be "obtained" from the system.

The purpose of a stub is to provide the build2 package to system package name and version
mapping, in case it cannot be deduced automatically. See Package Version and *-{name,
version, to-downstream-version} package manifest values for details.

If we would like to use a completely unpackaged dependency, then, for the supported system
package manager case, we will need to pass the ——sys—no-stub option:

$ bdep sync --sys—-install --sys-no-stub ?sys:libsqglite3

And for the unsupported system package manager case we will have to specify the system
version explicitly either as the actual version or as the * wildcard, for example:

$ bdep sync ?sys:libsglite3/* ?sys:libcurl/7.47.0

The reason at least a stub is required by default is due to the automatic mapping between
build2 and system packages often being unreliable.

Revision 0.18, June 2025 The build2 Toolchain Introduction 43

1.10 Using Unpackaged Dependencies

1.10 Using Unpackaged Dependencies

Generally, we will have a much better time if all our dependencies come as build2 pack-
ages. Unfortunately, this won’t always be the case in the real world and some libraries that
you may need will use other build systems.

There is also the opposite problem: you may want to consume a library that uses build2 in a
project that uses a different build system. For that refer to [Package Consumption}

The standard way to consume such unpackaged libraries is to install them (not necessarily into
a system-default location like /usr/local) so that we have a single directory with their
headers and a single directory with their libraries. We can then configure our builds to use
these directories when searching for imported libraries.

Needless to say, none of the build2 dependency management mechanisms such as version
constraints or upgrade/downgrade will work on such unpackaged libraries. You will have to
manage all these yourself manually.

Let’s see how this all works in an example. Say, we want to use 1 ibextra that uses a differ-
ent build system in our hello project. The first step is to manually build and install this
library for each build configuration that we have. For example, we can install all such unpack-
aged libraries into unpkg-gcc and unpkg-clang, next to our hello-gcc and
hello-clang build configurations:

$ 1s

hello/
hello—-gcc/
unpkg-gcc/
hello-clang/
unpkg-clang/

If you would like to try this out but don’t have a suitable 1ibextra, you can create and
install one with these commands:

$ bdep new -1 c++ -t 1lib libextra -C libextra-gcc cc config.cxx=g++
$ b install: libextra-gcc/ config.install.root=/tmp/unpkg-gcc

If we look inside one of these unpkg—* directories, we should see something like this:

$ tree unpkg-gcc
unpkg-gcc/
|-- include/
| -—— libextra/
| +—— extra.hxx
c—— lib/

|—— libextra.a

|—— libextra.so

-—— pkgconfig/

-—— libextra.pc

44 The build2 Toolchain Introduction Revision 0.18, June 2025

2 Canonical Project Structure

Notice that 1ibextra.pc —it’s a pkg—config (1) file that contains any extra compile
and link options that may be necessary to consume this library. This is the de facto standard
for build systems to communicate library build information to each other and is today
supported by most commonly used implementations. Speaking of build2, it both recognizes
.pc files when consuming third-party libraries and automatically produces them when
installing its own.

While this may all seem foreign to Windows users, there is nothing platform-specific about
this approach, including support for pkg—config, which, at least in case of build2, works
equally well on Windows.

Next, we create a build configuration and configure it to use one of these unpkg-* directo-
ries (replace . . . with the absolute path):

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++ \

config.cc.poptions=-I.../unpkg-gcc/include \
config.cc.loptions=-L.../unpkg-gcc/lib

If using Visual Studio, replace —I with /I and -L with /LIBPATH:.

Alternatively, if you want to reconfigure one of the existing build configurations, then simply
edit the build/config.build file (that is, hello—gcc/build/config.build in
our case) and adjust the poptions and loptions values. Or you can use the build system
directly to reconfigure the build configuration (see b (1) for details):

b configure: ../hello-gcc/ \
config.cc.poptions+=-I.../unpkg-gcc/include \
config.cc.loptions+=-L.../unpkg-gcc/lib

If all the unpackaged libraries included . pc files, then the —L alone would have been suffi-
cient. However, it doesn’t hurt to also add —I, for good measure.

Once this is done, adjust your buildfile to import the library:
import libs += libextra%$lib{extra}
And your source code to use it:

#include <libextra/extra.hxx>

Notice that we don’t add the corresponding depends value to the project’s manifest since
this library is not a package. However, it is a good idea to instead add a requires entry as a
documentation to users of our project.

2 Canonical Project Structure

The goal of establishing a canonical build2 project structure is to create an ecosystem of
packages that can coexist, are easy to comprehend by both humans and tools, scale to
complex, real-world requirements, and, last but not least, are pleasant to work with.

Revision 0.18, June 2025 The build2 Toolchain Introduction 45

2 Canonical Project Structure

Here by canonical we mean a structure that on balance achieves these objectives in the
simplest possible way. However, not everyone agrees with where that balance should be
struck. As a result, this structure is only recommended and build2 is flexible enough to
support various arrangements used in modern C and C++ projects. Furthermore, the
bdep—-new (1) command provides a number of customization options and chances are you
will be able to create your preferred layout automatically. See SOURCE LAYOUT for more
information and examples.

This canonical structure is primarily meant for a package — a single library or program (or,
sometimes, a collection of related libraries or programs) with a specific and well-defined
function. While it may be less suitable for more elaborate, multi-library/program end-products
that are not meant to be packaged, most of the recommendations discussed below would still
apply. Oftentimes, you would start with a canonical project and expand from there. Note also
that while the discussion below focuses on C++, most of it applies equally to C projects.

We often find ourselves factoring common functionality out of such end-products and into
separate packages, for example, in order to be reused in another end-product. In this light, it
can be helpful to organize a new end-product project as a composition of individual packages
or source subdirectories that follow the canonical structure. The bdep-new (1)
—--package and ——source modes can be used to automate this process.

By default, projects created by the bdep—new (1) command have the canonical structure.
The overall layouts for executable (-t exe) and library (-t 1ib) projects are presented
below.

<name>/
-- build/
-— <name>/
| -- <name>.cxx
|—— <name>.test.cxx
|-- testscript
-—— buildfile
-— buildfile
—— manifest
-—— README.md

lib<name>/

-— build/

-— lib<name>/
|—— <name>.hxx
| -- <name>.cxx
|—— <name>.test.cxx
| -- export.hxx
|—— version.hxx.in
-—— buildfile

-— tests/

—— buildfile

-— manifest

- —— README.md

The canonical structure for both project types is discussed in detail in the following sections
with a short summary of the key points presented below.

46 The build2 Toolchain Introduction Revision 0.18, June 2025

2.1 Source Subdirectory

® Header and source files (or module interface and implementation files) are next to each
other (no include/ and src/ split).

® Headers are included with <> and contain the project name as a subdirectory prefix, for
example, <libhello/hello.hxx>.

® Header and source file extensions are either .hpp/.cpp or .hxx/.cxx (.mpp or
. mxx for module interfaces).

® No special characters other than _ and — in file names with . only used for extensions.

Let’s start with naming our projects: A project name should only contain ASCII alphabetic
characters ([a—-zA-Z]), digits ([0—91), underscores (_), plus/minus (+-), and dots (.) as
well as be at least two characters long (see Package Name for additional restrictions and
recommendations).

If a project consists of a library and an executable, then they should be split into separate
packages (see [Developing Multiple Packages and Projects| for some common arrangements).
In this case, by convention, the library name should start with the 1ib prefix, for example,
libhello and hello. It is also recommended (but not required) to follow this convention
in new projects, even if there are no plans to have a related executable.

Using the 1ib prefix consistently offers several benefits:

1. It is clear from the name to both humans and tools what kind of project it is.

2. All libraries are consistently named (as opposed to some with the 1ib prefix and some
without).

3. All library names are future-proofed to co-exist with executables. If one starts with a
library without the 1ib prefix but later decides to add an executable, renaming the
library would unlikely be an option. And there is no need to spend mental energy on
thinking whether it’s possible that an executable will be added later.

The project’s root directory should contain the root buildfile and package manifest
file. Other recommended top-level subdirectory names are examples/ (for libraries it is
normally a subproject like tests/, as discussed below), doc/, and etc/ (sample configu-
rations, scripts, third-party contributions, etc). See also build system Project Structure for
details on the build-related files (buildfile) and subdirectories (build/) as well as the
available alternative naming scheme.

2.1 Source Subdirectory

The project’s source code is placed into a subdirectory of the root directory named the same
as the project, for example, hello/hello/ or 1ibhello/libhello/. It is called the
project’s source subdirectory.

There are several reasons for this layout: It implements the canonical inclusion scheme
(discussed below) where each header is prefixed with its project name as a subdirectory. It
also has a predictable name where users (and tools) can expect to find our project’s source
code. Finally, this layout prevents clutter in the project’s root directory which usually contains
various other files (like README, LICENSE) and directories (like doc/, tests/, exam—

Revision 0.18, June 2025 The build2 Toolchain Introduction 47

2.1 Source Subdirectory

ples/).

Another popular approach is to place public headers into the include/ subdirectory and
source files as well as private headers into src/. The cited advantage of this layout is the
predictable location (include/) that contains only the project’s public headers (that is, its
API). This can make the project easier to navigate and understand while harder to misuse, for
example, by including a private header.

However, this split layout is not without drawbacks:

® Navigating between corresponding headers and sources is cumbersome. This affects
editing, grep’ing, as well as code browsing (for example, on GitHub).

® Implementing the canonical inclusion scheme would require an extra level of subdirecto-
ries (for example, include/libhello/ and src/libhello/), which only ampli-
fies the previous issue.

® Supporting generated source code can be challenging: Source code generators rarely
provide support for writing headers and sources into different directories. Even if we can
move things around post-generation, build systems may not support this arrangement (for
example, build2 does not currently support target groups with members in different
directories).

Also, the stated advantage of this layout — separation of public headers from private — is not as
clear cut as it may seem at first. The common assumption of the split layout is that only
headers from include/ are installed and, conversely, to use the headers in-place, all one has
to do is add I pointing to include/. On the other hand, it is common for public headers to
include private headers to, for example, call an implementation detail function in inline or
template code (note that the same applies to private modules imported in public module inter-
faces). Which means such private (or probably now more accurately called implementation
detail) headers have to be placed in the include/ directory as well, perhaps into a subdirec-
tory (such as details/) or with a file name suffix (such as —imp1l) to signal to the user that
they are still "private". Needless to say, in an actively developed project, keeping track of
which private headers can still stay in src/ and which have to be moved to include/ (and
vice versa) is a tedious, error-prone task. As a result, practically, the split layout quickly
degrades into the "all headers in include/" arrangement which negates its main advantage.

It is also not clear how the split layout will translate to modularized projects. With modules,
both the interface and implementation (including non-inline/template function definitions) can
reside in the same file with a substantial number of C++ developers finding this arrangement
appealing. If a project consists of only such single-file modules, then include/ and src/
have effectively become the same thing (note that there couldn’t be any "private" modules in
src/ since there would be nobody to import them). In a sense, we already have this situation
with header-only libraries except that, in the case of modules, calling the directory
include/ would be an anachronism.

To summarize, the split directory arrangement offers little benefit over the combined directory
layout, has a number of real drawbacks, and does not fit modularized projects well. In prac-
tice, private headers are placed into include/, often either in a subdirectory or with a

48 The build2 Toolchain Introduction Revision 0.18, June 2025

2.1 Source Subdirectory

special file name suffix, a mechanism that is readily available in the combined directory
layout.

All headers within a project should be included using the <> style inclusion and contain the
project name as a subdirectory prefix. And all headers means all headers — public, private, or
implementation detail, in executables or in libraries.

As an example, let’s say we’ve added utility.hxx to our hello project. This is how it
should be included in hello. cxx:

// #include "utility.hxx" // Wrong.
// #include <utility.hxx> // Wrong.
// #include "../hello/utility.hxx" // Wrong.

#include <hello/utility.hxx>

Similarly, if we want to include hello.hxx from libhello, then the inclusion should
look like this:

#include <libhello/hello.hxx>

The problem with the "" style inclusion is if the header is not found relative to the including
file, most compilers will continue looking for it in the include search paths, the same as for
<>. As a result, if the header is not present in the right place (for example, because it was
mistakenly not listed as to be installed), chances are that a completely unrelated header with
the same name will be found and included. Needless to say, debugging situations like these is
unpleasant.

Prefixing all inclusions with the project name as subdirectory also makes sure that headers
with common names (for example, utility.hxx) can coexist (for example, when installed
into a system-wide directory, such as /usr/include). The subdirectory prefix also plays
an important role in supporting auto-generated headers.

Note also that this header inclusion scheme is consistent with the module importation, for
example:

import hello.utility;

Finally, note that while adding the subdirectory prefix to the " " style inclusion (for example,
"libhello/hello.hxx") will make finding an unrelated header unlikely, there is still a
possibility. And it is not clear why take the chance when there are no benefits. So let’s
imagine the " " style inclusion does not exist and we will all have a much better time.

If you have to disregard every rule and recommendation in this section but one, for example,
because you are working on an existing library, then at minimum insist on this: public header
inclusions must use the library name as a subdirectory prefix.

The project’s source subdirectory can have subdirectories of its own, for example, to organize
the code into components. Naturally, header inclusions will need to contain such subdirecto-
ries, for example <libhello/core/hello.hxx>. When the project’s headers are

Revision 0.18, June 2025 The build2 Toolchain Introduction 49

2.1 Source Subdirectory

installed (for example, into /usr/include), this subdirectory hierarchy is automatically
recreated.

If you would like to separate public APl headers/modules from implementation details, the
convention is to place them into the details/ subdirectory. For example:

libhello/
-—— libhello/
|-- details/
| -—— utility.hxx

If a project has truly private headers (for example, proprietary code) that must be clearly sepa-
rated from public and implementation detail headers, then they can be placed into the
private/ subdirectory, next to details/. In a sense, this arrangement mimics the C++
public/protected/private member access.

It is recommended that you still install the implementation detail headers and modules for the
reasons discussed above. If, however, you would like to disable their installation, you can add
the following line to your source subdirectory buildfile:

details/hxx{*}: install = false

If you are creating a family of libraries with a common name prefix, then it may make sense
to use a nested source subdirectory layout with a common top-level directory. As an example,
let’s say we have the 1ibstud-path and 1ibstud-url libraries that belong to the same
libstud family. Their source subdirectory layouts could look like this:

libstud-path/
-—— libstud/
-—— path/
|-- path.hxx
|-- path-io.hxx
— ...

-—— buildfile

libstud-url/
-—— libstud/
«—— url/
|—— url.hxx
|—— url-io.hxx

-—— buildfile

With the header inclusion paths adjusted accordingly:

#include <libstud/path/path.hxx>
#include <libstud/url/url.hxx>

The bdep—new (1) command provides the subdir project type sub-option that allows us
to customize the source subdirectory within a project. For example:

50 The build2 Toolchain Introduction Revision 0.18, June 2025

2.2 Source Naming

$ bdep new -1 c++ -t lib,subdir=libstud/path libstud-path

2.2 Source Naming

When naming source files, only use ASCII alphabetic characters, digits, as well as _ (under-
score) and — (minus). Use . (dot) only for extensions, that is, trailing parts of the name that
classify your files. Examples of good names:

SmallVector.hxx
small-vector.hxx
small_vector.hxx
small-vector.test.cxx

Examples of bad names:

small+vector.hxx
small.vector.hxx

If you are using _ or — as word separators in filesystem names, pick one and use it consis-
tently throughout the project.

The C source file extensions are always . h/. c. The two alternative C++ source file extension
schemes are . ?pp and . ?xx:

file .?7Pp . ?XX
header .hpp .hxx
module .Mmpp .mMxXX
inline Jdpp Lixx
template .tpp . txx
source .CpPp .CXX

The .mxx/.mpp extension is for the module interface translation units with module imple-
mentation units (if any) using the .cxx/.cpp extension. If both are present, then it makes
sense to use the same base name, similar to headers. For example:

hello-core.mxx
hello-core.cxx

The use of inline and template files is a matter of taste. If used, they are included at the end of
the header/module files and contain definitions of inline and non-inline template functions,
respectively. The .?xx/.?pp files with the same name (or, sometimes, name prefix) are
assumed to be related and are collectively called a module. This term is meant to correspond
directly to a C++ module.

By default the bdep—new (1) command uses the naming .?xx scheme. To use .?pp
instead, pass -t c++, cpp.

There are several reasons not to "reuse" the . h C header extension for C++ files:

Revision 0.18, June 2025 The build2 Toolchain Introduction 51

2.3 Source Contents

® There can be a need for both C and C++ headers for the same module.
® [t allows tools to accurately determine the language from the file name.
® [t is easier to search for C++ source code using wildcard patterns (* . ?pp).

The last two reasons are also why headers without extensions are probably not worth the
trouble.

Source files corresponding to C++ modules need to embed a sufficient amount of "module
name tail" in their names to unambiguously resolve all the modules used in a project. When
deriving file names from C++ module names, . (dot) should be replaced with either __ (under-
score), — (minus), a case change, or a directory separator, according to your project’s file
naming scheme. For example, if our 1ibhello had two modules, hello.core and
hello.extra, then their interface units could be named as follows:

hello-core.mxx
hello-extra.mxx

hello_core.mxx
hello_extra.mxx

HelloCore.mxx
HelloExtra.mxx

hello/core.mxx
hello/extra.mxx

core.mxx
extra.mxx

As discussed in the next section, public module names should start with the project name and
for such modules it is customary to omit this first component from file names (the last variant
in the above example). See also Building Modules for a more detailed discussion of the
module name to file name mapping.

2.3 Source Contents

Let’s now move inside our source files. All macros defined by a project, such as include
guards, version and symbol export macros, etc., must all start with the project name (including
the 1ib prefix for libraries), for example LIBHELLO_VERSION. Similarly, the library’s
namespace and module names (both public and implementation detail) should all start with
the library name but without the 1ib prefix. For example:

// libhello/hello.mxx
export module hello.core;

namespace hello

{

}

52 The build2 Toolchain Introduction Revision 0.18, June 2025

2.4 Tests

An executable project may use a namespace (in which case it is natural to name it after the
project) and its (private) modules shouldn’t be qualified with the project name (in order not to
clash with similarly named modules from the corresponding library, if any). A library may
also have private modules in which case they shouldn’t be qualified either.

Hopefully by now the recommendation for the 1ib prefix should be easy to understand:
oftentimes executables and libraries come in pairs, for example hello and 1ibhello, with
the reusable functionality being factored out from the executable into the library. It is natural
to want to use the same name stem (hello in our case) for both.

The above naming scheme (with the 1ib prefix present in some names but not others) is care-
fully chosen to allow such library/executable pairs to coexist and be used together without too
much friction. For example, both the library and executable can have a header called
utility.hxx with the executable being able to include both and even get the "merged"
functionality without extra effort (since they use the same namespace):

// hello/hello.cxx

#include <hello/utility.hxx>
#include <libhello/utility.hxx>

namespace hello

{

// Contains names from both utilities.

}

A canonical library project contains two special headers: export .hxx (or export .hpp)
that defines the library’s symbol exporting macro as well as version.hxx (or
version.hpp) that defines the library’s version macros (see version Module for details).

2.4 Tests

A project may have unit and/or functional/integration tests. Unit tests exercise each module’s
(potentially private) functionality in isolation. In contrast, functional/integration tests exercise
the project via its public API, just like the real users of the project would.

A source file that implements a module’s unit tests should be placed next to that module’s
files and be called with the module’s name plus the .test second-level extension. It is
expected to implement an executable (that 1s, define main ()). If a module uses Testscript for
unit testing, then the corresponding file should be called with the module’s name plus the
.test.testscript extension. For example:

libhello/
-—— libhello/
|-— hello.hxx
|-— hello.cxx
|-— hello.test.cxx
-—— hello.test.testscript

Revision 0.18, June 2025 The build2 Toolchain Introduction 53

2.4 Tests

All source files (that is, headers, modules, etc) with the .test second-level extension are
assumed to belong to unit tests and are automatically excluded from the library/executable
sources.

A library’s functional/integration tests should go into the tests/ subdirectory. Each such
test should reside in a separate subdirectory, potentially organized into nested subdirectories
(for instance, to correspond to the source subdirectory components). For example, if we were
creating an XML parsing and serialization library, then our tests/ could have the following
layout:

tests/
-— basics/
|—— driver.cxx
-—— buildfile
-— parser/
|-- pull/
| |—— driver.cxx
| -—— buildfile
-—— push/
|—— driver.cxx
-—— buildfile
-—— serializer/

In the canonical library project created by bdep-new the tests/ subdirectory is an
unnamed subproject (in the build system terms). This allows us to build and run tests against
an installed version of the library (see Testing for more information on the contents of this
directory).

The build2 CI implementation will automatically perform the installation test if a project
contains the test s/ subproject. See bbot Worker Logic for details.

By default executable projects do not have the tests/ subprojects instead placing integra-
tion tests next to the source code (the testscript file; see The build2 Testscript Language
for details). However, if desired, executable projects can have the tests/ subproject, the
same as libraries.

By default projects created by bdep—new include support for functional/integration testing
but exclude support for unit testing. These defaults, however, can be overridden with
no-tests and unit-tests options, respectively. For example:

$ bdep new -1 c++ -t lib,unit-tests libhello

The rationale behind these defaults is that if a functionality can be tested through the public
API, then we should generally prefer integration to unit testing. And in simple projects the
entire functionality is often exposed through the public API. At the same time, support for
unit testing adds extra complexity to the build infrastructure. Note also that it is fairly straight-
forward to add support for unit testing at a later stage. The relevant build logic is localized in
the source subdirectory buildfile so you can simply generate a new project with unit tests
enabled and copy over the relevant parts.

54 The build2 Toolchain Introduction Revision 0.18, June 2025

2.5 Build Output

2.5 Build Output

There are no bin/ or obj/ subdirectories: build output (object files, libraries, executables,
etc) go into a parallel directory structure (in case of an out of source build) or next to the
sources (in case of an in source build). See Output Directories and Scopes for details on in and
out of source builds.

Projects managed with bdep (1) are always built out of source. However, by default, the
source directory is configured as forwarded to one of the out of source builds. This has two
effects: we can run the build system driver b (1) directly in the source directory and certain
"interesting" targets (such as executables, documentation, test results, etc) will be automati-
cally backlinked to the source directory (see Configuration for details on forwarded configura-
tions). The following listing illustrates this setup for our hello project (executables are
marked with *):

hello—-gcc/
hello/ > -—— hello/
|-- build/ ~~> |-- build/
-—— hello/ > -—— hello/
|-- hello.cxx |-- hello.o
-—— hello -——> -—— *hello

The result is an as-if in source build with all the benefits (such as having both source and rele-
vant output in the same directory) but without any of the drawbacks (such as the inability to
have multiple builds or source directory cluttered with object files).

The often cited motivation for placing executables into bin/ is that in many build systems it
is the only way to make things runnable in a reasonably cross-platform manner. The major
drawback of this arrangement is the need for unique executable names which is especially
constraining when writing tests where it is convenient to call the executable just driver or
test.

In build2 there is no such restriction and all executables can run in-place. This is achieved
with rpath which is emulated with DLL assemblies on Windows.

Revision 0.18, June 2025 The build2 Toolchain Introduction 55

	Preface
	1 Getting Started Guide
	1.1 Hello, World
	1.2 Package Repositories
	1.3 Adding and Removing Dependencies
	1.4 Upgrading and Downgrading Dependencies
	1.5 Build-Time Dependencies and Linked Configurations
	1.6 Versioning and Release Management
	1.7 Developing Multiple Packages and Projects
	1.8 Package Consumption
	1.9 Using System-Installed Dependencies
	1.10 Using Unpackaged Dependencies

	2 Canonical Project Structure
	2.1 Source Subdirectory
	2.2 Source Naming
	2.3 Source Contents
	2.4 Tests
	2.5 Build Output

