The build2 Packaging Guide

Copyright © 2014-2025 the build2 authors.
Permission is granted to copy, distribute and/or modify this document under the terms of the
MIT License.

Revision 0.18, June 2025
This revision of the document describes the build2 toolchain 0.18 . x series.

Table of Contents

Table of Contents

S 1
: 1
[1.1 Terminology| 2
[2 Common Guidelines| . 3
[2.1 Setup the package rep051t0ry|) 3
[2.1.1 Check if package repository already ex1sts| 3
[2.1.2 Use upstream repository name as package repository name] 4
[2.1.3 Create package repository in personal workspace]. 4
[2.1.4 Initialize package repository with bdep newl 5
[2.1.5 Add upstream repository as git submodule]. 7

[2.2 Create package and generate buildfile templates| 8
[2.2.1 Decide on the package name] 8
[2.2.2 Decide on the package source code layout| 11
[2.2.3 Craft bdep new command line to create package] 14
[2.2.4 Review and test auto-generated buildfile templates| 18
[2.2.5 Create final package| . 20
[2.2.6 Adjust package version| 21

[2.3 Fill package with source code and add dependen01es| 22
[2.3.1 Initialize package in build configurations| 23
[2.3.2 Add dependencies| 24
[2.3.3 Fill with upstream source code]. 26

[2.4 Adjust project-wide and source buildfiles]. 28
[2.4.1 Adjust project-wide build system files in bulld/ | 29
[2.4.2 Adjust source subdirectory buildfiles] 30
[2.4.3 Adjust header buildfile] 31
[2.4.4 Adjust source buildfile: overview| . 32
[2.4.5 Adjust source buildfile: cleanup| 33
[2.4.6 Adjust source buildfile: dependencies| 35
[2.4.7 Adjust source buildfile: public headers| . 36
[2.4.8 Adjust source buildfile: sources, private headers| . 36
[2.4.9 Adjust source buildfile: build and export options]. 38
[2.4.10 Adjust source buildfile: symbol exporting| . 41
[2.4.11 Adjust source buildfile: shared library version| . 43
[2.4.12 Adjust source buildfile: executables| 43
[2.4.13 Adjust source buildfile: extra requirements| 45
[2.4.14 Test library build| 45

[2.5 Make smoke test| 46
[2.5.1 Adjust project-wide bulld system flles In tests / bulld/ | 47
[2.5.2 Convert generated test to library smoke test| . 47
[2.5.3 Make smoke test: executables| . 48
[2.5.4 Test locally| . 49
[2.5.5 Test locally: installation| 49
[2.5.6 Test locally: distribution| 50
[2.5.7 Commit and test with CI| 51

Revision 0.18, June 2025 The build2 Packaging Guide i

Table of Contents

[2.6 Replace smoke test with upstreamtestsy 1§l
[2.6.1 Understand how upstream testsworkl 32
[2.6.2 Convert smoke test to upstream tests] 34
2.6.3 Testlocallyl i
[2.6.4 Commit and test withCY}{ 55

[2.7 Add upstream examples, benchmarks, ifany] 35

[2.8 Adjust root files (buildfile, manifest,etc) 45
[2.8.1 Adjustroot buildfile| 55
[2.8.2 Adjust root buildfile: other subd1rectorles| 56
[2.8.3 Adjustroot buildfile: commitandtesf 38
[2.8.4 Adjustmanifest| 59
[2.8.5 Adjust manifest: summary|. 60
[2.8.6 Adjust manifest: l1icense|. 6l
[2.8.7 Adjust manifest: commitandtest 6l
[2.8.8 Adjust PACKAGE-README.md| 6l

[2.9 Adjust package repository README .md| 62

[2.10 Release and publish| . . O 0
[2.10.1 Transfer package rep051t0ry| 64
[2.10.2 Release final version. 64
[2.10.3 Publish released version| 65

[2.11 Package version management 66
[2.11.1 New revision| a7
[2.11.2 New version] N
[2.11.3 New version: create new work branchl A 01
[2.11.4 New version: open new version| @69
[2.11.5 New version: update upstreamsubmodule) 69
[2.11.6 New version: review upstream changes|. &9
[2.11.7 New version: layout changes| 70
[2.11.8 New version: new/old dependenciesf 70
[2.11.9 New version: new/old source files| 710
[2.11.10 New version: changes to build system|. 171
[2.11.11 New version: other new/old files/subdirectories| A |
[2.11.12 New version: review manifest and PACKAGE-README.md| . . 71
[2.11.13 New version: review repository README.md| 171
[2.11.14 New version: review/fix accumulated issues|] 171
[2.11.15 New version: test locally and withCI| 171
[2.11.16 New version: merge, release, and publish|12
[2.11.17 New version/revision in old release series] 72

[3 What NottoDo| N)

[3.1 Don’t write buildfiles from scratch use bdep newI Y A

[3.2 Avoid fixing upstream issues in the build?2 package] 13

[3.3 Avoid changing upstream source code layout 73

[3.4 Don’t make library header-only if it can be compiled| 13

[3.5 Don’t bundle dependencies| . . A £

[3.6 Don’t build your main targets in the root bUlldf 1le| Y

[3.7 Don’t make extensive changes in a revision| 16

ii The build2 Packaging Guide Revision 0.18, June 2025

Table of Contents

i Packaginge HOWTO| o
(4.1 How do I patch upstream source code‘7| o
[4.1.1 Modifying upstream source code manually 717
[4.1.2 Modifying upstream source code during buildd 78
[4.1.3 Modifying upstream source code with C/C++ preprocessor] . . .19

(4.2 How do I deal with bad header inclusion practice?f 80
(4.3 How do I handle extra header installation subdirectory? 82
(4.4 How do I handle headers without an extension?| 83
4.5 How do I expose extra debug macrosof alibrary?l 84
(4.6 How do I deal with tests that don’t terminate?] 8
{4.7 How do I deal with compiler/linker running out of RAM"I 85
[5 Packaging FAQ| 86
[5.1 Publishing FAQ| 86
[5.1.1 Why is my package in alpha rather than stable"l 86
[5.1.2 Where to publish if package requires staged toolchain? 86
[5.1.3 Why "project owner authentication failed" while publishing? . . . 87

[6 Package Review| &8s
[6.1 Reviewing initial package submlss10nl91
[6.1.1 Create reviewissuel 91
[6.1.2 Create review pull request 91
[6.1.3 Go through review checklis{ 9
[6.1.4 Add review outcome comment 93
[6.1.5 Finish successful review| 9%
[6.1.6 Continue with unsuccessful review| 95
[6.1.7 Send review notificationemaill 95

[6.2 Reviewing new version submission| 96
[6.2.1 Determine the extent of changes| 96
[6.2.2 Create reviewissuel 97
[6.2.3 Finish successful review| 98
[6.2.4 Continue with unsuccessful review| 98

[6.3 Reviewing new revision submission| 9

Revision 0.18, June 2025 The build2 Packaging Guide iii

Preface

Preface

This document provides guidelines for converting third-party C/C++ projects to the build2
build system and making them available as packages from the build2 commu-
nity’s central package repository. For additional information, including documentation for
individual build2 toolchain components, man pages, HOWTOs, etc., refer to the project
[Documentation| page.

1 Introduction

The aim of this guide is to ease the conversion of third-party C/C++ projects to the build2
build system and publishing them to the package repository by codifying the best
practices and techniques. By following the presented guidelines you will also make it easier
for others to review your work and help with ongoing maintenance.

A build2-based project can only consume packages that use the build2 build system
(with the exception of [system-installed packages). In other words, there is no support for
"wrapping" or otherwise adapting third-party projects’ existing build systems. While replac-
ing the build system unquestionably requires more work upfront, the build2 project’s expe-
rience is that the long-term benefits of this effort are well justified (see [How does build2)
[compare to other package managers? for details).

The primary focus of this guide is existing C/C++ projects that use a different build system
and that are maintained by a third-party, which we will refer to as upstream. Unless upstream
is willing to incorporate support for build2 directly into their repository, such projects are
normally packaged for build2 in a separate git repository under the
[github.com/build2-packaging| organization. Note, however, that many of the presented guide-
lines are also applicable when converting your own projects (that is, where you are the
upstream) as well as projects that use languages other than C or C++.

Most C/C++ packages that are published to are either libraries or executables
(projects that provide both are normally split into several packages) with libraries being in the
strong majority. Libraries are also generally more difficult to build correctly. As a result, this
guide uses libraries as a baseline. In most cases, a library-specific step is easily distinguished
as such and can be skipped when dealing with executables. And in cases where a more
nuanced change is required, a note will be provided.

At the high-level, packaging a third-party project involves the following steps:

Create the git repository and import upstream source code.
Generate buildfile templates that match upstream layout.
Tweak the generated buildfiles to match upstream build.
Test locally and using thefouild2 CI servicel

Release and publish the package to

Nk W -

Revision 0.18, June 2025 The build2 Packaging Guide 1

https://cppget.org/
https://build2.org/doc.xhtml
https://cppget.org/
https://build2.org/faq.xhtml#why-syspkg
https://build2.org/faq.xhtml#why-package-managers
https://build2.org/faq.xhtml#why-package-managers
https://github.com/build2-packaging
https://cppget.org/
https://ci.cppget.org/
https://cppget.org/

1.1 Terminology

Once this process is completed and the package is published, new releases normally require a
small amount of work provided there are no drastic changes in the upstream layout or build.
The sequence of steps for a new release would typical look like this:

1. Add new and/or remove old upstream source code, if any.

2. Tweak buildfiles to match changes to upstream build, if any.
3. Test locally and using the oui1d2 CI servicel

4. Release and publish the package to[cppget.orgl

While packaging a simple library or executable is relatively straightforward, the C and C++
languages and their ecosystems are infamous for a large amount of variability in the plat-
forms, compilers, source code layouts, and build systems used. This leads to what looks like
an endless list of special considerations that are only applicable in certain, more complex
cases.

As result, the presented guidelines are divided into four chapters: [Common Guidelines| cover
steps that are applicable to most packaging efforts. As mentioned earlier, these steps will
assume packaging a library but they should be easy to adapt to executables. This chapter is
followed by [What Not to Do| which covers the common packaging mistakes and omissions.
These are unfortunately relatively common because experience with other build systems often
does not translate directly to build2 and some techniques (such as header-only libraries) are
discouraged. The last two chapters are [HOWTO| and The former covers the
above-mentioned long list of special considerations that are only applicable in certain cases
while the latter answer frequent packaging-related questions.

Besides the presented guidelines, you may also find the existing packages found in
[github.com/build2-packaging| a good source of example material. The repositories pinned to
the front page are the recommended starting point.

This guide assumes familiarity with the build2 toolchain. At the minimum you should have
read through The build2 Toolchain Introduction and the Introduction chapter in the build
system manual. Ideally, you should also have some experience using build2 in your own
projects.

In this guide we will only show the UNIX version of the commands. In most cases making a
Windows version is a simple matter of adjusting paths and, if used, line continuations. And
where this is not the case a note will be provided showing the equivalent Windows command.

1.1 Terminology

We use the term upstream to refer collectively to the third-party project as well as to its
authors. For example, we may say, "upstream does not use semver" meaning that the
upstream project does not use semver for versioning. Or we may say, "upstream released a
new version" meaning that the upstream project’s authors released a new version.

2 The build2 Packaging Guide Revision 0.18, June 2025

https://ci.cppget.org/
https://cppget.org/
https://github.com/build2-packaging

2 Common Guidelines

We will often use upstream as a qualifier to refer to a specific part of the upstream project.
Commonly used qualified terms like this include:

upstream repository
The version control (normally git) repository of the third-party project.

upstream source code
The C/C++ source code that constitutes the third-party project.

upstream layout
The directory structure and location of source code in the third-party project.

upstream build system
The equivalents of buildfiles that are used by the third-party project to build its
source code, run tests, etc. For example, if upstream uses CMake, then all the CMake-
Lists.txt, *.cmake, etc., files will constitute its build system.

To avoid confusion, in this guide we will always use the term project to refer to upstream and
package to refer to its build2 conversion, even though we would normally call our own
build2-based work a project, not a package (see Project Structure for details on the
build2 terminology in this area). Some commonly used build2-side terms in this guide
include:

package git repository
The git repository that hosts the package of the upstream project.

multi-package repository
Sometimes it makes sense to split the upstream project into multiple build2 packages
(for example, a library and an executable). In this case the package repository structure
must become multi-package.

2 Common Guidelines

This chapter describes the recommended sequence of steps for packaging a third-party project
for build2 with the end-goal of publishing it to the package repository.

2.1 Setup the package repository

This section covers the creation of the package git repository and the importation of the
upstream source code.

2.1.1 Check if package repository already exists

Before deciding to package a third-party project you have presumably checked on
if someone has already packaged it. There are several other places that make sense to check as
well:

® [queue.cppget.org|contains packages that have been submitted but not yet published.
® |queue.stage.build2.org| contains packages that have been submitted but can only be
published after the next release of the build2 toolchain (see [Where to publish if]

Revision 0.18, June 2025 The build2 Packaging Guide 3

https://cppget.org/
https://cppget.org/
https://queue.cppget.org/
https://queue.stage.build2.org/

2.1.2 Use upstream repository name as package repository name

[package requires staged toolchain? for background).

® [oithub.com/build2-packaging| contains all the third-party package repositories. Someone
could already be working on the package but haven’t yet published it.

® [oithub.com/build2-packaging/ WISHLIST]| contains as issues projects that people wish
were packaged. These may contain offers to collaborate or announcements of ongoing
work.

In all these cases you should be able to locate the package git repository and/or connect with
others in order to collaborate on the packaging work. If the existing effort looks abandoned
(for example, there hasn’t been any progress for a while and the existing maintainer doesn’t
respond) and you would like to take over the package,

2.1.2 Use upstream repository name as package repository name

It is almost always best to use the upstream repository name as the package repository name.
If there is no upstream repository (for example, because the project doesn’t use a version
control system), the name used in the source archive distribution would be the natural fallback
choice.

See|Decide on the package name|for the complete picture on choosing names.

2.1.3 Create package repository in personal workspace

For a third-party project, the end result that we are aiming for is a package repository under
the |github.com/build2-packaging| organization.

We require all the third-party projects that are published to to be under the
[github.com/build2-packaging| organization in order to ensure some continuity in case the orig-
inal maintainer loses interest, etc. You will still be the owner of the repository and by hosting
your packaging efforts under this organization (as opposed to, say, your personal workspace)
you make it easier for others to discover your work and to contribute to the package mainte-
nance.

Note that this requirement does not apply to your own projects (that is, where you are the
upstream) and where the build2 support is part of the upstream repository. Such projects
can live anywhere one can host a git repository. Furthermore, if upstream adds support for
build?2 in a package currently hosted under [github.com/build2-packaging| then all future
versions should normally be published directly from the upstream repository.

Finally, a note on the use of git and GitHub: if for some reason you are unable to use either,

to discuss alternatives.

However, the recommended approach is to start with a repository in your personal workspace
and then, when it is ready or in a reasonably complete state, transfer it to
[github.com/build2-packaging| This gives you the freedom to make destructive changes to the
repository (including deleting it and starting over) during the initial packaging work. It also
removes the pressure to perform: you can give it a try and if things turn out more difficult than

4 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2-packaging
https://github.com/build2-packaging/WISHLIST/issues
https://build2.org/community.xhtml#help
https://github.com/build2-packaging
https://cppget.org/
https://github.com/build2-packaging
https://github.com/build2-packaging
https://build2.org/community.xhtml#help
https://github.com/build2-packaging

2.1.4 Initialize package repository with bdep new

you expected, you can just drop the repository.

For repositories under [github.com/build2-packaging|the master/main branch is protected: it
cannot be deleted and its commit history cannot be overwritten with a forced push.

While you can use any name for a repository under the personal workspace, under
[¢ithub.com/build2-packaging] it should follow the [Use upstream repository name as package |
[repository name| guideline. In particular, there should be no prefixes like build2- or
suffixes like —package. If the repository under your personal workspace does not follow
this guideline, you will need to rename it before transferring it to the [github.com/build2-pack|

organization.

There is one potential problem with this approach: it is possible that several people will start
working on the same third-party project without being aware of each other’s efforts. If the
project you are packaging is relatively small and you don’t expect it to take more than a day
or two, then this is probably not worth worrying about. For bigger projects, however, it makes
sense to announce your work by creating (or updating) the corresponding issue in
[¢ithub.com/build2-packaging/ WISHLIST]

To put it all together, the recommended sequence of actions for this step:

1. Create a new empty repository under your personal workspace from the GitHub UI.

2. Set the repository description to build2 package for <name>, where <name> is
the third-party project name.

3. Make the repository public (otherwise you won’t be able to CI it).

4. Don’t automatically add any files (README, LICENSE, etc).

5. Clone the empty repository to your machine (using the SSH protocol).

Since this is your personal repository, you can do the initial work directly in master/main
or in a separate branch, it’s up to you.

As a running example, let’s assume we want to package a library called foo whose upstream
repository is at https://github.com/<upstream>/foo.git. We have created its
package repository at https://github.com/<personal>/foo.git (with the
build2 package for foo description) and can now clone it:

$ git clone git@github.com:<personal>/foo.git

2.1.4 Initialize package repository with bdep new

Change to the root directory of the package repository that you have cloned in the previous
step and run (continuing with our £oo example):

Revision 0.18, June 2025 The build2 Packaging Guide 5

https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging/WISHLIST

2.1.4 Initialize package repository with bdep new

$ cd foo/ # Change to the package repository root.
$ bdep new —--type empty,third-party
$ tree -a .

./

-— .bdep/

AA -— ...

-— .git/

AA -— ...

.gitattributes

—-— .gitignore

—— README .md

-—— repositories.manifest

We use the special third-party sub-option which is meant for converting third-party
projects to build2. See bdep—new (1) for details.

This command creates a number of files in the root of the repository:

README .md
This is the repository README . md. We will discuss the recommended content for this
file later.

repositories.manifest
This file specifies the repositories from which this project will obtain its dependencies
(see Adding and Removing Dependencies). If the project you are packaging has no
dependencies, then you can safely remove this file (it’s easy to add later if this changes).
And for projects that do have dependencies we will discuss the appropriate changes to
this file later.

.gitattributes and .gitignore
These are the git infrastructure files for the repository. You shouldn’t normally need to
change anything in them at this stage (see the comments inside for details).

Next add and commit these files:

cd foo/ # Change to the package repository root.
git add .

git status

git commit -m "Initialize package repository"

v »r 1

In these guidelines we will be using the package repository setup that is capable of having
multiple packages (referred to as multi-package repository). This is recommended even for
upstream projects that only provides a single package because it gives us the flexibility of
adding new packages at a later stage without having to perform a major restructuring of our
repository.

Note also that upstream providing multiple packages is not the only reason we may end up
having multiple build2 packages. Another common reason is factoring tests into a separate
package due to a dependency on a testing framework (see [How do I handle tests that have]
lextra dependencies?| for background and details). While upstream adding new packages may
not be very common, upstream deciding to use a testing framework is a lot more plausible.

6 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

2.1.5 Add upstream repository as git submodule

The only notable drawback of using a multi-package setup with a single package is the extra
subdirectory for the package and a few extra files (such as packages.manifest that lists
the packages) in the root of the repository. If you are certain that the project that you are
converting is unlikely to have multiple packages (for example, because you are the upstream)
and won’t need extra dependencies for its tests (a reasonable assumption for a C project), then
you could instead go with the single-package repository where the repository root is the
package root. See bdep—new (1) for details on how to initialize such a repository. In this
guide, however, we will continue to assume a multi-package repository setup.

Make sure the first commit in the package repository contains no manual changes. In other
words, it should only add files as generated by bdep-new. This is relied upon during the
package review process (see [Create review pull request| for details).

2.1.5 Add upstream repository as git submodule

If the third-party project is available from a git repository, then the recommended approach
is to use the git submodule mechanism to make the upstream source code available inside
the package repository, customarily in a subdirectory called upstream/.

While git submodules receive much criticism, in our case we use them exactly as intended:
to select and track specific (release) commits of an external project. As a result, there is
nothing tricky about their use for our purpose and all the relevant commands will be provided
and explained, in case you are not familiar with this git mechanism.

Given the upstream repository URL, to add it as a submodule, run the following command
from the package repository root (continuing with our foo example):

$ cd foo/ # Change to the package repository root.
$ git submodule add https://github.com/<upstream>/foo.git upstream

You should prefer https:// over git:// for the upstream repository URL since the
git:// protocol may not be accessible from all networks. Naturally, never use a URL that
requires authentication, for example, SSH (SSH URLs start with git@github.com for
GitHub).

Besides the repository URL, you also need the commit of the upstream release which you will
be packaging. It is common practice to tag releases so the upstream tags would be the first
place to check. Failing that, you can always use the commit id.

Assuming the upstream release tag you are interested in is called vX.Y.Z, to update the
upstream submodule to point to this release commit, run the following commands:

$ cd upstream/
$ git checkout vX.Y.Z
$cd ../

Then add and commit these changes:

Revision 0.18, June 2025 The build2 Packaging Guide 7

2.2 Create package and generate buildfile templates

$ git add .
$ git status
$ git commit -m "Add upstream submodule, vX.Y.Z"

Now we have all the upstream source code for the version that we are packaging available in
the upstream/ subdirectory of our repository.

The plan is to then use symbolic links (symlinks) to non-invasively overlay the
build2-related files (buildfile, manifest, etc) with the upstream source code, if
necessary adjusting upstream structure to split it into multiple packages and/or to better align

with the source/output layouts recommended by build2 (see [Using Symlinks in build2

for background and rationale). But before we can start adding symlinks to the
upstream source (and other files like README, LICENSE, etc), we need to generate the
buildfile templates that match the upstream source code layout. This is the subject of the
next section.

While on UNIX-like operating systems symlinks are in widespread use, on Windows it’s a
niche feature that unfortunately could be cumbersome to use (see [Symlinks and Windows| for
details). However, the flexibility afforded by symlinks when packaging third-party projects is
unmatched by any other mechanism and we therefore use them despite potentially
sub-optimal packaging experience on Windows.

2.2 Create package and generate buildfile templates

This section covers the addition of the package to the repository we have prepared in the
previous steps and the generation of the buildfile templates that match the upstream
source code layout.

2.2.1 Decide on the package name

While choosing the package repository name was pretty straightforward, things get less clear
cut when it comes to the package name.

If you need a refresher on the distinction between projects and packages, see

Picking a name for a package that provides an executable is still relatively straightforward:
you should use the upstream name (which is usually the same as the upstream project name)
unless there is a good reason to deviate. One recommended place to check before deciding on
a name is the [Debian package repository| If their package name differs from upstream, then
there is likely a good reason for that and it is worth trying to understand what it is.

Tip: when trying to find the corresponding Debian package, search for the executable file
name in the package contents if you cannot find the package by its upstream name. Also
consider searching in the unstable distribution in addition to st albb1le for newer packages.

Picking a name for a package that provides a library is where things can get more compli-
cated. While all the recommendations that have been listed for executables apply equally to
libraries, there are additional considerations.

8 The build2 Packaging Guide Revision 0.18, June 2025

https://build2.org/article/symlinks.xhtml
https://build2.org/article/symlinks.xhtml
https://build2.org/article/symlinks.xhtml#windows
https://packages.debian.org/

2.2.1 Decide on the package name

In build2 we recommend (but not require) that new library projects use a name that starts
with 1ib in order to easily distinguish them from executables and avoid any clashes, potential
in the future (see Canonical Project Structure for details). To illustrate the problem, consider
the zstd project which provides a library and an executable. In upstream repository both are
part of the same codebase that doesn’t try to separate them into packages so that, for example,
library could be used without downloading and building the executable. In build2,
however, we do need to split them into two separate packages and both packages cannot be
called zstd. So we call them zstd and 1ibzstd.

If you are familiar with the Debian package naming policy, you will undoubtedly recognize
this approach. In Debian all the library packages (with very few exceptions) start with the
1ib prefix. So when searching for an upstream name in the [Debian package repository| make
sure to prefix it with 1ib (unless it already starts with this prefix, of course).

This brings the question of what to do about third-party libraries: should we add the 1ib
prefix to the package name if it’s not already there? Unfortunately, there is no clear cut
answer and whichever decision you make, there will be drawbacks. Specifically, if you add
the 1ib prefix, the main drawback is that the package name now deviates from the upstream
name and if the project maintainer ever decides to add build2 support to the upstream
repository, there could be substantial friction. On the other hand, if you don’t add the 1ib
prefix, then you will always run the risk of a future clash with an executable name. And, as
was illustrated with the zstd example, a late addition of an executable won’t necessarily
cause any issues to upstream. As a result, we don’t have a hard requirement for the 1ib prefix
unless there is already an executable that would cause the clash (this applies even if it’s not
being packaged yet or is provided by an unrelated project). If you don’t have a strong prefer-
ence, we recommend that you add the 1ib prefix (unless it is already there). In particular, this
will free you from having to check for any potential clashes. See [How should I name pack
lages when packaging third-party projects?| for additional background and details.

To build some intuition for choosing package names, let’s consider several real examples. We
start with executables:

upstream | upstream | Debian | build2 package| build2
project name|executable name|package name|repository name|package name
———————————— —_—
byacc byacc byacc byacc byacc
sglite sglite3 sglite3 sglite sglite3
vim xxd xxd xxd xxd
OpenBSD m4 - openbsd-m4 openbsd-m4
gtbase 5 moc gtbase5-\ ot5 Qt5Moc

dev-tools

gtbase 6 moc gt6-base-\ ot6 Qt 6Moc

dev-tools

The examples are arranged from the most straightforward naming to the least. The last two
examples show that sometimes, after carefully considering upstream naming, you nevertheless
have no choice but to ignore it and forge your own path.

Revision 0.18, June 2025 The build2 Packaging Guide 9

https://packages.debian.org/
https://github.com/build2/HOWTO/blob/master/entries/name-packages-in-project.md
https://github.com/build2/HOWTO/blob/master/entries/name-packages-in-project.md

2.2.1 Decide on the package name

Next let’s look at library examples. Notice that some use the same build2 package reposi-
tory name as the executables above. This means they are part of the same multi-package
repository.

upstream | upstream | Debian | build2 package]| build2
project name|library name |package name|repository name|package name
———————————— Bt et st
libevent libevent libevent libevent libevent
brotli brotli libbrotli brotli libbrotli
z1lib z1lib z1lib z1lib libz
sglite libsglite3 libsglite3 sglite libsglite3
libsig\ libsigc++ libsigc++ libsig\ libsigc++
cplusplus cplusplus
gtbase 5 QtCore gtbase5-dev Qt5 1libQt5Core
gtbase 6 QtCore gt 6-base-dev Qt6 libQt6Core

If an upstream project is just a single library, then the project name is normally the same as
the library name (but there are exceptions, like 1ibsigcplusplus in the above table).
However, when looking at the upstream repository that contains multiple components
(libraries and/or executables, like gt core in the above example), it may not be immediately
obvious what the upstream’s library names are. In such cases, the corresponding Debian pack-
ages can really help clarify the situation. Failing that, look into the existing build system. In
particular, if it generates the pkg—config file, then the name of this file is usually the
upstream library name.

Looking at the names of the library binaries is less helpful because on UNIX-like systems
they must start with the 1ib prefix. And on Windows the names of library binaries often
embed extra information (static/import, debug/release, etc) and may not correspond directly to
the library name.

And, speaking of multiple components, if you realize the upstream project provides multiple
libraries and/or executables, then you need to decide whether to split them into separate
build2 packages and if so, how. Here, again, the corresponding Debian packages can be a
good reference point. Note, however, that we often deviate from Debian’s splits, especially
when it comes to libraries. Such differences are usually due to Debian focusing on binary
packages while in build2 we are focusing on source packages.

To give a few examples, 1ibevent shown in the above table provides several libraries
(libevent-core, libevent-extra, etc) and in Debian it is actually split into several
binary packages along these lines. In build2, however, there is a single source package that
provides all these libraries with everything except 1ibevent—-core being optional. An
example which shows the decision made in a different direction would be the Boost libraries:
in Debian all the header-only Boost libraries are bundled into a single package while in
build2 they are all separate packages.

The overall criteria here can be stated as follows: if a small family of libraries provide compli-
mentary functionality (like 1ibevent), then we put them all into a single package, usually
making the additional functionality optional. However, if the libraries are independent (like
Boost) or provide alternative rather than complimentary functionality (for example, like
different backends in imgui), then we make them separate packages. Note that we never

10 The build2 Packaging Guide Revision 0.18, June 2025

2.2.2 Decide on the package source code layout

bundle an executable and a (public) library in a single package (because, when consumed,
they usually require different dependency types: build-time vs run-time).

Note also that while it’s a good idea to decide on the package split and all the package names
upfront to avoid surprises later, you don’t have to actually provide all the packages right
away. For example, if upstream provides a library and an executable (like zstd), you can
start with the library and the executable package can be added later (potentially by someone
else).

In the "library and executable" case, if you plan to package both, the sensible strategy is to
first completely package the library stopping short of releasing and publishing, then repeat the
same process to package the executable, and finally release and publish both.

Admittedly, the recommendations in this section are all a bit fuzzy and one can choose differ-
ent names or different package splits that could all seem reasonable. If you are unsure how to
split the upstream project or what names to use, to discuss the alternatives. It can
be quite painful to change these things after you have completed the remaining packaging
steps.

Continuing with our foo example, we will follow the above recommendation and call the
library package 1ibfoo.

2.2.2 Decide on the package source code layout

Another aspect we need to decide on is the source code layout inside the package. Here we
want to stay as close to the upstream layout as possible unless there are valid reasons to
deviate. Staying close has the best chance of giving us a build without any compile errors
since the header inclusion in the project can be sensitive to this layout. This also makes it
easier for upstream to adopt the build2 build.

Sometimes, however, there are good reasons for deviating from upstream, especially in cases
where upstream is clearly following bad practices, for example including generically-named
public headers without the library name as a subdirectory prefix. If you do decide to change
the layout, it’s usually less disruptive (to the build) to rearrange things at the outer levels than
at the inner. For example, it should normally be possible to move/rename the top-level
tests/ directory or to place the library source files into a subdirectory.

Our overall plan is to create the initial layout and buildfile templates automatically using
bdep-new (1) in the ——package mode, then "fill" the package with upstream source code
using symlinks, and finish off with tweaking the generated buildfiles to match the
upstream build.

The main rationale for using bdep—new (1) instead of doing everything by hand is that there
are many nuances in getting the build right and auto-generated buildfiles had years of
refinement and fine-tuning. The familiar structure also makes it easier for others to understand
your build, for example while reviewing your package submission or helping out with mainte-
nance.

Revision 0.18, June 2025 The build2 Packaging Guide 11

https://build2.org/community.xhtml#help

2.2.2 Decide on the package source code layout

The bdep—new (1) command supports a wide variety of source layouts. While it may take a
bit of time to understand the customization points necessary to achieve the desired layout for
your first package, this experience will pay off in spades when you work on converting subse-
quent packages.

And so the focus of the following several steps is to iteratively discover the bdep—new (1)
command line that best approximates the upstream layout. The recommended procedure is as
follows:

1. Study the upstream source layout and existing build system.

2. Craft and execute the bdep—new (1) command line necessary to achieve the upstream
layout.

3. Study the auto-generated buildfiles for things that don’t fit and need to change. But
don’t rush to start manually editing the result. First get an overview of the required
changes and then check if it’s possible to achieve these changes automatically using one
of bdep—new (1) sub-options. If that’s the case, delete the package, and restart from
step 2.

This and the following two sections discuss each of these steps in more detail and also look at
some examples.

The first step above is to study the upstream project in order to understand where the various
parts are (headers, sources, etc) and how they are built. Things that can help here include:

Read through the existing build system definitions.

Try to build the project using the existing build system.

Try to install the project using the existing build system.

Look into the Debian package contents to see if there are any differences with regards to
the installation locations.

If while studying the upstream build system you notice other requirements, for example, the
need to compile source files other than C/C++ (such as Objective-C/C++, assembler, etc) or
the need to generate files from . in templates (or their . cmake/.meson equivalents), and

are wondering how they would be handled in the build2 build, see the |[Adjust source

[buildfile: extra requirements|step for a collection of pointers.

For libraries, the first key pieces of information we need to find is how the public headers are
included and where they are installed. The two common good practices is to either include the
public headers with a library name as a subdirectory, for example,
#include <foo/util.h>, or to include the library name into each public header name,
for example, #include <foo-util.h> or #include <foo.h> (in the last example
the header name is the library name itself, which is also fairly common). Unfortunately, there
is also a fairly common bad practice: having generically named headers (such as util.h)
included without the library name as a subdirectory.

12 The build2 Packaging Guide Revision 0.18, June 2025

2.2.2 Decide on the package source code layout

The reason this is a bad practice is that libraries that have such headers cannot coexist, neither
in the same build nor when installed. See [How do I deal with bad header inclusion practice?if
you encounter such a case. See Canonical Project Structure for additional background and
details.

Where should we look to get this information? While the library source files sound like a
natural place, oftentimes they include own headers with the " " style inclusion, either because
the headers are in the same directory or because the library build arranges for them to be
found this way with additional header search paths. As a result, a better place to look could be
the library’s examples and/or tests. Some libraries also describe which headers they provide
and how to include them in their documentation.

The way public headers are included normally determines where they are installed. If they are
included with a subdirectory, then they are normally installed into the same subdirectory in,
say, /usr/include/. Continuing with the above example, a header that is included as
<foo/util.h> would normally be installed as /usr/include/foo/util.h. On the
other hand, if the library name is part of the header name, then the headers are usually (but not
always) installed directly into, say, /usr/include/, for example as
/usr/include/foo-util.h.

While these are the commonly used installation schemes, there are deviations. In particular, in
both cases upstream may choose to add an additional subdirectory when installing (so the
above examples will instead end up with, say, /usr/include/foo-vl/foo/util.h

and /usr/include/foo-v1l/sub/foo-util.h). See [How do I handle extra header

[installation subdirectory?if you encounter such a case.

The inclusion scheme would normally also be recreated in the upstream source code layout. In
particular, if upstream includes public headers with a subdirectory prefix, then this subdirec-
tory would normally also be present in the upstream layout so that such a header can be
included from the upstream codebase directly. As an example, let’s say we determined that
public headers of libfoo are included with the foo/ subdirectory, such as
<foo/util.hpp>. One of the typical upstream layouts for such a library would look like
this:

$ tree upstream/
upstream/

|-- include/

| -—— foo/

| -—— util.hpp
-—— src/

|—— priv.hpp
-—— util.cpp

= h
= h

Notice how the util.hpp header is in the foo/ subdirectory rather than in include/
directly.

The second key piece of information we need to find is whether and, if so, how the public
headers and sources are split. For instance, in the above example, we can see that public
headers go into include/ while sources and private headers go into src/. But they could

Revision 0.18, June 2025 The build2 Packaging Guide 13

2.2.3 Craft bdep new command line to create package

also be combined in the same directory, for example, as in the following layout:

upstream/

-—— foo/
|—— priv.hpp
|—— util.cpp
-—— util.hpp

In multi-package projects, for example, those that provide both a library and an executable,
you would also want to understand how the sources are split between the packages.

If the headers and sources are split into different directories, then the source directory may or
may not have the inclusion subdirectory, similar to the header directory. In the above split
layout the src/ directory doesn’t contain the inclusion subdirectory (foo/) while the
following layout does:

upstream/

|-- include/

| -—— foo/

| -—— util.hpp
-—— src/

-—— foo/
|—— priv.hpp
-—— util.cpp

= h
= h

With the understanding of these key properties of upstream layout you should be in a good
position to start crafting the bdep—new (1) command line that recreates it.

The bdep—-new documentation uses slightly more general terminology compared to what we
used in the previous section in order to also be applicable to projects that use modules instead
of headers.

Specifically, the inclusion subdirectory (foo/) is called source subdirectory while the header
directory (include/) and source directory (src/) are called header prefix and source
prefix, respectively.

2.2.3 Craft bdep new command line to create package

The recommended procedure for this step is to read through the bdep-new’s SOURCE
LAYOUT section (which contains a large number of examples) while experimenting with
various options in an attempt to create the desired layout. If the layout you’ve got isn’t quite
right yet, simply remove the package directory along with the packages.manifest file
and try again.

Next to packages.manifest, bdep—-new will also create the "glue" buildfile that
allows building all the packages from the repository root. You don’t need to remove it when
re-creating the package.

Let’s illustrate this approach on the first split layout from the previous section:

14 The build2 Packaging Guide Revision 0.18, June 2025

2.2.3 Craft bdep new command line to create package

upstream/
|-- include/
|A A -—- foo/
A -—— util.hpp

|—— priv.hpp
-—— util.cpp

We know it’s split, so let’s start with that and see what we get. Remember, our foo package
repository that we have cloned and initialized earlier looks like this:

$ tree foo/

foo/

| -- upstream/

|-- .gitattributes

|—— .gitignore

| -- README.md

-—— repositories.manifest

Now we create the 1 ibfoo package inside:

$ cd foo/

$ bdep new --package --lang c++ —--type lib,split libfoo
$ tree libfoo/

libfoo/

|-- include/

| -—— libfoo/

| +—— foo.hxx

-—— src/

+—— libfoo/
-—— foo.cxx

= h
= h

The outer structure looks right, but inside include/ and src/ things are a bit off. Specifi-
cally, the source subdirectory should be foo/, not 1ibfoo/, there shouldn’t be one inside
src/, and the file extensions don’t match upstream. All this can be easily tweaked, however:

$ rm -r libfoo/ packages.manifest
$ bdep new —-package \
--lang c++, cpp \
——type lib, split, subdir=foo,no-subdir-source \
libfoo
$ tree libfoo/
libfoo/
|-- include/
| -—— foo/
| -—— foo.hpp
-—— src/

-—— foo.cpp

T
T

The other bdep—-new sub-options (see the bdep—new (1) man page for the complete list)
that you will likely want to use when packaging a third-party project include:

no-version

Omit the auto-generated version header. Usually upstream will provide its own equiva-
lent of this functionality.

Revision 0.18, June 2025 The build2 Packaging Guide 15

2.2.3 Craft bdep new command line to create package

Note that even if upstream doesn’t provide any version information, it’s not a good idea
to try to rectify this by providing your own version header since upstream may add it in a
future version and you may end up with a conflict. Instead, work with the project authors to
rectify this upstream.

no—-symexport
auto-symexport

The no-symexport sub-option suppresses the generation of the DLL symbol export-
ing header. This is an appropriate option if upstream provides its own symbol exporting
arrangements.

The auto-symexport sub-option enables automatic DLL symbol exporting support
(see Automatic DLL Symbol Exporting for background). This is an appropriate option if
upstream relies on similar support in the existing build system. It is also recommended
that you give this functionality a try even if upstream does not support building shared
libraries on Windows.

binless

Create a header-only library. See [Don’t make library header-only if it can be compiled|
and[How do I make a header-only C/C++ library?|

buildfile-in-prefix

16

Place header/source buildfiles into the header/source prefix directory instead of
source subdirectory. To illustrate the difference, compare these two auto-generated
layouts paying attention to the location of buildfiles:

$ bdep new ... —--type lib,split, subdir=foo libfoo
$ tree libfoo/

libfoo/

| -- include/

|A A .- foo/

|A A |-- buildfile

|A A -—— foo.hpp

-—— foo/
|-- buildfile
-—— foo.cpp

$ bdep new ... —--type lib,split,subdir=foo,buildfile-in-prefix libfoo
$ tree libfoo/

libfoo/

| -- include/

|A A |-- foo/

|[AA |AA --- foo.hpp

|A A .-- pbuildfile

|A A --- foo.cpp
-—— buildfile

Note that this sub-option only makes sense if we have the header and/or source prefixes

(include/ and src/ in our case) as well as the source subdirectory (foo/ in our
case).

The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/make-header-only-library.md

2.2.3 Craft bdep new command line to create package

Why would we want to do this? The main reason is to be able to symlink the entire
upstream directories rather than individual files. In the first listing, the generated
buildfiles are inside the foo/ subdirectories which mean we cannot just symlink
foo/ from upstream.

With a large number of files to symlink, this can be such a strong motivation that it may
make sense to invent a source subdirectory in the source prefix even if upstream doesn’t
have one. See [Don’t build your main targets in the root buildfilelfor details on this
technique.

Another reason we may want to move buildfiles to prefix is to be able to handle
upstream projects that have multiple source subdirectories. While this situation is not
very common in the header prefix, it can be encountered in the source prefix of more
complex projects, where upstream wishes to organize the source files into components.

If upstream uses a mixture of C and C++, then it’s recommended to set this up using the
——lang sub-option of bdep—-new. For example:

$ bdep new —--lang c++,c ...

Continuing with our 1ibfoo example, assuming upstream provides its own symbol export-
ing, the final bdep—new command line would be:

$ bdep new —-package \
—--lang c++, cpp \
——type lib,split, subdir=foo,no-subdir-source,no-version,no-symexport \
libfoo

When packaging an executable, things are usually quite a bit simpler: there is no version
header, symbol exporting, and the layout is normally combined (since there are no public
headers). Typically the only potentially tricky decision you will need to make is whether to
use prefix or source subdirectory. Most likely it will be prefix since most executable projects
will use the " " style inclusion for own headers. For example:

$ bdep new —-package \

——lang c++ \
—-—type exe,no-subdir,prefix=foo,export-stub \
foo

The export-stub sub-option causes the generation of build/export.build, an
export stub that facilitates the importation of targets from our package (see Target Importation
for details). The generation of this file for a library is the default since it will normally be used
by other projects and thus imported. An executable, however, will only need an export stub if
it can plausibly be used during the build (see Build-Time Dependencies and Linked Configu-
rations for background). Source code generators are an obvious example of such executables.
A less obvious example would be compression utilities such as gzip or zstd. If you are
unsure, it’s best to provide an export stub.

Revision 0.18, June 2025 The build2 Packaging Guide 17

2.2.4 Review and test auto-generated buildfile templates

2.2.4 Review and test auto-generated buildfile templates

Let’s get a more complete view of what got generated by the final bdep-new command line
from the previous section:

$ tree libfoo/
libfoo/
-— build/
A
—-— include
-—— foo/

|-- buildfile

-—— foo.hpp

p2

O h
O h

-— src/

|-- buildfile
-—— foo.cpp
-— tests/

| -- build/
AA -— ...
|-- basics/
|

|

= h
= h

|-- buildfile
-—— driver.cpp
-—— buildfile

—— buildfile

—-— manifest

-—— README.md

= h
= h

Once the overall layout looks right, the next step is to take a closer look at the generated
buildfiles to make sure that overall they match the upstream build. Of particular interest
are the header and source directory buildfiles (l1ibfoo/include/foo/buildfile
and 1ibfoo/src/buildfile in the above listing) which define how the library is built
and installed.

Here we are focusing on the macro-level differences that are easier to change by tweaking the
bdep-new command line rather than manually. For example, if we look at the generated
source directory buildfile and realize it builds a binful library (that is, a library that
includes source files and therefore produces library binaries) while the upstream library is
header-only, it is much easier to fix this by re-running bdep-new with the binless
sub-option than by changing the buildfiles manually.

Don’t be tempted to start making manual changes at this stage even if you cannot see anything
else that can be fixed with a bdep—-new re-run. This is still a dry-run and we will recreate the
package one more time in the following section before starting manual adjustments.

Besides examining the generated buildfiles, it’s also a good idea to build, test, and install
the generated package to make sure everything ends up where you expected and matches
upstream where necessary. In particular, make sure public headers are installed into the same
location as upstream (unless you have decided to deviate, of course) or at least it’s clear how
to tweak the generated buildfiles to achieve this.

18 The build2 Packaging Guide Revision 0.18, June 2025

2.2.4 Review and test auto-generated buildfile templates

The bdep-new-generated library is a simple "Hello, World!" example that can nevertheless
be built, tested, and installed. The idea here is to verify it matches upstream using the gener-
ated source files before replacing them with the upstream source file symlinks.

If you are using Windows, then you will need to temporarily replace the no—symexport
sub-option with auto-symexport in order to make the generated library buildable. But do
not forget to drop this sub-option in the next step.

Note that at this stage it’s easiest to build, test, and install in the source directory, skipping the
bdep initialization of the package (which we would have to de-initialize before we can re-run
bdep-new). Continue with the above example, the recommended sequence of commands
would be:

cd libfoo/

b update

b test

rm -rf /tmp/install

b install config.install.root=/tmp/install
b clean

v »r »r 1 1

One relatively common case where the installation location may not match upstream are
libraries that include their headers without the subdirectory prefix (for example,
<foo_util.h> instead of <foo/util.h>). In such cases, in the bdep—new command,
you may want to use prefix rather than source subdirectory (with the latter being the default).
For example:

$ bdep new —--lib,no-subdir,prefix=foo ...
See SOURCE LAYOUT for details.

Let’s also briefly discuss other subdirectories and files found in the bdep—new-generated
libfoo package.

The build/ subdirectory is the standard build?2 place for project-wide build system infor-
mation (see Project Structure for details). We will look closer at its contents in the following
sections.

In the root directory of our package we find the root buildfile and package manifest.
We will be tweaking both in the following steps. There is also README . md which we will
replace with the upstream symlink.

The tests/ subdirectory is the standard build2 tests subproject (see Testing for back-
ground and details). While you can suppress its generation with the no-tests bdep-new
sub-option, we recommend that you keep it and use it as a starting point for porting upstream
tests or, if upstream doesn’t provide any, for a basic "smoke test".

You can easily add/remove/rename this tests/ subproject. The only place where it is
mentioned explicitly and where you will need to make changes is the root buildfile. In
particular, if upstream provides examples that you wish to port, it is recommended that you
use a copy of the generated tests/ subproject as a starting point (not forgetting to add the

Revision 0.18, June 2025 The build2 Packaging Guide 19

2.2.5 Create final package

corresponding entry in the root buildfile).

2.2.5 Create final package

If you are satisfied with the bdep—new command line and there are no more automatic
adjustments you can squeeze out of it, then it’s time to re-run bdep—new one last time to
create the final package.

While redoing this step later will require more effort, especially if you’ve made manual modi-
fications to buildfile and manifest, nothing is set in stone and it can be done again by
simply removing the package directory, removing (or editing, if you have multiple packages
and only want to redo some of them) packages.manifest, and starting over.

This time, however, we will do things a bit differently in order to take advantage of some
additional automation offered by bdep—new.

Firstly, we will use the special third-party sub-option which is meant for converting
third-party projects to build2. Specifically, this sub-option automatically enables
no-version and no-symexport (unless auto-symexport is specified). It also adds a
number of values to manifest that makes sense to specify in a package of a third-party
project. Finally, it generates the PACKAGE-README .md template which describes how to
use the package from a build2-based project (see the package—-description mani-
fest value for background).

Secondly, if the package directory already exists and contains certain files, bdep-new can
take this into account when generating the root buildfile and package manifest. In
particular, it will try to guess the license from the LICENSE file and extract the summary
from README.md and use this information in manifest as well as generated
PACKAGE-README .md.

If the file names or formats used by upstream don’t match those recognized by bdep-new,
then for now simply omit the corresponding files from the package directory and add them
later manually. Similarly, if an attempt to extract the information is unsuccessful, we will
have a chance to adjust it in manifest later.

Specifically, for README, bdep—new recognizes README . md, README . t xt and README
but will only attempt to extract the summary from README . md.

For license files, bdep—-new recognizes LICENSE, LICENSE.txt LICENSE.md,
COPYING, and UNLICENSE.

For changes-related files, bdep—new recognizes NEWS, CHANGES, and CHANGELOG in
various cases as well as with the .md, . txt extensions.

Continuing with our 1ibfoo example and assuming upstream provides the README . md,
LICENSE, and NEWS files, we first manually create the package directory, then add the
symlinks, and finally run bdep-new (notice that we have replaced no-version and
no-symexport with third-party and omitted the package name from the bdep-new

20 The build2 Packaging Guide Revision 0.18, June 2025

2.2.6 Adjust package version

command line since we are running from inside the package directory):

$ cd foo/ # Change to the package repository root.

$ rm -r libfoo/ packages.manifest

$ mkdir libfoo/

$ cd libfoo/ # Change to the package root.
$ 1n -s ../upstream/README.md ./

$ 1n -s ../upstream/LICENSE ./

$ 1ln -s ../upstream/NEWS ./

$ bdep new —-package \
—--lang c++, cpp \
——type 1lib, split, subdir=foo,no-subdir-source,third-party

The final contents of our package will look like this (=> denotes a symlink):

$cd ../

$ tree libfoo/

libfoo/

-— build/

AA -— ...

—-— include

A -—- foo/

A |-- buildfile
A -—— foo.hpp

|-- buildfile
-—— foo.cpp
-— tests/
|-- build/
A& -— ...
- basics/
|-- buildfile
-—— driver.cpp
-—— buildfile
—-— buildfile
—-— manifest
-— NEWS -> ../upstream/NEWS
—-— LICENSE -> ../upstream/LICENSE
-— README.md -> ../upstream/README.md
+—— PACKAGE-README .md

Xy
T

If auto-detection of README, LICENSE, and NEWS succeeds, then you should see the
summary and license values automatically populated in manifest and the symlinked

files listed in the root buildfile.

2.2.6 Adjust package version

While adjusting the bdep—-new-generated code is the subject of the following sections, one
tweak that we want to make right away is to change the package version in the manifest

file.

Revision 0.18, June 2025 The build2 Packaging Guide

21

2.3 Fill package with source code and add dependencies

In this guide we will assume the upstream package uses semver (semantic version) or
semver-like (that is, has three version components) and will rely on the continuous versioning
feature of build2 to make sure that each commit in our package repository has a distinct
version (see Versioning and Release Management for background).

If upstream does not use semver, then see [How do I handle projects that don’t use semantic |
[versioning? and [How do I handle projects that don’t use versions at all?| for available options.
If you decide to use the non-semver upstream version as is, then you will have to forgo
continuous versioning as well as the use of bdep—release (1) for release management.
The rest of the guide, however, will still apply. In particular, you will still be able to use
bdep-ci (1) and bdep-publish (1) with a bit of extra effort.

The overall plan to implement continuous versioning is to start with a pre-release snapshot of
the upstream version, keep it like that while we are adjusting the bdep-new-generated
package and committing our changes (at which point we get distinct snapshot versions), and
finally, when the package is ready to publish, change to the final upstream version with the
help of bdep—-release (1) . Specifically, if the upstream version is X. Y. Z, then we start
with the X. Y. Z-a. 0. z pre-release snapshot.

In continuous versioning X. Y. Z-a. 0.z means a snapshot after the (non-existent) Oth alpha
pre-release of the X.Y.Z version. See Versioning and Release Management for a more
detailed explanation and examples.

Let’s see how this works for our 1ibfoo example. Say, the upstream version that we are
packaging is 2. 1. 0. This means we start with 2.1.0-a.0. z.

Naturally, the upstream version that we are using should correspond to the commit of the
upstream submodule we have added in the [Add upstream repository as git submodule]
step.

Next we edit the manifest file in the 1ibfoo package and change the version value to
read:

version: 2.1.0-a.0.z

Let’s also commit this initial state of the package for easier rollbacks:

cd foo/ # Change to the package repository root.
git add .

git status

git commit -m "Initialize package"

v »r »r

2.3 Fill package with source code and add dependencies

With the package skeleton ready, the next steps are to fill it with upstream source code, add
dependencies, and make any necessary manual adjustments to the generated buildfiles,
manifest, etc. If we do this all at once, however, it can be hard to pin-point the cause of
build failures. For example, if we convert both the library and its tests right away and some-
thing doesn’t work, it can be hard to determine whether the mistake is in the library or in the

22 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-semver.md
https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-semver.md
https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-version.md

2.3.1 Initialize package in build configurations

tests. As a result, we are going to split this work into a sequence or smaller steps that incre-
mentally replace the bdep—-new-generated code with upstream while allowing us to test each
change individually. We will also commit the changes on each step for easy rollbacks. Specif-
ically, the overall plan is as follows:

Initialize (bdep—-init) the package in one or more build configurations.
Add dependencies, if any.

Fill the library with upstream source code.

Adjust project-wide and source subdirectory buildfiles.

Make a smoke test for the library.

Replace the smoke test with upstream tests.

Tweak root buildfile and manifest.

NNk L =

The first three steps are the subject of this section with the following sections covering the rest
of the plan.

As you become more experienced with packaging third-party projects for buildz2, it may
make sense to start combining or omitting some steps, especially for simpler libraries. For
example, if you see that a library comes with a simple test that shouldn’t cause any complica-
tions, then you could omit the smoke test.

2.3.1 Initialize package in build configurations

Before we start making any changes to the bdep—-new-generated files, let’s initialize the
package in at least one build configuration so that we are able to build and test our changes
(see Getting Started Guide for background on bdep-based development workflow). Continu-
ing with our 1ibfoo example from the earlier steps:

$ cd foo/ # Change to the package repository root.
$ bdep init -C ../foo-gcc @gcc cc config.cxx=g++

If you are initializing subsequent packages in the already created configuration, then the
command line will be just:

$ bdep init @gcc
Let’s build and test the bdep—new-generated package to make sure everything is in order:

$ bdep update
$ bdep test
$ bdep clean

You can create additional configurations, for example, if you have access to several compil-
ers. For instance, to create a build configuration for Clang:

$ bdep init -C ../foo-clang @clang cc config.cxx=clang++

Revision 0.18, June 2025 The build2 Packaging Guide 23

2.3.2 Add dependencies

If you would like to perform a certain operation on all the build configurations, pass the
-a|--all flag to bdep:

$ bdep update -a
$ bdep test -a
$ bdep clean -a

Let’s also verify that the resulting package repository is clean (doesn’t have any uncommitted
or untracked files):

$ git status

2.3.2 Add dependencies

If the upstream project has any dependencies, now is a good time to specify them so that when
we attempt to build the upstream source code, they are already present.

Identifying whether the upstream project has dependencies is not always easy. The natural
first places to check are the documentation and the existing build system. Sometimes projects
also bundle their dependencies with the project source code (also called vendoring). So it
makes sense to look around the upstream repository for anything that looks like bundled
dependencies. Normally we would need to "unbundle" such dependencies when converting to

build2 by instead specifying a dependency on an external package (see [Don’t bundle

for background).

While there are several reasons we insist on unbundling of dependencies, the main one is that
bundling can cause multiple, potentially conflicting copies of the same dependency to exist in
the build. This can cause subtle build failures that are hard to understand and track down.

One particularly common case to check for is bundling of the testing framework, such as
by C++ projects. If you have identified that the upstream tests depend on a testing
framework (whether bundled or not), see [How do I handle tests that have extra dependencies?|
for the recommended way to deal with that.

One special type of dependency which is easy to overlook is between packages in the same
package repository. For example, if we were packaging both 1ibfoo as well as the foo
executable that depends on it, then the foo package has a dependency on 1ibfoo and it
must be specified. In this case we don’t need to add anything to repositories.mani-
fest and in the depends entry (see below) in foo’s manifest we will normally use the
special == $ version constraint, meaning 1ibfoo should have the same version as foo (see
the depends package manifest value for details). For example:

depends: libfoo == $

If you have concluded that the upstream project doesn’t have any dependencies, then you can
remove repositories.manifest from the package repository root (unless you have
already done so), commit this change, and skip the rest of this section.

24 The build2 Packaging Guide Revision 0.18, June 2025

https://cppget.org/catch2
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

2.3.2 Add dependencies

And if you are still reading, then we assume you have a list of dependencies you need to add,
preferably with their minimum required versions. If you could not identify the minimum
required version for a dependency, then you can fallback to the latest available version, as will
be described in a moment.

With the list of dependencies in hand, the next step is to determine whether they are already
available as build2 packages. For that, head over to and search for each depen-
dency.

If you are unable to find a package for a dependency, then it means it hasn’t been packaged

for build2 yet. Check the places mentioned in the [Check if package repository already

step to see if perhaps someone is already working on the package. If not and the depen-
dency is not optional, then the only way forward is to first package the dependency.

If you do find a package for a dependency, then note the section of the repository (stable,
testing, etc; see Package Repositories for background) from which the minimum required
version of the package is available. If you were unable to identify the minimum required
version, then note the latest version available from the stable section.

Given the list of repository sections, edit the repositories.manifest file in the
package repository root and uncomment the entry for cppget .org:

role: prerequisite
location: https://pkg.cppget.org/l/stable
#trust:

Next, replace stable at the end of the 1location value with the least stable section from
your list. For example, if your list contains stable, testing, and beta, then you need
beta (the sections form a hierarchy and so beta includes test ing which in turn includes
stable).

If you wish, you can also uncomment the t rust value and replace . .. with the
This way you won’t be prompted to confirm the repository authenticity on the
first fetch. See Adding and Removing Dependencies for details.

Once this is done, edit manifest in package root and add the depends value for each
dependency. See Adding and Removing Dependencies for background. In particular, here you
will use the minimum required version (or the latest available) to form a version constraint.
Which constraint operator to use will depend on the dependency’s versioning policies. If the
dependency uses semver, then a ~-based constraint is a sensible default.

As an example, let’s say our 1ibfoo depends on 1ibz, 1ibasio, and 1ibsglite3. To
specify these dependencies we would add the following entries to its manifest:

depends: libz "~1.2.0

depends: libasio 71.28.0
depends: libsglite3 ~3.39.4

Revision 0.18, June 2025 The build2 Packaging Guide 25

https://cppget.org/
https://cppget.org/?about
https://cppget.org/?about

2.3.3 Fill with upstream source code

With all the dependencies specified, let’s now synchronize the state of the build configura-
tions with our changes by running bdep—-sync (1) from the package repository root:

$ bdep sync -a

This command should first fetch the metadata for the repository we specified in reposito—
ries.manifest and then fetch, unpack and configure each dependency that we specified
inmanifest.

If you have any build-time dependencies (see Build-Time Dependencies and Linked Configu-
rations for background), then you will get a warning about the corresponding
config.import.* variable being unused and therefore dropped. This is because we
haven’t yet added the corresponding import directives to our buildfiles. For now you
can ignore this warning, which we will fix later, when we adjust the generated buildfiles.

We can examine the resulting state, including the version of each dependency, with
bdep-status (1):

$ bdep status -ai

The last step for this section is to commit our changes:

cd foo/ # Change to the package repository root.
git add .

git status

git commit -m "Add dependencies"

v »r »r

2.3.3 Fill with upstream source code

Now we are ready to begin replacing the bdep—-new-generated files with upstream source
code symlinks. We start with the library’s header and source files. Continuing with our
libfoo example, this is what we currently have (notice that LICENSE, README .md, and
NEWS are already symlinks to upstream):

$ cd foo/ # Change to the package repository root.

$ tree libfoo/

libfoo/

-— build/

A

—— include

A -—— foo/

A A |-- buildfile
A -—— foo.hpp

>

|-- buildfile
-—— foo.cpp
-— tests/

AA -— ...

—-— buildfile

-— manifest

26 The build2 Packaging Guide Revision 0.18, June 2025

2.3.3 Fill with upstream source code

| -- NEWS -> ../upstream/NEWS

| -- LICENSE -> ../upstream/LICENSE
|-— README.md -> ../upstream/README.md
-—— PACKAGE-README.md

Now we replace generated include/foo/foo.hpp with the library’s real headers and
src/foo.cpp with its real source files:

$ cd libfoo/ # Change to the package root.

$ cd include/foo/
$ rm foo.hpp
$ 1ln -s ../../../upstream/include/foo/*.hpp ./
$ cd -
$ cd src/
$ rm foo.cpp

$ 1n -s ../../upstream/src/*.hpp ./

$ 1In -s ../../upstream/src/*.cpp ./

$ cd -

$ tree libfoo/
libfoo/

-— build/

AA -— ...

—— include

A A -—— foo/

A A |-- buildfile

AA |-- core.hpp -> ../../../upstream/include/foo/core.hpp
AA -—— util.hpp -> ../../../upstream/include/foo/util.hpp
-- src/

A A |-- pbuildfile

A A |-- impl.hpp -> ../../upstream/src/impl.hpp
A A |-- core.cpp -> ../../upstream/src/core.cpp
A A --— util.cpp -> ../../upstream/src/util.cpp
-— tests/

A A R

Note that the wildcards used above may not be enough in all situations and it’s a good idea to
manually examine the relevant upstream directories and make sure nothing is missing. Specif-
ically, look out for:

® Header/sources with other extensions, for example, C, Objective-C, etc.
® Other files that may be needed, for example, .def, config.h.in, etc.
® Subdirectories that contain more header/source files.

If upstream contains subdirectories with additional header/source files, then you can symlink
entire subdirectories instead of doing it file by file. For example, let’s say libfoo’s
upstream source directory contains the impl/ subdirectory with additional source files:

$ cd src/
$ In -s ../../upstream/impl ./
$ cd -

$ tree libfoo/
libfoo/

Revision 0.18, June 2025 The build2 Packaging Guide 27

2.4 Adjust project-wide and source buildfiles

-- build/

AR -— ...

-— include/

AA -— ...

-— src/

A A |-- impl/ -> ../../upstream/src/impl/

A A |A A |—— bar.cpp

A A |A A --- baz.cpp

A A |-- puildfile

AA |-- impl.hpp -> ../../upstream/src/impl.hpp
A A |-- core.cpp -> ../../upstream/src/core.cpp
A A --- util.cpp -> ../../upstream/src/util.cpp

-— tests/

AA -— ...

Wouldn’t it be nice if we could symlink the entire top-level subdirectories (include/foo/
and src/ in our case) instead of symlinking individual files? As discussed in
[new command line to create package] we can, but we will need to change the package layout.
Specifically, we will need to move the buildfiles out of the source subdirectories with
the help of the buildfile-in-prefix sub-option of bdep—-new. In the above case, we
will also need to invent a source subdirectory in src/. Whether this is a worthwhile change
largely depends on how many files you have to symlink individually. If it’s just a handful,
then it’s probably not worth the complication, especially if you have to invent source subdi-
rectories. On the other hand, if you are looking at symlinking hundreds of files, changing the
layout makes perfect sense.

One minor drawback of symlinking entire directories is that you cannot easily patch individ-
ual upstream files (see[How do I patch upstream source code?).

You will also need to explicitly list such directories as symlinks in .gitattributes if
you want your package to be usable from the git repository directly on Windows. See
[Symlinks and Windows| for details.

We won’t be able to test this change yet because to make things build we will most likely also
need to tweak the generated buildfiles, which is the subject of the next section.
However, it still makes sense to commit our changes to make rollbacks easier:

cd foo/ # Change to the package repository root.
git add .

git status

git commit -m "Add upstream source symlinks"

v r 1

2.4 Adjust project-wide and source buildfiles

With source code and dependencies added, the next step is to adjust the regenerated build-
files that build the library. This involves two places: the project-wide build system files in
build/ and the source subdirectory buildfiles (in include/ and src/ for our
libfoo example).

28 The build2 Packaging Guide Revision 0.18, June 2025

https://build2.org/article/symlinks.xhtml#windows

2.4.1 Adjust project-wide build system files in build/

2.4.1 Adjust project-wide build system files in build/

We start with reviewing and adjusting the files in the build/ subdirectory of our package,
where you will find three files:

$ cd foo/ # Change to the package repository root.
$ tree libfoo/

libfoo/

|-- build/

|A & |-- bootstrap.build
|A & |-- root.build

|A A -—- export.build

To recap, the first two contain the project-wide build system setup (see Project Structure for
details) while the last is an export stub that facilitates the importation of targets from our
package (see Target Importation for details).

Normally you don’t need to change anything in bootstrap.build — all it does is specify
the build system project name and load a standard set of core build system modules. Likewise,
export.build is ok as generated unless you need to do something special, like exporting
targets from different subdirectories of your package.

While root .build is also often good as is, situations where you may need to tweak it are
not uncommon and include:

Loading an additional build system module.

For example, if your package makes use of Objective-C/C++ (see Objective-C Compila-
tion and Objective-C++ Compilation) or Assembler (see Assembler with C Preprocessor
Compilation), then root .build would be the natural place to load the corresponding
modules.

If your package uses a mixture of C and C++, then it’s recommended to set this up using
the ——1ang sub-option of bdep—new rather than manually. For example:

$ bdep new —--lang c++,c ...

Specifying package configuration variables.

If upstream provides the ability to configure their code, for example to enable optional
features, then you may want to translate this to build2 configuration variables, which
are specified in root .build (see Project Configuration for background and details).

Note that you don’t need to add all the configuration variables right away. Instead, you
could first handle the "core" functionality which doesn’t require any configuration and
then add the configuration variables one by one while also making the corresponding
changes in buildfiles.

Revision 0.18, June 2025 The build2 Packaging Guide 29

2.4.2 Adjust source subdirectory buildfiles

One type of configuration that you should normally not expose when packaging for
build2 is support for both header-only and compiled modes. See [Don’t make library|
[header-only if it can be compiled|for details.

Also, in C++ projects, if you don’t have any inline or template files, then you can drop the
assignment of the file extension for the ixx{} and txx{} target types, respectively.

If you have added any configuration variables and would like to use non-default values for
some of them in your build, then you will need to reconfigure the package. For example, let’s
say we have added the config.libfoo.debug variable to our 1ibfoo package which
enables additional debugging facilities in the library. This is how we can reconfigure all our
builds to enable this functionality:

$ bdep sync -a config.libfoo.debug=true

If you have made any changes, commit them (similar to the previous step, we cannot test
things just yet):

cd foo/ # Change to the package repository root.

git add .

git status

git commit -m "Adjust project-wide build system files"

v »r »r

2.4.2 Adjust source subdirectory buildfiles

The last step we need to perform before we can try to build our library is to adjust its build-
files. These buildfiles are found in the source subdirectory or, if we used the build-
file-in-prefix bdep-new sub-option, in the prefix directory. There will be two
buildfiles if we use the split layout (split sub-option) or a single buildfile in the
combined layout. The single buildfile in the combined layout contains essentially the
same definitions as the split buildfiles but combined into one and with some minor
simplifications that this allows. Here we will assume the split layout and continue with our
libfoo from the previous sections. To recap, here is the layout we’ve got with the build-
files of interest found in include/foo/ andin src/:

libfoo/

-— build/

AA -— ...

—— include

A A --- foo/

A A |-- buildfile

A A |-- core.hpp -> ../../../upstream/include/foo/core.hpp
A A +—— util.hpp -> ../../../upstream/include/foo/util.hpp
-— src/

A A |-- pbuildfile

A A |-- impl.hpp -> ../../upstream/src/impl.hpp

A A |-- core.cpp -> ../../upstream/src/core.cpp

A A --— util.cpp -> ../../upstream/src/util.cpp

-— tests/

AA -— ...

30 The build2 Packaging Guide Revision 0.18, June 2025

2.4.3 Adjust header buildfile

If instead of a library you are packaging an executable, you can skip directly to|Adjust source

[ouildfile: executables|

2.4.3 Adjust header buildfile
The buildfile in include/foo/ is pretty simple:

The buildfile in your package may look slightly different, depending on the exact
bdep-new sub-options used. However, all the relevant definitions discussed below should
still be easily recognizable.

pub_hdrs = {hxx ixx txx}{**}
./: $pub_hdrs

Install into the foo/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
install = include/foo/
install.subdirs = true

}

Normally, the only change that you would make to this buildfile is to adjust the installa-
tion location of headers (see Installing for background). In particular, if our headers were
included without the <foo/...> prefix but instead contained the library name in their
names (for example, foo-util.hpp), then the installation setup would instead look like
this:

Install directly into say, /usr/include/ recreating subdirectories.
#
{hxx ixx txx}{*}:
{
install = include/
install.subdirs true

}

If the library doesn’t have any headers in nested subdirectories (for example,
<foo/util/string.hpp>), you can drop the install. subdirs variable:

Install into the foo/ subdirectory of, say, /usr/include/.
#
{hxx ixx txx}{*}: install = include/foo/

In the combined layout, the installation-related definitions are at the end of the combined
buildfile.

Compared to the split layout where the public and private headers are separated physically, in
the combined layout you may need to achieve the same result (that is, avoid installing private
headers) at the build system level. If the library provides only a handful of public headers and
this set is unlikely to change often, then listing them explicitly is the most straightforward
approach. For example (the @ . / qualifier tells bui1d2 they are in the source directory):

Revision 0.18, June 2025 The build2 Packaging Guide 31

2.4.4 Adjust source buildfile: overview

Only install public headers into, say, /usr/include/.
#

h{foo}@./ h{foo_version}@./: install = include/

h{*}: install = false

See also[How do I handle extra header installation subdirectory?|

2.4.4 Adjust source buildfile: overview

Nextisthe buildfilein src/:

Again, the buildfile in your package may look slightly different, depending on the exact
bdep-new sub-options used. However, all the relevant definitions discussed below should

still be easily recognizable.

For a binless (header-only) library, this buildfile will contain only a small subset of the

definitions shown below. See [How do I make a header-only C/C++ library? for additional

considerations when packaging header-only libraries.

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
#import xxxx_libs += libhello%lib{hello}

Public headers.
#
pub = [dir_path] ../include/foo/

include $pub
pub_hdrs = $($pub/ pub_hdrs)
lib{foo}: $pub/{$pub_hdrs}

Private headers and sources as well as dependencies.

#
lib{foo}: {hxx ixx txx cxx}{**} S$impl_libs $intf_ libs

Build options.

#

out_pfx_inc = [dir_path] Sout_root/include/
src_pfx_inc [dir_path] $src_root/include/
out_pfx_src [dir_path] $out_root/src/
src_pfx_src [dir_path] $src_root/src/

cxx.poptions =+ "-I$out_pfx_src" "-IS$src_pfx_src" \
"-T$out_pfx_inc" "-IS$src_pfx_inc"

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.

#

lib{foo}:

{
cxx.export.poptions = "-I$out_pfx_inc" "-IS$src_pfx_inc"
cxx.export.libs = $intf_libs

32 The build2 Packaging Guide

Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/make-header-only-library.md

2.4.5 Adjust source buildfile: cleanup

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.

#

if S$Sversion.pre_release

lib{foo}: bin.lib.version = "-$version.project_id"
else
lib{foo}: bin.lib.version = "-$version.major.$version.minor"

Don’t install private headers.
#
{hxx ixx txx}{*}: install = false

2.4.5 Adjust source buildfile: cleanup

As a first step, let’s remove all the definitions that we don’t need in our library. The two
common pieces of functionality that are often not needed are support for auto-generated
headers (such as config.h generated from config.h.in) and dependencies on other
libraries.

If you don’t have any auto-generated headers, then remove all the assignments and expansions
of the out_pfx_inc and out_pfx_src variables. Here is what the relevant lines in the
above buildfile should look like after this change:

Build options.

#

src_pfx_inc = [dir_path] $src_root/include/
src_pfx_src = [dir_path] $src_root/src/
cxx.poptions =+ "-IS$src_pfx_src" "-I$src_pfx_inc"

Export options.
#

lib{foo}:

{

cxx.export.poptions = "-I$src_pfx_inc"

If you do have auto-generated headers, then in the split layout you can remove
out_pfx_inc if you only have private auto-generated headers and out_pfx_src if you
only have public ones.

In the combined layout the single buildfile does not set the *_pfx_* variables. Instead
it uses the src_root and out_root variables directly. For example:

Revision 0.18, June 2025 The build2 Packaging Guide 33

2.4.5 Adjust source buildfile: cleanup

Build options.
#
cxx.poptions =+ "-ISout_root" "-IS$src_root"

Export options.
#

lib{foo}:

{

cxx.export.poptions = "-ISout_root" "-IS$src_root"

To remove support for auto-generated headers in the combined buildfile, simply remove

the corresponding out_root expansions:

Build options.
#
cxx.poptions =+ "-I$src_root"

Export options.
#

lib{foo}:

{

cxx.export.poptions = "-I$src_root"

If you only have private auto-generated headers, then only remove the expansion from

cxx.export.poptions.

If you don’t have any dependencies, then remove all the assignments and expansions of the
intf_libs and impl_1libs variables. That is, the following lines in the original build-

file:
intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.

#import xxxx_libs += libhello%lib{hello}

Private headers and sources as well as dependencies.
#

lib{foo}: {hxx ixx txx cxx}{**} S$impl_libs $intf_ libs

Export options.

#

lib{foo}:

{
cxx.export.poptions = "-I$out_pfx_inc" "-IS$src_pfx_inc"
cxx.export.libs = $intf_libs

Become just these:

34 The build2 Packaging Guide

Revision 0.18, June 2025

2.4.6 Adjust source buildfile: dependencies

Private headers and sources as well as dependencies.
#

lib{foo}: {hxx ixx txx cxx}{**}

Export options.
#
lib{foo}:
{
cxx.export.poptions = "-I$out_pfx_inc" "-IS$src_pfx_inc"

}

2.4.6 Adjust source buildfile: dependencies
If you do have dependencies, then let’s handle them now.

Here we will assume dependencies on other libraries, which is the common case. If you have
dependencies on executables, for example, source code generators, see Build-Time Depen-
dencies and Linked Configurations on how to handle that. In this case you will also need to
reconfigure your package after adding the corresponding import directives in order to
re-acquire the previously dropped config.import.* values. Make sure to also pass any
configuration variables you specified in [Adjust project-wide build system files in build/}
For example:

$ bdep sync -a --disfigure config.libfoo.debug=true

For each library that your package depends on (and which you have added to manifest in
the |JAdd dependencies| step), you need to first determine whether it’s an interface or imple-
mentation dependency and then import it either into the intf_libs or impl_libs vari-
able, respectively.

See Library Exportation and Versioning for background on the interface vs implementation
distinction. But as a quick rule of thumb, if the library you are packaging includes a header
from the dependency library in one of its public headers, then it’s an interface dependency.
Otherwise, it’s an implementation dependency.

Continuing with our libfoo example, as we have established in |[Add dependencies] it
depends on libasio, libz, and libsglite3 and let’s say we’ve determined that
libasio is an interface dependency because it’s included from
include/foo/core.hpp while the other two are implementation dependencies because
they are only included from src/. Here is how we would change our buildfile to import
them:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
import intf_libs += libasio%lib{asio}
import impl_libs += libz%$lib{z}

import impl_ libs += libsglite3%lib{sglite3}

You can tidy this a bit further if you would like:

Revision 0.18, June 2025 The build2 Packaging Guide 35

2.4.7 Adjust source buildfile: public headers

import intf_libs = libasio%lib{asio}
import impl_libs = libz%lib{z}
import impl_libs += libsqglite3%lib{sglite3}

If you don’t have any implementation or interface dependencies, you can remove the assign-
ment and all the expansions of the corresponding *__1ibs variable.

Note also that system libraries like -1m, -1dl1 on UNIX or advapi32.1lib,
ws2_32.1ib on Windows should not be imported. Instead, they should be listed in the
c.libs or cxx.libs variables. See[How do I link a system library|for details.

2.4.7 Adjust source buildfile: public headers

With the unnecessary parts of the buildfile cleaned up and dependencies handled, let’s
discuss the common changes to the remaining definitions, going from top to bottom. We start
with the public headers block:

Public headers.
#
pub = [dir_path] ../include/foo/

include $pub
pub_hdrs = $($pub/ pub_hdrs)

lib{foo}: $pub/{$pub_hdrs}

This block gets hold of the list of public headers and makes them prerequisites of the library.
Normally you shouldn’t need to make any changes here. If you need to exclude some headers,
it should be done in the header buildfile in the include/ directory.

In the combined layout the single buildfile does not have such code. Instead, all the
headers are covered by the wildcard pattern in the following block.

2.4.8 Adjust source build£file: sources, private headers

The next block deals with sources, private headers, and dependencies, if any:

Private headers and sources as well as dependencies.

#
lib{foo}: {hxx ixx txx cxx}{**} S$impl_libs $intf_ libs

By default it will list all the relevant files as prerequisites of the library, starting from the
directory of the buildfile and including all the subdirectories, recursively (see Name
Patterns for background on wildcard patterns).

If your C++ package doesn’t have any inline or template files, then you can remove the ixx
and txx target types, respectively (which would be parallel to the change made in
root .build; see|Adjust project-wide build system files in build/). For example:

36 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/link-system-library.md

2.4.8 Adjust source buildfile: sources, private headers

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{**} $impl_libs $intf_ libs

Source files other than C/C++ (for example, Assembler, Objective-C/C++) are dealt with in
[Adjust source buildfile: extra requirements|below.

The other common change to this block is the exclusion of certain files or making them condi-
tionally included. As an example, let’s say in our 1ibfoo the source subdirectory contains a
bunch of *~test . cpp files which are unit tests and should not be listed as prerequisites of a
library. Here is how we can exclude them:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{** —**-test} S$impl_libs $intf_ libs

Let’s also assume our 1ibfoo contains impl-win32.cpp and impl-posix.cpp which
provide alternative implementations of the same functionality for Windows and POSIX and
therefore should only be included as prerequisites on the respective platforms. Here is how we
can handle that:

Private headers and sources as well as dependencies.

#

lib{foo}: {hxx cxx}{** —-impl-win32 -impl-posix —-**-test}

lib{foo}: cxx{impl-win32}: include = ($cxx.target.class == ’"windows’)
lib{foo}: cxx{impl-posix}: include = ($cxx.target.class != ’"windows’)

lib{foo}: $impl_libs $intf_ libs

There are two nuances in the above example worth highlighting. Firstly, we have to exclude
the files from the wildcard pattern before we can conditionally include them. Secondly, we
have to always link libraries last. In particular, the following is a shorter but an incorrect
version of the above:

lib{foo}: {hxx cxx}{** —-impl-win32 -impl-posix —-**-test} \

Simpl_libs $intf_libs
lib{foo}: cxx{impl-win32}: include = ($cxx.target.class == ’"windows’)
lib{foo}: cxx{impl-posix}: include ($cxx.target.class != 'windows’)

You may also be tempted to use the if directive instead of the include variable for condi-
tional prerequisites. For example:

if ($cxx.target.class == 'windows’)
lib{foo}: cxx{impl-win32}

else
lib{foo}: cxx{impl-posix}

This would also be incorrect. For background and details, see [How do I keep the build graph |
[configuration-independent?|

Revision 0.18, June 2025 The build2 Packaging Guide 37

https://github.com/build2/HOWTO/blob/master/entries/keep-build-graph-config-independent.md
https://github.com/build2/HOWTO/blob/master/entries/keep-build-graph-config-independent.md

2.4.9 Adjust source buildfile: build and export options

2.4.9 Adjust source buildfile: build and export options

The next two blocks are the build and export options, which we will discuss together:

Build options.

#

out_pfx_inc = [dir_path] Sout_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/

src_pfx_src = [dir_path] $src_root/src/
cxx.poptions =+ "-I$out_pfx_src" "-IS$src_pfx_src" \

"-T$out_pfx_inc" "-IS$src_pfx_inc"

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.

#

lib{foo}:

{
cxx.export.poptions = "-I$out_pfx_inc" "-IS$src_pfx_inc"
cxx.export.libs = $intf_libs

}

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

The build options are in effect when the library itself is being built and the exported options
are propagated to the library consumers (see Library Exportation and Versioning for back-
ground on exported options). For now we will ignore the commented out lines that add
-DFOO_STATIC* and —DFOO_SHARED* macros — they are for symbol exporting and we
will discuss this topic separately.

If the library you are packaging only relied on platform-independent APIs, then chances are
you won’t need to change anything here. On the other hand, if it does anything plat-
form-specific, then you will most likely need to add some options.

As discussed in the Output Directories and Scopes section of the build system introduction,
there is a number of variables that are used to specify compilation and linking options, such as
* .poptions (cxx.poptions in the above example), *.coptions, etc. The below
table shows all of them with their rough make equivalents in the third column:

*.poptions preprocess CPPFLAGS

* coptions compile CFLAGS/CXXFLAGS
*.loptions link LDFLAGS
*.aoptions archive ARFLAGS

*.libs system libraries LIBS/LDLIBS

The recommended approach here is to study the upstream build system and copy custom
compile/link options to the appropriate build2 variables. Note, however, that doing it
thoughtlessly/faithfully by copying all the options may not always be a good idea. See
|C/C++ compile/link options are OK to specify in a project’s buildfile?| for the guidelines.

38 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md
https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md

2.4.9 Adjust source buildfile: build and export options

If you are packaging a library that includes a large number of optional features, it may be
unclear which of them would make sense to enable by default. The notorious example of this
situation is|1ibsglite3|which provides hundreds of preprocessor macros to enable or tune
various aspects of its functionality.

The recommended approach in cases like this is to study the configuration of such a library in
distributions like Debian and Fedora and use the same defaults. In particular, this will allow
us to substitute the build2 package with the system-installed version.

Oftentimes, custom options must only be specified for certain target platforms or when using
a certain compiler. While build2 provides a large amount of information to identify the
build configuration as well as more advanced buildfile language mechanisms (such as
Pattern Matching) to make sense of it, this is a large topic for which we refer you to The
build2 Build System manual. Additionally, [github.com/build2-packaging| now contains a
large number of packages that you can study and search for examples.

While exporting preprocessor macros to communicate configuration is a fairly common tech-
nique, it has a number of drawbacks and limitations. Specifically, a large number of such
macros will add a lot of noise to the consumer’s compilation command lines (especially if
multiple libraries indulge in this). Plus, the information conveyed by such macros is limited to
simple values and is not easily accessible in consumer buildfiles.

To overcome these drawbacks and limitations, build2 provides a mechanism for conveying
metadata with C/C++ libraries (and executables). See, [How do I convey additional informa-|
[tion (metadata) with executables and C/C++ libraries? for details.

Note that outright replacing the preprocessor macros with metadata can be done if this infor-
mation is only used by the library consumers. In other words, if the library’s public headers
rely on the presence of such macros, then we have no choice but to export them, potentially
also providing the metadata so that this information is easily accessible from buildfiles.

Let’s consider a representative example based on our 1ibfoo to get a sense of what this
normally looks like as well as to highlight a few nuances. We will assume our 1ibfoo
requires either the FOO_POSIX or FOO_WIN32 macro to be defined during the build in
order to identify the target platform. Additionally, extra features can be enabled by defining
FOO_EXTRAS, which should be done both during the build and for consumption (so this
macro must also be exported). Next, this library requires the —fno-strict-aliasing
compile option for the GCC-class compilers (GCC, Clang, etc). Finally, we need to link
pthread on POSIX and ws2_32.1ib on Windows. This is how we would work all this
into the above fragment:

Build options.

#

out_pfx_inc = [dir_path] Sout_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/
cxx.poptions =+ "-I$out_pfx_src" "-IS$src_pfx_src" \

"-T$out_pfx_inc" "-IS$src_pfx_inc"

Revision 0.18, June 2025 The build2 Packaging Guide 39

https://github.com/build2-packaging/sqlite
https://github.com/build2-packaging
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md

2.4.9 Adjust source buildfile: build and export options

cxx.poptions += —-DFOO_EXTRAS

if ($cxx.target.class == 'windows’)
cxx.poptions += —-DFOO_WIN32

else
cxx.poptions += —-DFOO_POSIX

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

if ($cxx.class == ’gcc’)
cxx.coptions += —-fno-strict-aliasing

switch $cxx.target.class, $cxx.target.system
{
case ’'windows’, ’'mingw32’
cxx.libs += -1lws2_32
case ’windows’
cxx.libs += ws2_32.1ib
default
cxx.libs += —-pthread
}

Export options.

#

lib{foo}:

{
cxx.export.poptions = "-IS$out_pfx_inc" "-IS$src_pfx_inc" -DFOO_EXTRAS
cxx.export.libs = $intf_libs

}

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

There are a few nuances in the above code worth keeping in mind. Firstly, notice that we
append (rather than assign) to all the non-export variables (* .poptions, *.coptions,
*.1ibs). This is because they may already contain some values specified by the user with
their config.*.* counterparts. On the other hand, the *.export.* variables are
assigned.

Secondly, the order in which we append to the variables is important for the value to accumu-
late correctly. You want to first append all the scope-level values, then target
type/pattern-specific, and finally any target-specific; that is, from more general to more
specific (see Buildfile Language for background). To illustrate this point, let’s say in our
libfoo, the FOO_POSIX or FOO_WIN32 macro are only necessary when compiling
util.cpp. Below would be the correct order of assigning to cxx.poptions:

40 The build2 Packaging Guide Revision 0.18, June 2025

2.4.10 Adjust source buildfile: symbol exporting

cxx.poptions =+ "-I$out_pfx_src" "-IS$src_pfx_src" \
"-T$out_pfx_inc" "-IS$src_pfx_inc"

cxx.poptions += —-DFOO_EXTRAS

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

if ($cxx.target.class == 'windows’)

{obja objs}{util}: cxx.poptions += —-DFOO_WIN32
else

{obja objs}{util}: cxx.poptions += —-DFOO_POSIX

Note that target-specific *.poptions and *.coptions must be specified on the object
file targets while * . loptions and *.1libs — on the library or executable targets.

2.4.10 Adjust source buildfile: symbol exporting

Let’s now turn to a special sub-topic of the build and export options that relates to the shared
library symbol exporting. To recap, a shared library on Windows must explicitly specify the
symbols (functions and global data) that it wishes to make accessible by its consumers
(executables and other shared libraries). This can be achieved in three different ways: The
library can explicitly mark in its source code the names whose symbols should be exported.
Alternatively, the library can provide a .def file to the linker that lists the symbols to be
exported. Finally, the library can request the automatic exporting of all symbols, which is the
default semantics on non-Windows platforms. Note that the last two approaches only work for
exporting functions, not data, unless special extra steps are taken by the library consumers.
Let’s discuss each of these approaches in the reverse order, that is, starting with the automatic
symbol exporting.

The automatic symbol exporting is implemented in build2 by generating a .def file that
exports all the relevant symbols. It requires a few additional definitions in our buildfile
as described in Automatic DLL Symbol Exporting. You can automatically generate the neces-
sary setup with the auto-symexport bdep—-new sub-option.

Using a custom .def file to export symbols is fairly straightforward: simply list it as a
prerequisite of the library and it will be automatically passed to the linker when necessary. For
example:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{**} $impl_libs $intf_ libs def{foo}

Some third-party projects automatically generate their .def file. In this case you can try to
re-create the same generation in the buildfile using an ad hoc recipe (or the in orfauto-]
build system modules). If that doesn’t look possible (for example, if the generation
logic is complex and is implemented in something like Perl or Python), then you can try your
luck with automatic symbol exporting. Failing that, the only remaining option is to use a
pre-generated . def file in the build2 build.

Revision 0.18, June 2025 The build2 Packaging Guide 41

https://github.com/build2/libbuild2-autoconf
https://github.com/build2/libbuild2-autoconf

2.4.10 Adjust source buildfile: symbol exporting

The last approach is to explicitly specify in the source code which symbols must be exported
by marking the corresponding declarations with __declspec (dllexport) during the
library build and __declspec (dllimport) during the library use. This is commonly
achieved with a macro, customarily called *_EXPORT or *_APT, which is defined to one of
the above specifiers based on whether static or shared library is being built or is being
consumed, which, in turn, is also normally signaled with a few more macros, such as
* BUILD_DLLand *_USE_STATIC.

Because this approach requires extensive changes to the source code, you will normally only
use it in your build2 build if it is already used in the upstream build.

In build2 you can explicitly signal any of the four situations (shared/static, built/consumed)
by uncommenting and adjusting the following four lines in the build and export options
blocks:

Build options.
#

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.
#

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

As an example, let’s assume our 1ibfoo defines in one of its headers the FOO_EXPORT
macro based on the FOO_BUILD_DLL (shared library is being build) and
FOO_USE_STATIC (static library is being used) macros that it expects to be appropriately
defined by the build system. This is how we would modify the above fragment to handle this
setup:

Build options.
#

objs{*}: cxx.poptions += -DFOO_BUILD_DLL

Export options.
#

liba{foo}: cxx.export.poptions += —-DFOO_USE_STATIC

42 The build2 Packaging Guide Revision 0.18, June 2025

2.4.11 Adjust source buildfile: shared library version

2.4.11 Adjust source buildfile: shared library version

The final few lines in the above buildfile deal with shared library binary (ABI) version-
ing:

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.

#

if S$Sversion.pre_release

lib{foo}: bin.lib.version = "-$version.project_id"
else
lib{foo}: bin.lib.version = "-$version.major.$version.minor"

The bdep—-new-generated setup arranges for the platform-independent versioning where the
package’s major and minor version components are embedded into the shared library binary
name (and soname) under the assumption that only patch versions are ABI-compatible.

The two situations where you would want to change this are when the above assumption does
not hold and/or when upstream provides platform-specific shared library versions which you
would like to re-create in your build2 build. See Library Exportation and Versioning for
background and details.

2.4.12 Adjust source buildfile: executables

If instead of a library you are packaging an executable, then, as mentioned earlier, it will most
likely be a combined layout with a single buildfile. This buildfile will also be much
simpler compared to the library’s. For example, give the following bdep—-new command:

$ bdep new —-package \

——lang c++ \
—-—type exe,no-subdir,prefix=foo,export-stub \
foo

The resulting source buildfile will look like this:

libs =
#import libs += libhello%$lib{hello}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

out_pfx = [dir_path] $out_root/foo/
src_pfx [dir_path] $src_root/foo/

cxx.poptions =+ "-IS$out_pfx" "-IS$src_pfx"

If the executable doesn’t have any inline/template/header files, then you can remove the
ixx/txx/hxx target types, respectively (which would be parallel to the change made in
root .build; see|Adjust project-wide build system files in build/). For example:

Revision 0.18, June 2025 The build2 Packaging Guide 43

2.4.12 Adjust source buildfile: executables

exe{foo}: {hxx cxx}{**} $libs testscript

If the source code includes its own headers with the "" style inclusion (or doesn’t have any
headers), then we can also get rid of out_pfx and src_pfx. For example:

libs =
#import libs += libhello%lib{hello}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

Unfortunately, it’s not uncommon for projects that provide both a library and an executable,
for the executable source code to include public and/or private library headers with the rela-
tive " " style inclusion. For example:

#include "../../libfoo/include/foo/util.hpp"
#include "../../libfoo/src/impl.hpp"

This approach won’t work in build2 since the two packages may end up in different direc-
tories or the library could even be installed. There are two techniques that can be used to work
around this issue (other than patching the upstream source code).

For public headers we can provide, in the appropriate places within the executable package,
"thunk headers" with the same names as public headers that simply include the corresponding
public header from the library using the <> style inclusion.

For private headers we can provide, again in the appropriate places within the executable
package, our own symlinks for a subset of private headers. Note that this will only work if the
use of private headers within the executable does not depend on any symbols that are not
exported by the library (failing that, the executable will have to always link to the static
variant of the library).

For a real example of both of these techniques, see the package repository.

Dealing with dependencies in executables is similar to libraries except that here we don’t have
the interface/implementation distinction; see the [Adjust source buildfile: dependencies|
step. For example:

import libs = libfoo%lib{foo}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

Likewise, dealing with build options in executables is similar to libraries except that here we
have no export options; see the |[Adjust source buildfile: build and export options|step.

If the executable can plausibly be used in a build, then it’s recommended to add build2
metadata as describe in [How do I convey additional information (metadata) with executables|
[and C/C++ libraries? See also [Modifying upstream source code with C/C++ preprocessor] on
how to do it without physically modifying upstream source code. See the package
repository for a real example of doing this.

44 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2-packaging/zstd
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2-packaging/zstd

2.4.13 Adjust source buildfile: extra requirements

We will discuss the testscript prerequisite in the [Make smoke test: executables| step
below.

2.4.13 Adjust source buildfile: extra requirements

The changes discussed so far should be sufficient to handle a typical library or executable that
is written in C and/or C++ and is able to handle platform differences with the preprocessor
and compile/link options. However, sooner or later you will run into a more complex library
that may use additional languages, require more elaborate platform detection, or use addi-
tional functionality, such as support for source code generators. The below list provides point-
ers to resources that cover the more commonly encountered additional requirements.

® The in build system module

Use to process config.h.in (or other .in files) that don’t require Autoconf-style
platform probing (HAVE__* options).

® [The autoconf build system module]

Use to process config.h.in (or their CMake/Meson variants) that require Auto-
conf-style platform probing (HAVE_* options) or CMake/Meson-specific substitution
syntax (#cmakedefine, etc).

® Objective-C Compilation and Objective-C++ Compilation

Use to compile Objective-C (.m) or Objective-C++ (. mm) source files.
® Assembler with C Preprocessor Compilation

Use to compile Assembler with C Preprocessor (. S) source files.
® Implementing Unit Testing

Use if upstream has tests (normally unit tests) in the source subdirectory.

® Build-Time Dependencies and Linked Configurations

Use if upstream relies on source code generators, such as|lex|and[yacd}

[The build2 HOWTO|

See the build2 HOWTO article collection for more unusual requirements.

2.4.14 Test library build

At this point our library should be ready to build, at least in theory. While we cannot build and
test the entire package before adjusting the generated tests/ subproject (the subject of the
next step), we can try to build just the library and, if it has any unit tests in the source subdi-
rectory, even run some tests.

Revision 0.18, June 2025 The build2 Packaging Guide 45

https://github.com/build2/libbuild2-autoconf
https://cppget.org/reflex
https://cppget.org/byacc
https://github.com/build2/HOWTO/

2.5 Make smoke test

If the library is header only, there won’t be anything to build unless there are unit tests. Still,
you may want to continue with this exercise to detect any syntactic mistakes in the build-
files, etc.

To build only a specific subdirectory of our package, we use the build system directly (contin-
uing with our 1ibfoo example):

$ cd libfoo/src/ # Change to the source subdirectory.
$ b update

If there are any issues, try to fix them and then build again. Once the library builds and if it
has unit tests, you can try to run them:

$ b test

It also makes sense to test the installation and see if anything is off (such as private headers
being installed):

$ rm -rf /tmp/install
$ b install config.install.root=/tmp/install

Once the library builds, it makes sense to commit our changes for easier rollbacks:

cd foo/ # Change to the package repository root.

git add .

git status

git commit -m "Adjust source subdirectory buildfiles"

v »r »r

2.5 Make smoke test

With the library build sorted, we need tests to make sure the result is actually functional. As
[discussed earlier] it is recommended to start with a simple "smoke test", make sure that works,
and then replace it with upstream tests. However, if upstream tests look simple enough, you
can skip the smoke test. For example, if upstream has all its tests in a single source file and
the way it is built doesn’t look too complicated, then you can just use that source file in place
of the smoke test.

If upstream has no tests, then the smoke test will have to stay. A library can only be published
if it has at least one test.

It is also recommended to have the smoke test if upstream tests are in a separate package. See
[How do I handle tests that have extra dependencies?| for background and details.

If instead of a library you are packaging an executable, you can skip directly to
[test: executables|

To recap, the bdep—new-generated tests/ subdirectory looks like this (continuing with
our 1libfoo example):

46 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

2.5.1 Adjust project-wide build system files in tests/build/

libfoo/
|- ...
-—— tests/
| -- build/
| -— bootstrap.build
-—— root.build
- basics/
|—— driver.cpp
-—— buildfile
-—— buildfile

|
= h

= h
= h

The tests/ subdirectory is a build system subproject, meaning that it can be built indepen-
dently, for example, to test the installed version of the library (see Testing for background). In
particular, this means it has the build/ subdirectory with project-wide build system files,
the same as the library. The basics/ subdirectory contains the generated test, which is what
we will be turning into a smoke test. The subproject root buildfile rarely needs changing.

2.5.1 Adjust project-wide build system files in tests/build/

Review and adjust the generated bootstrap.build and root .build (there will be no
export .build) similar to the |Adjust project-wide build system files in build/|step.

Here the only change you would normally make is in root .build and which is to drop the
assignment of extensions for target types that are not used in tests.

2.5.2 Convert generated test to library smoke test

The basics/ subdirectory contains the driver.cpp source file that implements the test
and buildfile that builds it. You can rename both the test subdirectory (basics/) and
the source file driver.cpp, for example, if you are going with the upstream tests directly.
You can also add more tests by simply copying basics/.

The purpose of a smoke test is to make sure the library’s public headers can be included
(including in the installed case, no pun intended), it can be linked, and its basic functionality
works.

To achieve this, we modify driver.cpp to include the library’s main headers and call a
few functions. For example, if the library has the initialize/deinitialize type of functions, those
are good candidates to call. If the library is not header-only, make sure that the smoke test
calls at least one non-inline/template function to test symbol exporting.

Make sure that your test includes the library’s public headers the same way as would be done
by the library consumers.

Continuing with our 1 ibfoo example, this is what its smoke test might look like:

Revision 0.18, June 2025 The build2 Packaging Guide 47

2.5.3 Make smoke test: executables

#include <foo/core.hpp>
#include <foo/util.hpp>

#undef NDEBUG
#include <cassert>

int main ()

{
foo::context* ¢ (foo::init (0 /* flags */));
assert (c !'= nullptr);
foo::deinit (c);

}

The C/C++ assert () macro is often adequate for simple tests and does not require extra
dependencies. But see [How do I correctly use C/C++ assert() in tests?|

The test buildfile is pretty simple:
import libs = libfoo%lib{foo}

exe{driver}: {hxx ixx txx cxx}{**} $libs testscript{**}

If you have adjusted the library target name (1ib{foo}) in the source subdirectory build-
file, then you will need to make the corresponding change in the import directive here.
You may also want to tidy it up by removing unused prerequisite types. For example:

import libs = libfoo%lib{foo}

exe{driver}: {hxx cxx}{**} $libs

2.5.3 Make smoke test: executables

If instead of a library we are packaging an executable, then instead of the test s/ subproject
we get the testscript file in the source subdirectory (see |Adjust source buildfile: |
for a refresher). This file can be used to write one or more tests that exercise our
executable (see Testing for background).

How exactly to test any given executable depends on its functionality. For instance, for a
compression utility we could write a roundtrip test that first compresses some input, then
decompresses it, and finally compares the result to the original. For example (taken from the

package repository):

: roundtrip

echo ’test content’ | $* -zc | $* -dc >’test content’

On the other hand, for an executable that is a source code generator, proper testing would
involve a separate tests package that has a build-time dependency on the executable and that
exercises the generated code (see [How do I handle tests that have extra dependencies?| for
background and details). See the [chri ft]package repository for an example of this setup.

48 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/use-assert-in-tests.md
https://github.com/build2-packaging/zstd
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2-packaging/thrift/tree/0.17

2.5.4 Test locally

If the executable provides a way to query its version, one test that you should always be able
to write, and which can serve as a last resort smoke test, is the version check. For example:

: version
$* ——version >>~"/E0O/"

/.*$(version.major)\.$ (version.minor) \.$ (version.patch) .*/
EOO

See also[How do I sanitize the execution of my tests?|

2.5.4 Test locally

With the smoke test ready, we can finally do some end-to-end testing of our library build. We
will start with doing some local testing to catch basic mistakes and then do the full CI to
detect any platform/compiler-specific issues.

First let’s run the test in the default build configuration by invoking the build system directly
(see Getting Started Guide for background on default configurations):

$ cd libfoo/tests/ # Change to the tests/ subproject.
$ b test

If there are any issues (compile/link errors, test failures), try to address them and re-run the
test.

Once the library builds in the default configuration and the result passes the tests, you can do
the same for all the build configurations, in case you have your library in several:

$ bdep test -a

2.5.5 Test locally: installation

Once the development build works, let’s also test the installed version of the library. In partic-
ular, this makes sure that the public headers are installed in a way that is compatible with how
they are included by our test (and would be included by the library consumers). To test this
we first install the library into a temporary directory:

$ cd libfoo/ # Change to the package root.
$ rm -rf /tmp/install
$ b install config.install.root=/tmp/install

Next we build just the tests/ subproject out of source and arranging for it to find the
installed library (see Output Directories and Scopes for background on the out of source build
syntax):

$ cd libfoo/ # Change to the package root.

$ b test: tests/Q@/tmp/libfoo-tests-out/ \
config.cc.loptions=-L/tmp/install/lib \
config.bin.rpath=/tmp/install/lib

Revision 0.18, June 2025 The build2 Packaging Guide 49

https://github.com/build2/HOWTO/blob/master/entries/sanitize-test-execution.md

2.5.6 Test locally: distribution

The equivalent MSVC command line would be:
> b install config.install.root=c:\tmp\install

> set "PATH=c:\tmp\install\bin; $PATHS"
> b test: tests\@c:\tmp\libfoo-tests-out*
config.cc.loptions=/LIBPATH:c:\tmp\install\lib

It is a good idea to look over the installed files manually and make sure there is nothing unex-
pected, for example, missing or extraneous files.

Once done testing the installed case, let’s clean things up:

$ rm -r /tmp/install /tmp/libfoo-tests-out

2.5.6 Test locally: distribution

Another special case worth testing is the preparation of the source distribution (see Distribut-
ing for background). This, in particular, is how your package will be turned into the source
archive for publishing to Here we are primarily looking for missing files. As a
bonus, this will also allow us to test the in source build. First we distribute our package to a
temporary directory (again using the default configuration and the build system directly):

$ cd libfoo/ # Change to the package root.
$ b dist config.dist.root=/tmp/dist config.dist.uncommitted=true

The result will be in the /tmp/dist/libfoo-<version>/ directory which should
resemble our 1ibfoo/ package but without files like . gitignore. Next we build and test
the distribution in source:

$ cd /tmp/dist/libfoo-<version>/
$ b configure config.cxx=g++

$ b update

$ b test

If your package has dependencies that you import in your buildfile, then the above
configure operation will most likely fail because such dependencies cannot be found (it
may succeed if they are available as system-installed). The error message will suggest speci-
fying the location of each dependency with the config.import.* variable. You can fix
this by setting each such config.import.* to the location of the default build configura-
tion (created in the [[nitialize package in build configurations| step) which should contain all
the necessary dependencies. Simply re-run the configure operation until you have discov-
ered and specified all the necessary config.import . * variables, for example:

$ b configure config.cxx=g++ \

config.import.libz=.../foo-gcc \
config.import.libasio=.../foo-gcc \
config.import.libsglite3=.../foo-gcc

It is a good idea to look over the distributed files manually and make sure there is nothing
missing or extraneous.

50 The build2 Packaging Guide Revision 0.18, June 2025

https://cppget.org/

2.6 Replace smoke test with upstream tests

Once done testing the distribution, let’s clean things up:

$ rm -r /tmp/dist

2.5.7 Commit and test with CI

With local testing complete, let’s commit our changes and submit a remote CI job to test our
library on all the major platforms and with all the major compilers:

cd foo/ # Change to the package repository root.
git add .

git status

git commit -m "Add smoke test"

git push -u

vr r r 1

$ bdep ci
The result of the bdep—ci (1) command is a link where you can see the status of the builds.

Make sure to wait until there are no more unbuilt configurations (that is, the number of entries
with the <unbuilt> or building resultis 0).

If any builds fail, view the logs to determine the cause, try to fix it, commit your fix, and CI
again.

It is possible that upstream does not support some platforms or compilers. For example, it’s
common for smaller projects not to bother with supporting "secondary" compilers, such as
MinGW GCC on Windows or Homebrew GCC on Mac OS.

If upstream expressly does not support some platform or compiler, it’s probably not worth
spending time and energy trying to support it in the package. Most likely it will require
changes to upstream source code and that is best done upstream rather than in the package
(see [Don’t try to fix upstream issues in the package| for background). In this case you would
want to exclude these platforms/compilers from the CI builds using the builds package
manifest value.

The other common cause of a failed build is a newer version of a compiler or platform that
breaks upstream. In this case there are three options: Ideally you would want to fix this in
upstream and have a new version released. Failing that, you may want to patch the upstream
code to fix the issues, especially if this is one of the major platforms and/or primary compilers
(see [How do I patch upstream source code?| for details). Finally, you can just leave the build
failing with the expectation that it will be fixed in the next upstream version. Note that in this
case you should not exclude the failing build from CI.

2.6 Replace smoke test with upstream tests

With the smoke test working we can now proceed with replacing it with the upstream tests.

Revision 0.18, June 2025 The build2 Packaging Guide 51

2.6.1 Understand how upstream tests work

2.6.1 Understand how upstream tests work

While there are some commonalities in how C/C++ libraries are typically built, when it comes
to tests there is unfortunately little common ground in how they are arranged, built, and
executed. As a result, the first step in dealing with upstream tests is to study the existing build
system and try to understand how they work.

If upstream tests prove incomprehensible (which is unfortunately not uncommon) and the
only options you see are to go with just the smoke test or to give up, then go with just the
smoke test. In this case it’s a good idea to create an issue in the package repository mention-
ing that upstream tests are still a TODO.

If instead of a library you are packaging an executable, then whether the below steps will
apply depends on the functionality of the executable.

In particular, testing source code generators would normally involve exercising the generated
code, in which case the following will largely apply, though in this case the tests would need
to be placed into a separate tests package that has a build-time dependency on the executable
(see [How do I handle tests that have extra dependencies?| for background and details). In fact,
if a source code generator is accompanied by a runtime library, then the tests will normally
exercise them together (though a runtime library might also have its own tests). See the

thrift|package repository for an example of this setup.

To get you started with analyzing the upstream tests, below are some of the questions you
would likely need answered before you can proceed with the conversion:

® Are upstream tests unit tests or integration tests?

While the distinction is often fuzzy, for our purposes the key differentiator between unit
and integration tests is which API they use: integration tests only use the library’s public
API while unit tests need access to the implementation details.

Normally (but not always), unit tests will reside next to the library source code since they
need access to more than just the public headers and the library binary (private headers,
individual object files, utility libraries, etc). While integration tests are normally (but
again not always) placed into a separate subdirectory, usually called tests or test.

If the library has unit tests, then refer to Implementing Unit Testing for background on
how to handle them in build2.

If the library has integration tests, then use them to replace (or complement) the smoke
test.

If the library has unit tests but no integration tests, then it is recommended to keep the
smoke test since that’s the only way the library will be tested via its public API.

52 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2-packaging/thrift/tree/0.17

2.6.1 Understand how upstream tests work

® Do upstream tests use an external testing framework?

Oftentimes a C++ library will use an external testing framework to implement tests.
Popular choices include[catch2|[gtest]|[doctest] and[libboost-test}

If a library uses such an external testing framework, then it is recommended to factor
tests into a separate package in order to avoid making the library package depend on the
testing framework (which is only required during testing). See [How do I handle tests that|
[have extra dependencies?| for details.

Sometimes you will find that upstream bundles the source code of the testing framework
with their tests. This is especially common with catch2. If that’s the case, it is strongly
recommended that you "unbundle" it by making it a proper external dependency. See
[Don’t bundle dependencies|for background.

® Are upstream tests in a single or multiple executables?

It’s not unusual for libraries to have a single test executable that runs all the test cases.
This is especially common if a C++ testing framework is used. In this case it is natural to
replace the contents of the smoke test with the upstream source code, potentially renam-
ing the test subdirectory (basics/) to better match upstream naming.

If upstream has multiple test executables, then they could all be in a single test subdirec-
tory (potentially reusing some common bits) or spread over multiple subdirectories. In
both cases it’s a good idea to follow the upstream structure unless you have good reasons
to deviate. In the former case (all executables in the same subdirectory), you can
re-purpose the smoke test subdirectory. In the latter case (each executable in a separate
subdirectory) you can make copies of the smoke test subdirectory.

® Do upstream tests use an internal utility library?

If there are multiple test executables and they need to share some common functionality,
then it’s not unusual for upstream to place such functionality into a static library and then
link it to each test executable. In build2 such an internal library is best represented
with a utility library (see Implementing Unit Testing for details). See the following
section for an example.

® Are upstream tests well behaved?

Unfortunately, it’s not uncommon for upstream tests not to behave well, such as to write
diagnostics to stdout instead of stderr, create temporary files without cleaning them
up, or assume presence of input files in the current working directory. For details on how
to deal with such situations see [How do I sanitize the execution of my tests?|

Revision 0.18, June 2025 The build2 Packaging Guide 53

https://cppget.org/catch2
https://cppget.org/gtest
https://cppget.org/doctest
https://cppget.org/libboost-test
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/sanitize-test-execution.md

2.6.2 Convert smoke test to upstream tests

2.6.2 Convert smoke test to upstream tests

Once you have a good grasp of how upstream tests work, convert or replace the smoke test
with the upstream tests. If upstream has multiple test executables, you may want to deal with
one test at a time, making sure that it passes before moving to the next one.

It’s normally a good idea to use the smoke test buildfile as a starting point for upstream
tests. To recap, the smoke test buildfile for our 1ibfoo example ended up looking like
this:

import libs = libfoo%lib{foo}

exe{driver}: {hxx cxx}{**} $libs

At a minimum you will most likely need to change the name of the executable to match
upstream. If you need to build multiple executables in the same directory, then it’s probably
best to get rid of the name pattern for the source files and specify the prerequisite names
explicitly, for example:

import libs = libfoo%lib{foo}

./ exe{testl}: cxx{testl} $libs
./ exe{test2}: cxx{test2} $libs

If you have a large number of such test executables, then a for-loop might be a more scal-
able option:

import libs = libfoo%lib{foo}

for src: cxx{test*}
./: exe{S$name (Ssrc)}: S$src $libs

If the upstream tests have some common functionality that is used by all the test executables,
then it is best placed into a utility library. For example:

import libs = libfoo%lib{foo}

./: exe{testl}: cxx{testl} libue{common}
./: exe{test2}: cxx{test2} libue{common}

libue{common}: {hxx cxx}{common} S$libs

2.6.3 Test locally

With the upstream tests ready, we re-do the same end-to-end testing as we did with the smoke
test:

Test locall

[Test locally: installation|
[Test locally: distribution|

54 The build2 Packaging Guide Revision 0.18, June 2025

2.7 Add upstream examples, benchmarks, if any

2.6.4 Commit and test with CI

With local testing complete, we commit our changes and submit a remote CI job. This step is
similar to what|we did for the smoke test| but this time we are using the upstream tests:

cd foo/ # Change to the package repository root.
git add .

git status

git commit -m "Add upstream tests"

git push

v r r 1

$ bdep ci

2.7 Add upstream examples, benchmarks, if any

If the upstream project provides examples and/or benchmarks and you wish to add them to the
build2 build (which is not strictly necessary for the build2 package to be usable), then
now is a good time to do that.

As was mentioned in [Review and test auto-generated buildfile templates] the recom-
mended approach is to copy the tests/ subproject (potentially from the commit history
before the smoke test was replaced with the upstream tests) and use that as a starting point for
examples and/or benchmarks. Do not forget to add the corresponding entry in the root
buildfile.

Once that is done, follow the same steps as in [Replace smoke test with upstream tests| to add
upstream examples/benchmarks and test the result.

2.8 Adjust root files (buildfile, manifest, etc)

The last few files that we need to review and potentially adjust are the root buildfile,
package manifest, and PACKAGE-README . md.

2.8.1 Adjust root buildfile

The main function of the root buildfile is to pull in all the subdirectories that need build-
ing plus list targets that are usually found in the root directory of a project, typically
README .md, LICENSE, etc. This is what the generated root buildfile looks like for our
libfoo project assuming we have symlinked README .md, LICENSE, and NEWS from
upstream in the [Create final package]step:

./ {*/ -build/} \
doc{README.md PACKAGE-README.md NEWS} \
legal{LICENSE} manifest

Don’t install tests.

#

tests/: install = false

Revision 0.18, June 2025 The build2 Packaging Guide 55

2.8.2 Adjust root buildfile: other subdirectories

If the upstream project provides any other documentation (detailed change logs, contributing
guidelines, etc) or legal files (alternative licenses, list of authors, code of conduct, etc), then
you may want to symlink and list them as the doc{} and legal{} prerequisites, respec-
tively.

If you are packaging an executable and it provides a man page, then it can also be listed in the
root buildfile. For example, if the man page file is called foo.1:

./: ... manl{foo}

One file you don’t need to list is INSTALL (or equivalent) which normally contains the
installation instructions for the upstream build system. In the build2 package of a
third-party project the PACKAGE-README.md file serves this purpose (see
[PACKAGE—-README . md| for details).

2.8.2 Adjust root buildfile: other subdirectories

If the upstream project has other subdirectories that makes sense to include into the build2
package, then now is a good time to take care of that. The most common such case will be
extra documentation (besides the root README), typically in a subdirectory called doc/,
docs/, or documentation/.

The standard procedure for handling such subdirectories will be to symlink the relevant files
(or the entire subdirectory) and then list the files as prerequisites. For this last step, there are
two options: we can list the files directly in the root buildfile or we can create a separate
buildfile in the subdirectory.

If symlinking entire subdirectories, don’t forget to also list them in .gitattributes if
you want your package to be usable from the git repository directly on Windows. See
[Symlinks and Windows| for details.

Let’s examine each approach using our 1ibfoo as an example. We will assume that the
upstream project contains the docs/ subdirectory with additional * .md files that document
the library’s API. It would make sense to include them into the build?2 package.

Listing the subdirectory files directly in the root buildfile works best for simple cases,
where you have a bunch of static files that don’t require any special provisions, such as
customizations to their installation locations. In this case we can symlink the entire docs/
subdirectory:

$ cd libfoo/ # Change to the package root.
$ 1n -s ../upstream/docs ./

The adjustments to the root buildfile are pretty straightforward: we exclude the docs/
subdirectory (since it has no buildfile) and list the * .md files as prerequisites using the
doc{} target type (which, in particular, makes sure they are installed into the appropriate
location):

56 The build2 Packaging Guide Revision 0.18, June 2025

https://build2.org/article/symlinks.xhtml#windows

2.8.2 Adjust root buildfile: other subdirectories

./: {*/ -build/ -docs/} \
doc{README .md PACKAGE-README.md NEWS} \
docs/doc{*.md} \

legal{LICENSE} manifest

The alternative approach (create a separate buildfile) is a good choice if things are more
complicated than that. Let’s say we need to adjust the installation location of the files in
docs/ because there is another README . md inside and that would conflict with the root one
when installed into the same location. This time we cannot symlink the top-level docs/
subdirectory (because we need to place a buildfile there). The two options here are to
either symlink the individual files or introduce another subdirectory level inside docs/
(which is the same approach as discussed in [Don’t build your main targets in the root

buildfile)). Let’s illustrate both sub-cases.

Symlinking individual files works best when you don’t expect the set of files to change often.
For example, if docs/ contains a man page and its HTML rendering, then it’s unlikely this
set will change. On the other hand, if docs/ contains a manual split into an .md file per
chapter, then there is a good chance this set of files will fluctuate between releases.

Continuing with our 1ibfoo example, this is how we symlink the individual *.md files in
docs/:

cd libfoo/ # Change to the package root.
mkdir docs

cd docs/

ln -s ../../upstream/docs/*.md ./

v r »r

Then write anew buildfile in docs/:
./: doc{*.md}

Install the documentation in docs/ into the manual/ subdirectory of,
say, /usr/share/doc/libfoo/ since we cannot install both its and root
README.md into the same location.

#

doc{*.md}: install = doc/manual/

Note that we don’t need to make any changes to the root buildfile since this subdirectory
will automatically get picked up by the { */ -build/} name pattern that we have there.

Let’s now look at the alternative arrangement with another subdirectory level inside docs/.
Here we achieve the same result but in a slightly different way. Specifically, we call the
subdirectory manual/ and install recreating subdirectories (see Installing for background):

cd libfoo/ # Change to the package root.
mkdir -p docs/manual

cd docs/manual/

ln -s ../../../upstream/docs/*.md ./

v »r »r

And the corresponding buildfile in docs/:

Revision 0.18, June 2025 The build2 Packaging Guide 57

2.8.3 Adjust root buildfile: commit and test

./: doc{**.md}

Install the documentation in docs/ into, say, /usr/share/doc/libfoo/
recreating subdirectories.
#
doc{*}:
{
install = doc/
install.subdirs = true

}

Yet another option would be to open a scope for the docs/ subdirectory directly in the root
buildfile (see Output Directories and Scopes for background). For example:

$ cd libfoo/ # Change to the package root.
$ 1n -s ../upstream/docs ./

And then add the following to the root buildfile:

docs/

{
./: doc{*.md}

Install the documentation in docs/ into the manual/ subdirectory
of, say, /usr/share/doc/libfoo/ since we cannot install both its
and root README.md into the same location.

#

doc{*.md}: install = doc/manual/

}

However, this approach should be used sparingly since it can quickly make the root build-
file hard to comprehend. Note also that it cannot be used for main targets since an export
stub requires a buildfile to load (see [Don’t build your main targets in the root build-|

for details).

2.8.3 Adjust root buildfile: commit and test

Once all the adjustments to the root buildfile are made, it makes sense to test it locally
(this time from the root of the package), commit our changes, and test with CI:

$ cd libfoo/ # Change to the package root.
$ b test
$ bdep test -a

If you had to add any extra files to the root buildfile (or add buildfiles in extra
subdirectories), then it also makes sense to test the installation (Test locally: installationl) and
the preparation of the source distribution (Test locally: distribution)) to make sure the extra
files end up in the right places.

Then commit our changes and CI:

58 The build2 Packaging Guide Revision 0.18, June 2025

2.8.4 Adjust manifest

cd foo/ # Change to the package repository root.
git add .

git status

git commit -m "Adjust root buildfile"

git push

v »r r 1

$ bdep ci

2.8.4 Adjust manifest

The next file we need to look over is the package’s manifest. Here is what it will look like,
using our 1ibfoo as an example:

1
name: libfoo
version: 2.1.0-a.0.z
language: c++
project: foo
summary: C++ library implementing secure Foo protocol
license: MIT ; MIT License.
description-file: README.md
package-description-file: PACKAGE-README.md
changes-file: NEWS
url: https://example.org/upstream
email: upstream@example.org
package-url: https://github.com/build2-packaging/foo
package-email: packaging@build2.org ; Mailing list.
depends: * build2 >= 0.16.0
depends: * bpkg >= 0.16.0

You can find the description of these and other package manifest values in Package Mani-
fest (the manifest format is described in Manifest Format).

In the above listing the values that we likely need to adjust are summary and license,
unless correctly auto-detected by bdep—new in the [Create final package] step. See
manifest: summary|and|Adjust manifest: 1icense|below for guidelines on changing
these values.

It is not uncommon for projects to be licensed under multiple licenses. Note, however, that
bdep-new will only detect one license and you will need to specify any additional licenses
manually.

We will also need to change url and email with the upstream project’s homepage URL and
e-mail, respectively. If upstream doesn’t have a dedicated website for the project, then use its
repository URL on GitHub or equivalent. For e-mail you would normally use a mailing list
address. If upstream doesn’t have any e-mail contacts, then you can drop this value from the
manifest. The package-url and package—email values normally do not need to be
changed.

[packaging @build2.org| is a mailing list for discussions related to the packaging efforts of
third-party projects.

Revision 0.18, June 2025 The build2 Packaging Guide 59

https://lists.build2.org/

2.8.5 Adjust manifest: summary

Note also that while you may be tempted to adjust the version value, resist this temptation
since this will be done automatically by bdep—release (1) later.

You may also want to add the following values in certain cases:

changes—-file
If you have added any extra news of changelog files to the root buildfile (see
root buildfile]), then it may also make sense to list them in the manifest. For example:

changes-file: Changelog.txt

topics
Package topics. For example:

topics: network protocol, network security

If the upstream project is hosted on GitHub or similar, then you can usually copy the
topics from the upstream repository description.

doc-url
src—url
Documentation and source code URLs. For example:

doc-url: https://example.org/foo/doc/
src-url: https://github.com/.../foo

2.8.5 Adjust manifest: summary

For summary use a brief description of the functionality provided by the library or
executable. Less than 70 characters is a good target to aim for. Don’t capitalize subsequent
words unless proper nouns and omit the trailing dot. For example:

summary: Vim xxd hexdump utility

n "

Omit weasel words such as "modern", "simple", "fast", "small", etc., since they don’t convey
anything specific. Omit "header-only" or "single-header" for C/C++ libraries since, at least in
the context of build2, it does not imply any benefit.

If upstream does not offer a sensible summary, the following template is recommended for
libraries:

summary: <functionality> C library
summary: <functionality> C++ library

For example:

summary: Event notification C library
summary: Validating XML parsing and serialization C++ library

60 The build2 Packaging Guide Revision 0.18, June 2025

2.8.6 Adjust manifest: license

If the project consists of multiple packages, it may be tempting to name each package in terms
of the overall project name, for example:

name: libigl-core
summary: libigl core module

This doesn’t give the user any clue about what functionality is provided unless they find out
what 1ibigl is about. Better:

summary: Geometry processing C++ library, core module

If you follow the above pattern, then to produce a summary for external tests or examples
packages simply add "tests" or "examples" at the end, for example:

summary: Event notification C library tests
summary: Geometry processing C++ library, core module examples

2.8.6 Adjust manifest: license

For license, use the [SPDX license ID|if at all possible. If multiple licenses are involved,
use the SPDX License expression. See the [License manifest value] documentation for
details, including the list of the SPDX IDs for the commonly used licenses.

2.8.7 Adjust manifest: commit and test

Once all the adjustments to the manifest are made, it makes sense to test it locally, commit
our changes, and test with CI:

$ cd libfoo/ # Change to the package root.
$ b test
$ bdep test -a

Then commit our changes and CI:

cd foo/ # Change to the package repository root.
git add .

git status

git commit -m "Adjust manifest"

git push

v »r r 1

$ bdep ci

2.8.8 Adjust PACKAGE—-README . md

The last package file we need to adjust is PACKAGE-README . md which describes how to
use the package from a build2-based project. The template generated by bdep—new estab-
lishes the recommended structure and includes a number of placeholders enclosed in < >,
such as <UPSTREAM-NAME> and <SUMMARY-OF-FUNCTIONALITY>, that need to be
replaced with the package-specific content. While all the placeholders should be self-explana-
tory, below are a couple of guidelines.

Revision 0.18, June 2025 The build2 Packaging Guide 61

https://spdx.org/licenses/
https://build2.org/bpkg/doc/build2-package-manager-manual.xhtml#manifest-package-license

2.9 Adjust package repository README.md

For <SUMMARY-OF-FUNCTIONALITY> it’s best to copy a paragraph or two from the
upstream documentation, usually from README . md or the project’s web page.

If the bdep new command was able to extract the summary from upstream README, then
the summary in the heading (first line) will contain that information. Otherwise, you would
need to adjust it manually, similar to manifest above. In this case use the summary value
form the mani fest, perhaps slightly shortened.

If the package contains a single importable target, as is typical with libraries, then it makes
sense to drop the "Importable targets" section since it won’t add anything that hasn’t already
been said in the "Usage" section.

Similarly, if the package has no configuration variables, then it makes sense to drop the
"Configuration variables" section.

For inspiration, see

[PACKAGE—README .md|in |zstd| and [PACKAGE—README .md|in [l ibevent/|(libraries) as
well as[PACKAGE—README . md|in|z st dland |README . md|in [xxd| (executables).

If upstream does not provide a README file, then it makes sense to rename
PACKAGE-README .md to just README .md in the build2 package, as was done in the
xxd package mentioned above.

Once PACKAGE-README . md is ready, commit and push the changes. You may also want to
view the result on GitHub to make sure everything is rendered correctly.

$ cd foo/ # Change to the package repository root.
$ git add .

$ git status

$ git commit -m "Adjust PACKAGE-README.md"

$ git push

2.9 Adjust package repository README . md

With all the package files taken care of, the last file we need to adjust is README .md in the

root of our package repository (it was created in the [Initialize package repository with bdep

step).

If you need to add additional packages and are doing this one package at a time (for example,
first library then executable in the "library and executable" project), then this is the point
where you would want to restart from [Create package and generate buildfile templates|
for another iteration. Only once all the packages are added does it make sense to continue
with updating this README . md.

The primary purpose of the package repository README . md is to provide setup instructions
as well as any other relevant information for the development of the packages as opposed to
their consumption. However, it’s also a good idea to give a brief summary of what this reposi-
tory is about and to point users interested in consumption to the PACKAGE-README . md

62 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2-packaging/zstd/blob/master/libzstd/PACKAGE-README.md
https://github.com/build2-packaging/zstd
https://github.com/build2-packaging/libevent/blob/main/PACKAGE-README.md
https://github.com/build2-packaging/libevent
https://github.com/build2-packaging/zstd/blob/master/zstd/PACKAGE-README.md
https://github.com/build2-packaging/zstd
https://github.com/build2-packaging/xxd/blob/master/xxd/README.md
https://github.com/build2-packaging/xxd

2.10 Release and publish

files.

The template generated by bdep new establishes the recommended structure to achieve
these objectives. It includes a number of placeholders enclosed in < >, such as
<UPSTREAM-URL> and <SUMMARY-OF-FUNCTIONALITY>, that need to be replaced
with the repository-specific content. While all the placeholders should be self-explanatory,
below are a couple of guidelines.

If there is a single package, then <SUMMARY> in the heading can be the same as in
PACKAGE-README . md. If there are multiple packages, then use an overall summary of the
upstream project.

For <SUMMARY-OF-FUNCTIONALITY> it’s best to copy a paragraph or two from the
upstream documentation, usually from README .md or the project’s web page. Again, for a
single package, this can be copied directly from PACKAGE-README . md.

If there are multiple packages in the repository, then it’s recommended to replace a single link
to PACKAGE-README . md with a list of links (this also shows the available packages). For
example:

. If you want to use ‘foo' in your ‘build2‘-based project, then
instead see the accompanying ‘PACKAGE-README.md‘ files:

* [‘1libfoo/PACKAGE-README.md"‘] (libfoo/PACKAGE-README.md)
* [‘foo/PACKAGE-README.md ‘] (foo/PACKAGE-README .md)

The remainder of the generated README . md file are the standard bdep initialization instruc-
tions. Adjust them if your package repository requires anything special (for example, a host
configuration). This is also the place to mention anything unusual, such as that upstream does
not use semver (and thus only a subset of bdep functionality is usable).

For inspiration, see README . md|in the |z st d| package repository.

Once the repository README . md is ready, commit and push the changes. You may also want
to view the result on GitHub to make sure everything is rendered correctly.

$ cd foo/ # Change to the package repository root.

$ git add .

$ git status

$ git commit -m "Adjust package repository README.md"
$ git push

2.10 Release and publish

Once all the adjustments are in and everything is tested, we can release the final version of the
package and then publish it to Both of these steps are automated with the corre-
sponding bdep commands. But before performing these steps we need to transfer the
package repository to [github.com/build2-packaging}

Revision 0.18, June 2025 The build2 Packaging Guide 63

https://github.com/build2-packaging/zstd/blob/master/README.md
https://github.com/build2-packaging/zstd
https://cppget.org/
https://github.com/build2-packaging

2.10.1 Transfer package repository

2.10.1 Transfer package repository

If you have been doing your work in a repository in your personal workspace, then now is the
time to transfer it to the [github.com/build2-packaging| organization.

It is important to transfer the repository before publishing the first version of the package
since the repository is wused as a proxy for package name ownership (see
bdep-publish (1) for details). If you publish the package from your personal workspace
and then transfer the repository, the ownership information will have to be adjusted manually,
which we would prefer to avoid.

The first step is to become a member of this organization (unless you already are). This will
give you permissions to create new repositories, which is required to perform a transfer (you
will also have full read/write access to the repository once transferred). To get an invite,
not forgetting to mention your GitHub user name.

If your repository has any prefixes, such as build2-, or suffixes such as -package, then
the next step is to rename it to follow the [Use upstream repository name as package repository |
guideline. Go to the repository’s Settings on GitHub where you should see the Rename
button.

Finally, to perform the transfer, go to the repository’s Settings, Danger Zone section, where
you should see the Transfer button. Select build2-packaging as the organization to
transfer to, and complete the transfer.

Once transferred, you will be considered the maintainer of this package going forward. If
other members of the build2-packaging organization wish to participate in the package
maintenance, the correct etiquette is to do this via pull requests. However, if you lose interest
in maintaining a package or otherwise become unresponsive, we may allow a new maintainer
to take over this role.

In extraordinary circumstances the build2-packaging administrators may make direct
changes to the package, for example, to release a new revision in order to address a critical
issue. They will still try to coordinate the changes with the maintainer but may not always be
able to wait for a response in time-sensitive cases.

2.10.2 Release final version

As you may recall, our package currently has a pre-release snapshot version of the upstream
version (see [Adjust package version). Once all the changes are in, we can change to the final
upstream version, in a sense signaling that this package version is ready.

If you are working in a branch, then now is also the time to merge it into master (or equiva-
lent).

64 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2-packaging
https://build2.org/community.xhtml#help
https://build2.org/community.xhtml#help

2.10.3 Publish released version

The recommended way to do this is with the bdep—release (1) command (see Versioning
and Release Management for background). Besides replacing the version value in the
package manifest file, it also commits this change, tags it with the vX. Y. Z tag, and can be
instructed to push the changes (or show the git command to do so). This command also by
default "opens" the next development version, which is something that we normally want for
our own projects but not when we package a third-party one (since we cannot predict which
version upstream will release next). So we disable this functionality. For example:

$ cd foo/ # Change to the package repository root.
$ bdep release —--no-open --show-push

Then review the commit made by bdep-release and, if everything looks good, push the
changes by copying the command that it printed:

$ git diff HEAD~1
$ git push ...

If something is wrong and you need to undo this commit, don’t forget to also remove the tag.
Note also that once you have pushed your changes, you cannot undo the commit. Instead, you
will need to make a revision. See [Version management|for background and details.

2.10.3 Publish released version

Once the version is released we can publish the package to with the
bdep-publish (1) command (see Versioning and Release Management for background):

$ cd foo/ # Change to the package repository root.
$ bdep publish

The bdep-publish command prepares the source distribution of your package, uploads the
resulting archive to the package repository, and prints a link to the package submission in the
queue. Open this link in the browser and check that there are no surprises in the build results
(they should match the earlier CI results) or in the displayed package information
(PACKAGE—README . md, etc).

While there should normally be no discrepancies in the build results compared to our earlier
CI submissions, the way the packages are built on CI and in the package repository are not
exactly the same. Specifically, CI builds them from git while the package repository — from
the submitted package archives. If there are differences, it’s almost always due to issues in the
source distribution preparation (see [Test locally: distribution]).

If everything looks good, then you are done: the package submission will be moved to
for further testing and review. If this further testing or review identifies any prob-
lems with the package, then an issue will be created in the package repository with the feed-
back (see [Package Review| for details). In this case you may need to [release and publish af
[version revision| to address any serious problems. But before doing that (or releasing a new
version), you should first read through the following [Package version management| section to
understand the recommended "version lifecycle" of a third-party package.

Revision 0.18, June 2025 The build2 Packaging Guide 65

https://cppget.org/
https://cppget.org/

2.11 Package version management

Also, if there is an issue for this package in [github.com/build2-packaging/WISHLIST] then
you would want to add a comment and close it once the package has been moved to

2.11 Package version management

Once we have pushed the release commit, in order to preserve continuous versioning (see
[Adjust package version| for background), no further changes should be made to the package
without also changing its version.

More precisely, you can make and commit changes without changing the version provided
they don’t affect the package. For example, you may keep a TODO file in the root of your
repository which is not part of any package. Updating such a file without changing the version
is ok since the package remains unchanged.

While in our own projects we can change the versions as we see fit, with third-party projects
the versions are dictated by upstream and as a result we are limited to what we can use to fix
issues in our packaging work itself. It may be tempting (and perhaps even conceptually
correct) to release a patch version for our own fixes, however, we will be in trouble if later
upstream releases the same patch version but with a different set of changes (plus the users of
our package may wonder where did this version come from). As a result, we should only
change the major, minor, or patch components of the package version in response to the corre-
sponding upstream releases. For fixes to the packaging work itself we should instead use
version revisions.

Because a revision replaces the existing version, we should try to limit revision changes to
bug fixes and preferably only in the package "infrastructure” (buildfiles, manifest,
etc). Fixes to upstream source code should be limited to critical bugs and be preferably back-
ported from upstream. To put it another way, changes in a revision should have an even more
limited scope than a patch release.

Based on this, the recommended "version lifecycle" for a third-party package is as follows:

1. After a release (the [Release final version| step above), for example, version 2.1.0, the
package enters a "revision phase" where we can release revisions (2.1.0+1,2.1.0+2,
etc) to address any issues in the packaging work. See for the detailed
procedure.

2. When a new upstream version is released, for example version 2.2 .0, and we wish to
upgrade our package to this version, we switch to its pre-release snapshot version
(2.2.0-a.0.z) the same way as we did in the [Adjust package version| step initially.
See for the detailed procedure.

3. Once we are done upgrading to the new upstream version, we release the final version
just like in the [Release final version| step initially. At this point the package enters
another revision phase.

66 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2-packaging/WISHLIST
https://cppget.org/

2.11.1 New revision

Note also that in the above example, once we have switched to 2.2.0-a. 0. z, we cannot go
back and release another revision or patch version for 2.1 .0 on the current branch. Instead,
we will need to create a separate branch for the 2. 1. Z release series and make a revision or
patch version there. See [New version/revision in old release series|for the detailed procedure.

2.11.1 New revision

As discussed in [Package version management, we release revisions to fix issues in the
package "infrastructure" (buildfiles, manifest, etc) as well as critical bugs in
upstream source code.

Releasing a new revision is also a good opportunity to review and fix any accumulated issues
that didn’t warrant a revision on their own. See [New version: review/fix accumulated issues|
for background.

In the revision phase of the package version lifecycle (i.e., when the version does not end with
—-a.0.z), every commit must be accompanied by the revision increment to maintain continu-
ous versioning. As a result, each revision release commit necessarily also contains the
changes in this revision. Below is a typical workflow for releasing and publishing the revi-
sion:

make changes

test locally

git add .

bdep release —--revision —--show-push
review commit

git push

test with CI

bdep publish

v »r vr 1 1 U U

Customarily, the revision commit message has the "Release version X.Y.Z+R"
summary as generated by bdep-release followed by the description of changes, orga-
nized in a list if there are several. For example:

Release version 2.1.0+1

- Don’t compile port/strlcpy.c on Linux if GNU libc is 2.38 or newer
since it now provides the strl* () functions.

- Switch to using -pthread instead of -D_REENTRANT/-lpthread.

The fact that all the changes must be in a single commit is another reason to avoid substantial
changes in revisions.

Note also that you can make multiple commits while developing and testing the changes for a
revision in a separate branch. However, once they are ready for a release, they need to be
squashed into a single commit. The bdep—-release (1) command provides the ——amend
and ——squash options to automate this. For example, here is what a workflow with a sepa-
rate branch might look like:

Revision 0.18, June 2025 The build2 Packaging Guide 67

2.11.2 New version

L3

git checkout -b wip-2.1.0+1

make strl* () changes

test locally

git commit —-a -m "Omit port/strlcpy.c if glibc 2.38 or newer"
git push -u

test with CI

v r r 1

make pthread changes

test locally

git commit —-a -m "Switch to using -pthread"
git push

test with CI

v r r 1

git checkout master

git merge —--ff-only wip-2.1.0+1

bdep release —--revision —--show-push —--amend --squash 2
review commit

test locally

git push ...

test with CI

bdep publish

v »r »r 1 1 U U

2.11.2 New version

As discussed in [Package version management, we release new versions strictly in response to
the corresponding upstream releases.

The amount or work required to upgrade a package to a new upstream version depends on the
extend of changes in the new version.

On one extreme you may have a patch release which fixes a couple of bugs in the upstream
source code without any changes to the set of source files, upstream build system, etc. In such
cases, upgrading a package is a simple matter of creating a new work branch, pointing the
upstream git submodule to the new release, running tests, and then merging, releasing,
and publishing a new package version.

On the other extreme you may have a new major upstream release which is essentially a
from-scratch rewrite with new source code layout, different upstream build system, etc. In
such cases it may be easier to likewise start from scratch. Specifically, create a new work
branch, point the upstream git submodule to the new release, delete the existing package,
and continue from |Create package and generate buildfile templates|

Most of the time, however, it will be something in between where you may need to tweak a
few things here and there, such as adding symlinks to new source files (or removing old ones),
tweaking the buildfiles to reflect changes in the upstream build system, etc.

The following sections provide a checklist-like sequence of steps that can be used to review
upstream changes with links to the relevant earlier sections in case adjustments are required.

68 The build2 Packaging Guide Revision 0.18, June 2025

2.11.3 New version: create new work branch

2.11.3 New version: create new work branch

When upgrading a package to a new upstream version it’s recommended to do this in a new
work branch which, upon completion, is merged into master (or equivalent). For example,
if the new upstream version is 2.2 .0:

$ git checkout -b wip-2.2.0

If you are not the maintainer of the package and would like to help with preparing the new
version, then, when everything is ready, use this branch to create a pull request instead of
merging it directly.

2.11.4 New version: open new version

This step corresponds to |Adjust package version| during the initial packaging. Here we can
make use of the bdep-release command to automatically open the new version and make
the corresponding commit. For example, if the new upstream versionis 2. 2. 0:

$ bdep release —--open —--no-push —--open-base 2.2.0

2.11.5 New version: update upstream submodule

This step corresponds to [Add upstream repository as git submodule] during the initial pack-
aging. Here we need to update the submodule to point to the upstream commit that corre-
sponds to the new version.

For example, if the upstream release tag we are interested in is called v2.2. 0, to update the
upstream submodule to point to this release commit, run the following commands:

cd upstream/

git fetch

git checkout v2.2.0
cd ../

v »r »r

L3

git add .
git status
$ git commit -m "Update upstream submodule to 2.2.0"

L3

2.11.6 New version: review upstream changes

At this point it’s a good idea to get an overview of the upstream changes between the two
releases in order to determine which adjustments are likely to be required in the build2
package. We can use the upstream submodule for that, which contains the change history
we need.

One way to get an overview of changes between the releases is to use a graphical repository
browser such as gitk and view a cumulative di f f of changes between the two versions. For
example, assuming the latest packaged version is tagged v2.1.0 and the new version is
tagged v2.2.0:

Revision 0.18, June 2025 The build2 Packaging Guide 69

2.11.7 New version: layout changes

$ cd upstream/
$ gitk v2.1.0..v2.2.0 &

Then click on the commit tagged v2.2. 0, scroll down and right-click on the commit tagged
v2.1.0, and select the "Diff this -> selected" menu item. This will display the cumulative
set of changes between these two upstream versions. Review them looking for the following
types of changes in particular (discussed in the following sections):

Changes to the source code layout.

New dependencies being added or old removed.

New source files being added or old removed (including in tests, etc).
Changes to the upstream build system.

Other new files/subdirectories being added or old removed.

2.11.7 New version: layout changes

As mentioned earlier, for drastic layout changes it may make sense to start from scratch and
re-generate the package with the bdep—new command (use [Decide on the package source]
as a starting point). On the other hand, if the changes are minor, then you can try
to adjust things manually. An in-between strategy is to generate the new layout using
bdep-new on the side and then retrofit the relevant changes in buildfiles to the existing
package. In a sense, this approach uses bdep—-new as a guide to figure out how to implement
the new layout.

2.11.8 New version: new/old dependencies

If upstream added new or removed old dependencies, then you will need to replicate these
changes in your package as in the [Add dependencies| and [Adjust source buildfile: depen

initial packaging steps.

2.11.9 New version: new/old source files

If upstream added new or removed old source files, then you will need to replicate these
changes in your package as in the [Fill with upstream source code|and possibly [Adjust header |
[buildfile| and |Adjust source buildfile: sources, private headers| initial packaging
steps.

Also don’t forget about tests, examples, etc., which may also add new or remove old source
files (typically new tests). See [Convert smoke test to upstream tests}

If there are any manual modifications to the upstream source code, then you will also need to
re-apply them to the new version as discussed in[Modifying upstream source code manually}

70 The build2 Packaging Guide Revision 0.18, June 2025

2.11.10 New version: changes to build system

2.11.10 New version: changes to build system

If upstream changed anything in the build system, then you may need to replicate these
changes in your package’s buildfiles. The relevant initial packaging steps are:
[project-wide build system files in build/|and|Adjust source buildfile: build and export |

The corresponding steps for tests are: [Adjust project-wide build system files in |
[tests/build/|and|Convert smoke test to upstream tests|

2.11.11 New version: other new/old files/subdirectories

If upstream added or removed any other files or subdirectories that are relevant to our package
(such as documentation), then adjust the package similar to the |[Adjust root buildfile|and
[Adjust root buil1dfile: other subdirectories|initial packaging steps.

2.11.12 New version: review manifest and PACKAGE—-README . md

It makes sense to review the package manifest (Adjust manifest) and
PACKAGE-README . md (Adjust PACKAGE—README . md)) for any updates.

2.11.13 New version: review repository README . md

If any new packages were added in this version or if there are any changes to the development
workflow, then it makes sense to review and if necessary update package repository
README . md (Adjust package repository README . md)).

2.11.14 New version: review/fix accumulated issues

When a bug is identified in an already released package version, we may not always be able to
fix it immediately (for example, by [releasing a revision|). This could be because the change is
too extensive/risky for a revision or simply not critical enough to warrant a release. In such
cases it’s recommended to file an issue in the package repository with the view to fix it when
the next opportunity arises. Releasing a new upstream version is one such opportunity and it
makes sense to review any accumulated package issues and see if any of them could be
addressed.

2.11.15 New version: test locally and with CI

Once all the adjustments are in, test the package both locally and with CI similar to how we
did it during the initial packaging after completing the smoke test:

Test locall

[Test locally: installation|
[Test locally: distribution|
[Commit and test with CI|

Revision 0.18, June 2025 The build2 Packaging Guide 71

3 What Not to Do

2.11.16 New version: merge, release, and publish

When the new version of the package is ready to be released, merge the work branch to
master (or equivalent):

$ git checkout master
$ git merge --ff-only wip-2.2.0

Then release and publish using the same steps as after the initial packaging:

2.11.17 New version/revision in old release series

As discussed in [Package version management], if we have already switched to the next
upstream version in the master (or equivalent) branch, we cannot go back and release a new
version or revision for an older release series on the same branch. Instead, we need to create a
separate, long-lived branch for this work.

As an example, let’s say we need to release another revision or a patch version for an already
released 2.1.0 while our master branch has already moved on to 2. 2. 0. In this case we
create a new branch, called 2. 1, to continue with the 2.1 . Z release series. The starting point
of this branch should be the latest released version/revision in the 2. 1 series. Let’s say in our
case it is 2.1.0+2, meaning we have released two revisions for 2.1.0 on the master
branch before upgrading to 2. 2. 0. Therefore we use the v2.1.0+2 release tag to start the
2.1 branch:

$ git checkout -b 2.1 v2.1.0+2

Once this is done, we continue with the same steps as in [New revision| or [New version|except
that we never merge this branch to master. If we ever need to release another revision or
version in this release series, then we continue using this branch. In a sense, this branch
becomes the equivalent of the master branch for this release series and you should treat it as
such (once published, never delete, rewrite its history, etc).

It is less likely but possible that you may need to release a new minor version in an old release
series. For example, the master branch may have moved on to 3. 0.0 and you want to release
2.2.0 after the already released 2.1.0. In this case it makes sense to call the branch 2
since it corresponds to the 2.Y. Z release series. If you already have the 2.1 branch, then it
makes sense to rename it to 2.

3 What Not to Do

This chapter describes the common anti-patterns along with the recommended alternative
approaches.

72 The build2 Packaging Guide Revision 0.18, June 2025

3.1 Don’t write buildfiles from scratch, use bdep-new

3.1 Don’t write build£files from scratch, use bdep—new

Unless you have good reasons not to, create the initial project layout automatically using
bdep-new (1), then tweak it if necessary and fill with upstream source code.

The main rationale here is that there are many nuances in getting the build right and
auto-generated buildfiles had years of refinement and fine-tuning. The familiar structure
also makes it easier for others to understand your build, for example while reviewing your
package submission or helping out with the package maintenance.

The bdep—new (1) command supports a wide variety of source layouts. While it may take a
bit of time to understand the customization points necessary to achieve the desired layout for
your first package, this will pay off in spades when you work on converting subsequent pack-
ages.

See|Craft bdep new command line to create packagel|for details.

3.2 Avoid fixing upstream issues in the build2 package

Any deviations from upstream makes the build2 package more difficult to maintain. In
particular, if you make a large number of changes to the upstream source code, releasing a
new version will require a lot of work. As a result, it is recommended to avoid fixing
upstream issues in the build2 package. Instead, try to have the issues fixed upstream and
wait for them to be released as a new version.

Sometimes, however, you may have no choice. For example, upstream is inactive or has no
plans to release a new version with your fixes any time soon. Or you may want to add support
for a platform/compiler that upstream is not willing or capable of supporting.

Note that even if you do fix some issues in the build2 package directly, try hard to also
incorporate them upstream so that you don’t need to maintain the patches forever.

See also |Avoid changing upstream source code layout| and [How do I patch upstream source |

3.3 Avoid changing upstream source code layout

It’s a good idea to stay as close to the upstream’s source code layout as possible. For back-
ground and rationale, see [Decide on the package source code layout]

3.4 Don’t make library header-only if it can be compiled

Some libraries offer two alternative modes: header-only and compiled. Unless there are good
reasons not to, a build2 build of such a library should use the compiled mode.

Revision 0.18, June 2025 The build2 Packaging Guide 73

3.5 Don’t bundle dependencies

Some libraries use the precompiled term to describe the non-header-only mode. We don’t
recommend using this term in the build2 package since it has a strong association with
precompiled headers and can therefore be confusing. Instead, use the compiled term.

The main rationale here is that a library would not be offering a compiled mode if there were
no benefits (usually faster compile times of library consumers) and there is no reason not to
take advantage of it in the bui1d2 package.

There are, however, valid reasons why a compiled mode cannot be used, the most common of
which are:

® The compiled mode is not well maintained/tested by upstream and therefore offers infe-
rior user experience.

® The compiled mode does not work on some platforms, usually Windows due to the lack
of symbol export support (but see Automatic DLL Symbol Exporting).

® Uses of the compiled version of the library requires changes to the library consumers, for
example, inclusion of different headers.

If a compiled mode cannot always be used, then it may be tempting to support both modes by
making the mode user-configurable. Unless there are strong reasons to, you should resist this
temptation and, if the compiled mode is not universally usable, then use the header-only mode
everywhere.

The main rationale here is that variability adds complexity which makes the result more prone
to bugs, more difficult to use, and harder to review and maintain. If you really want to have
the compiled mode, then the right way to achieve it is to work with upstream to fix any issues
that prevent its use in build2.

There are, however, valid reasons why supporting both modes may be needed, the most
common of which are:

® The library is widely used in both modes but switching from one mode to the other
requires changes to the library consumers (for example, inclusion of different headers).
In this case only supporting one mode would mean not supporting a large number of
library consumers.

® The library consists of a large number of independent components while its common for
applications to only use a small subset of them. And compiling all of them in the
compiled mode takes a substantial amount of time. Note that this can alternatively be
addressed by making the presence of optional components user-configurable.

3.5 Don’t bundle dependencies

Sometimes third-party projects bundle their dependencies with their source code (also called
vendoring). For example, a C++ library may bundle a testing framework. This is especially
common with where one often encounters a comical situation with only a few kilo-
bytes of library source code and over 600KB of catch?2.hpp.

74 The build2 Packaging Guide Revision 0.18, June 2025

https://cppget.org/catch2

3.6 Don't build your main targets in the root buildfile

The extra size, while wasteful, is not the main issue, however. The bigger problem is that if a
bug is fixed in the bundled dependency, then to propagate the fix we will need to release a
new version (or revision) of each package that bundles it. Needless to say this is not scalable.

While this doesn’t apply to testing frameworks, an even bigger issue with bundling of depen-
dencies in general is that two libraries that bundle the same dependency (potentially of differ-
ent versions) may not be able to coexist in the same build with the symptoms ranging from
compile errors to subtle runtime issues that are hard to diagnose.

As a result, it is strongly recommended that you unbundle any dependencies that upstream
may have bundled. In case of testing frameworks, see [How do I handle tests that have extra |
[dependencies?| for the recommended way to deal with such cases.

One special case where a bundled dependency may be warranted is a small utility that is
completely inline/private to the implementation and where making it an external dependency
may lead to a less performant result (due to the inability to inline without resorting to LTO).
The xxhash implementation in 1ibzstd is a representative example of this situation.

3.6 Don’t build your main targets in the root buildfile

It may be tempting to have your main targets (libraries, executables) in the root buildfile,
especially if it allows you to symlink entire directories from upstream/ (which is not possi-
ble if you have to have a buildfile inside). However, this is not recommended except for
the simplest of projects.

Firstly, this quickly gets messy since you have to combine managing README, LICENSE,
etc., and subdirectories with your main target builds. More importantly, this also means that
when your main target is imported (and thus the buildfile that defines this target must be
loaded), your entire project will be loaded, including any tests/ and examples/ subpro-
jects, and that is wasteful.

If you want to continue symlinking entire directories from upstream/ but without moving
everything to the root buildfile, the recommended approach is to simply add another
subdirectory level. Let’s look at a few concrete example to illustrate the technique (see
lon the package source code layout|for background on the terminology used).

Here is the directory structure of a package which uses a combined layout (no header/source
split) and where the library target is in the root buildfile:

libigl-core/

|-- igl/ -> ../upstream/igl/

| -- tests/

+—— buildfile # Defines lib{igl-core}.

And here is the alternative structure where we have added the extra 1ibigl-core subdirec-
tory with its own buildfile:

Revision 0.18, June 2025 The build2 Packaging Guide 75

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

3.7 Don’t make extensive changes in a revision

libigl-core/
|-- libigl-core/

|A A |-- igl/ -> ../../upstream/igl/

|A A --- buildfile # Defines lib{igl-core}.
|-- tests/

-—— buildfile

Below is the bdep—-new invocation that can be used to automatically create this alternative
structure (see [Craft bdep new command line to create package| for background and
bdep-new (1) for details):

$ bdep new \
—-—type lib,prefix=libigl-core, subdir=igl,buildfile-in-prefix \
libigl-core

Let’s also look at an example of the split layout, which may require a slightly different
bdep-new sub-options to achieve the same result. Here is the layout which matched
upstream exactly:

$ bdep new —--type lib,split, subdir=foo,no-subdir-source libfoo
$ tree libfoo

libfoo/

|-- include/

| -—— foo/

| |-- buildfile

| .

-—— src/

|-- buildfile

O h
O h

However, with this layout we will not be able to symlink the entire include/foo/ and
src/ subdirectories because there are buildfiles inside (and which may tempt you to
just move everything to the root buildfile). To fix this we can move the buildfiles
out of source subdirectory foo/ and into prefixes (include/ and src/) using the
buildfile-in-prefix sub-option. And since src/ doesn’t have a source subdirectory,
we have to invent one:

$ bdep new —--type lib,split,subdir=foo,buildfile-in-prefix libfoo
$ tree libfoo

libfoo/
|-- include/
|A A |-- foo/ -> ../../upstream/include/foo/
|A A --- buildfile
-— src/
|-- foo/ -> ../../upstream/src/
-—— buildfile

3.7 Don’t make extensive changes in a revision

Unlike a new version, a revision replaces the previous revision of the same version and as a
result must be strictly backwards-compatible in all aspects with what it replaces. If you make
extensive changes in a revision, it becomes difficult to guarantee that this requirement is satis-
fied. As a result, you should refrain from making major changes, like substantially altering the
build, in a revision, instead delaying such changes until the next version.

76 The build2 Packaging Guide Revision 0.18, June 2025

4 Packaging HOWTO

The recommendation is to limit revision changes to bug fixes and preferably only in the
package "infrastructure" (buildfiles, manifest, etc). Fixes to upstream source code
should be limited to critical bugs and be preferably backported from upstream. To put it
another way, changes in a revision should have an even more limited scope than a patch
release.

4 Packaging HOWTO

This chapter provides advice on how to handle less common packaging tasks and require-
ments.

4.1 How do I patch upstream source code?

If you need to change something in the upstream source code, there are several options: You
can make a copy of the upstream source file and make the modifications there. While straight-
forward, this approach has one major drawback: you will have to keep re-applying the
changes for every subsequent version unless and until upstream incorporates your changes.
The other two options try to work around this drawback.

The first alternative option is to modify the upstream source code automatically during the
build, typically using an ad hoc recipe. This approach works best when the changes are
regular and can be applied mechanically with something like the sed builtin.

The second alternative option is to use the C/C++ preprocessor to make the necessary changes
to the upstream source code during compilation. Unlike the first alternative, this approach
doesn’t have a prescribed way to apply it in every situation and often requires some imagina-
tion. Note that it also has the tendency to quickly get out of hand, at which point it’s wise to
keep it simple and use the first option (manual modification).

The following sections examine each approach in detail.

4.1.1 Modifying upstream source code manually

As an illustration of this approach, let’s say we need to patch src/foo.cppinour libfoo
example from the previous sections (see the [Fill with upstream source code| step for a
refresher). The recommended sequence of steps is as follows:

1. Rename the upstream symlink to .orig:

$ cd libfoo/src/
$ mv foo.cpp foo.cpp.orig

2. Make a deep copy of .orig:
$ cp -H foo.cpp.orig foo.cpp

3. Make any necessary modifications in the deep copy:

Revision 0.18, June 2025 The build2 Packaging Guide 77

4.1.2 Modifying upstream source code during build

$ edit foo.cpp
4. Create a patch for the modifications:

$ diff -u foo.cpp.orig foo.cpp >foo.cpp.patch

The presence of the .orig and .patch files makes it clear that the upstream code was
modified. They are also useful when re-applying the changes to the new version of the
upstream source code. The recommended sequence of steps for this task is as follows:

1. After the upstream submodule update (see the [New version: update upstream |
step), the .orig symlink points to the new version of the upstream source
file.

2. Overwrite old modified version with a deep copy of new .orig:

$ cp -H foo.cpp.orig foo.cpp
3. Apply old modifications to the new deep copy:

$ patch <foo.cpp.patch
If some hunks of the patch could not be applied, manually resolve any conflicts.

4. If in the previous step the patch did not apply cleanly, regenerate it:

$ diff -u foo.cpp.orig foo.cpp >foo.cpp.patch

4.1.2 Modifying upstream source code during build

As an illustration of this approach, let’s say upstream is using the ${VAR} style variable
substitutions in their config.h.cmake instead of the more traditional @VARQ style:

/* config.h.cmake */

#define FOO_VERSION "${PROJECT_VERSION}"

The ${VAR} style is not supported by the build2 module which means we
cannot use the upstream config.h.cmake as is. While we could patch this file manually to
use @VARQ instead, this is a pretty mechanical change that can be easily made with a simple
ad hoc recipe during the build, freeing us from manually applying the same changes in subse-
quent versions. For example:

using autoconf

h{config}: in{config.h.in}
{
autoconf.flavor = cmake
PROJECT_VERSION
}

Sversion

in{config.h.in}: file{config.h.cmake}
{{

sed —e "s/\$\{(.+)\}/@\1@/g’ S$path($<) >$path($>)
+}

78 The build2 Packaging Guide Revision 0.18, June 2025

https://github.com/build2/libbuild2-autoconf

4.1.3 Modifying upstream source code with C/C++ preprocessor

4.1.3 Modifying upstream source code with C/C++ preprocessor

A good illustration of this approach is adding the build2 metadata to an executable (see
[How do I convey additional information (metadata) with executables and C/C++ libraries?| for
background). Let’s say we have a symlink to upstream’s main.c that implements the
executable’s main () function and we need to add a snipped of code at the beginning of this
function that handles the --build2-metadata option. While manually modifying
main.c is not a wrong approach, we can try to be clever and do it automatically with the
preprocessor.

Specifically, we can create another file next to the main. c symlink, calling it, for example,
main-build2. c, with the following contents:

/* Handle —--build2-metadata in main() (see also buildfile). */

#define main xmain
#include "main.c"
#undef main

#include <stdio.h>
#include <string.h>

int main (int argc, const char** argv)
{
if (argc == 2 && strncmp (argv[l], "--build2-metadata=", 18) == 0)
{
printf ("# build2 buildfile fool\n");
printf ("export.metadata = 1 foo\n");
printf ("foo.name = [string] foo\n");

return 0;
}

return xmain (argc, argv);

}

The idea here is to rename the original main () with the help of the C preprocessor and
provide our own main () which, after handling ——build2-metadata calls the original.
One notable deal-breaker for this approach would be a C++ implementation of main () that
doesn’t have the explicit return. There is also a better chance in C++ for the main macro
to replace something unintended.

To complete this we also need to modify our buildfile to exclude main. c from compila-
tion (since it is compiled as part of main-build2.c via the preprocessor inclusion). For
example:

exe{foo}: {h c}{** —-main}
exe{foo}: c{main}: include = adhoc # Included in main-build2.c.

Revision 0.18, June 2025 The build2 Packaging Guide 79

https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md

4.2 How do | deal with bad header inclusion practice?

4.2 How do I deal with bad header inclusion practice?

This section explains how to deal with libraries that include their public, generically-named
headers without the library name as a subdirectory prefix. Such libraries cannot coexist,
neither in the same build nor when installed.

Specifically, as an illustration of the problem, consider the 1ibfoo library with a public
header named util.h thatis included as <util.h> (instead of, say, <libfoo/util.h>
or <foo/util.h>). If this library’s headers are installed directly into, say,
/usr/include, then if two such libraries happened to be installed at the same time, then
one will overwrite the other’s header. There are also problems in the non-installed case: if two
such libraries are used by the same project, then which <util.h> header gets included
depends on which library’s header search path ends up being specified first on the command
line (with the —I option).

These issues are severe enough that libraries with such inclusion issues cannot be published to
without them being addressed in the build2 package. Thankfully, most library
authors these days use the library name as an inclusion prefix (or sometimes they have
headers that are decorated with the library name). However, libraries that do not follow these
guidelines do exist and this section describes how to change their inclusion scheme if you are
attempting to package one of them.

One notable consequence of changing the inclusion scheme is that it will no longer be possi-
ble to use a system-installed version of the package (because it presumably still uses the
unqualified inclusion scheme). Note, however, that distributions like Debian and Fedora have
the same co-existence issue as we do and are generally strict about potential header clashes. In
particular, it is not uncommon to find Debian packages installing library headers into subdi-
rectories of /usr/include to avoid such clashes. And if you find this to be the case for the
library you are packaging, then it may make sense to use the same prefix as used by the main
distributions for compatibility.

It is also possible that distributions disregard these considerations for some libraries. This
usually happens for older, well-known libraries that happened to be installed this way in the
early days and changing things now will be too disruptive. In a sense, it is understood that
such libraries effectively "own" the unqualified header names that they happen to be using. If
you think you are packaging such a library, to discuss this further since it may
make sense to also disregard this rule in[cppget.org}

As a concrete example of the approach, let’s continue with 1ibfoo that has util.h and
which upstream expects the users to include as <util.h>. The is what the upstream source
code layout may look like:

libfoo/

|-- include/

|[A A --- util.h
-—— src/

80 The build2 Packaging Guide Revision 0.18, June 2025

https://cppget.org/
https://build2.org/community.xhtml#help
https://cppget.org/

4.2 How do | deal with bad header inclusion practice?

Our plan is to change the inclusion scheme in the build2 package from <util.h> to
<libfoo/util.h>. To this effect, we use a slightly modified layout for our package (see
[Craft bdep new command line to create packagelon how to achieve it):

libfoo/

|-- include/

|A A -—- libfoo/

|A A -—— util.h -> ../../../upstream/include/util.h
-—— src/

- .. -> ../../upstream/src/...

The installation-related section in our jheader buildfile|will look like this:

Install into the libfoo/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
install = include/libfoo/
install.subdirs true

}

In the [source buildfile|we will most likely need to add the include/libfoo header
search path since the upstream source files continue to include public headers without the
library prefix (there should be no harm in that and it’s not worth modifying them):

Build options.

#

out_pfx_inc = [dir_path] S$Sout_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

Unqualified (without <libfoo/...>) header search paths.
#

out_pfx_inc_ung = [dir_path] $out_root/include/libfoo
src_pfx_inc_ung [dir_path] $src_root/include/libfoo

cxx.poptions =+ "-I$out_pfx_src" "-IS$src_pfx_src" \
"-ISout_pfx_inc" "-I$src_pfx_inc" \
"-T$out_pfx_inc_ung" "-IS$src_pfx_inc_ung"

It is also possible that public headers include each other as <util.h> rather than the more
common "util.h". If that’s the case, then we need to fix that and there are two ways to do
it. The first approach is to patch the public headers to include each other with the library
prefix (that is, <libfoo/util.h>, etc). See [How do I patch upstream source code? for
details.

The second approach is to support including public headers both ways, that is, as
<libfoo/util.h> and as <util.h>. This will not only solve the above problem (public
headers including each other), but also support any existing code that uses this library and
most likely includes its headers the old way, without the prefix.

Revision 0.18, June 2025 The build2 Packaging Guide 81

4.3 How do | handle extra header installation subdirectory?

There is, however, a major drawback to doing that: while the installation of the library can
now co-exist with other libraries (because we install its public headers into, say,
/usr/include/libfoo), it may still not be usable in combination with other libraries
from the same build (because we still add the unqualified header search path).

If you still want to provide this dual inclusion support, the way to achieve it is by exporting
the unqualified header search path and also adding it to the pkg-config files (see
[handle extra header installation subdirectory? for background on the latter). For example:

Export options.

#
lib{foo}:
{
cxx.export.poptions = "-I$Sout_pfx_inc" "-IS$src_pfx_inc" \
"-T$out_pfx_inc_ung" "-IS$src_pfx_inc_ung"
cxx.export.libs = $intf_libs

}

Make sure headers installed into, say, /usr/include/libfoo/

can also be included without the directory prefix for backwards
compatibility.
#
1

ib{foo}: cxx.pkgconfig.include = include/ include/libfoo/

4.3 How do I handle extra header installation subdirectory?

This section explains how to handle an additional header installation subdirectory. As an illus-
tration of the problem, consider the 1ibfoo example from the previous sections (see the |Fill
[with upstream source code| step for a refresher). In that example the library headers are
included as <foo/util.hpp> and installed as, say, /usr/include/foo/util.hpp.
In this scheme the installed header inclusion works without requiring any extra steps from our
side because the compiler searches for header in /usr/include by default.

However, some libraries choose to install their headers into a subdirectory of, say,
/usr/include but without having this subdirectory as part of the inclusion path (foo/ in
<foo/util.hpp>). The two typical reasons for this are support for installing multiple
versions of the same library side-by-side (for example,
/usr/include/foo-vl/foo/util.hpp) as well as not using the library name as the
inclusion subdirectory prefix and then having to hide the headers in a subdirectory due to
potential clashes with other headers (if installed directly into, say, /usr/include; see
[do I deal with bad header inclusion practice?| for background).

In such cases the installed header inclusion does not work out of the box and we have to
arrange for an additional header search path to be added via pkg—config. Let’s use the
versioned library case to illustrate this technique. The relevant part from the jheader build-]|

will look like this:

82 The build2 Packaging Guide Revision 0.18, June 2025

4.4 How do | handle headers without an extension?

Install into the foo-vN/foo/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
install = include/"foo-v$version.major"/foo/
install.subdirs true

}

The part that we need to add, this time to the [source buildfile} looks like this:

Make sure headers installed into, say, /usr/include/foo-vN/foo/
can be included as <foo/*.hpp> by overriding the header search
path in the generated pkg-config files.

#

lib{foo}: cxx.pkgconfig.include = include/"foo-vS$version.major"/

The variable will be c.pkgconfig.include for a C library.

4.4 How do I handle headers without an extension?

If all the headers in a project have no extension, then you can simply specify the empty
extension value for the hxx{} target type in build/root .build:

hxx{*}: extension
cxx{*}: extension = cpp

Note, however, that using wildcard patterns for such headers in your buildfile is a bad
idea since such a wildcard will most likely pick up other files that also have no extension
(such as buildfile, executables on UNIX-like systems, etc). Instead, it’s best to spell the
names of such headers explicitly. For example, instead of:

lib{hello}: {hxx cxx}{*}

Write:

lib{hello}: cxx{*} hxx{hello}

If only some headers in a project have no extension, then it’s best to specify the non-empty
extension for the extension variable in build/root .build (so that you can still use
wildcards for headers with extensions) and spell out the headers with no extension explicitly.
Continuing with the above example, if we have both the hello.hpp and hello headers,
then we can handle them like this:

hxx{*}: extension hpp
cxx{*}: extension = cpp

lib{hello}: {hxx cxx}{*} hxx{hello.}

Notice the trailing dot in hxx{hello.} — this is the explicit "no extension" specification.
See Targets and Target Types for details.

Revision 0.18, June 2025 The build2 Packaging Guide 83

4.5 How do | expose extra debug macros of a library?

4.5 How do I expose extra debug macros of a library?

Sometimes libraries provide extra debugging facilities that are usually enabled or disabled
with a macro. For example, 1ibfoo may provide the LIBFOO_DEBUG macro that enables
additional sanity checks, tracing, etc. Normally, such facilities are disabled by default.

While it may seem like a good idea to detect a debug build and enable this automatically, it is
not: such facilities usually impose substantial overheads and the presence of debug informa-
tion does not mean that performance is not important (people routinely make optimized builds
with debug information).

As a result, the recommended approach is to expose this as a configuration variable that the
consumers of the library can use (see Project Configuration for background). Continue with
the 1ibfoo example, we can add config.libfoo.debugtoitsbuild/root.build:

build/root.build

config [bool] config.libfoo.debug ?= false

And then define the LIBFOO_DEBUG macro based on that in the buildfile:
src/buildfile

if $config.libfoo.debug
cxx.poptions += -DLIBFOO_DEBUG

If the macro is also used in the library’s interface (for example, in inline or template func-
tions), then we will also need to export it (see [Adjust source buildfile: build and export |

for details):

src/buildfile

if $config.libfoo.debug
{

cxx.poptions += -DLIBFOO_DEBUG

lib{foo}: cxx.export.poptions += -DLIBFOO_DEBUG
}

If the debug facility in question should be enabled by default even in the optimized builds (in
which case the macro usually has the NO_DEBUG semantics), the other option is to hook it up
to the standard NDEBUG macro, for example, in the library’s configuration header file.

Note that such .debug configuration variables should primarily be meant for the user to
selectively enable extra debugging support in certain libraries of their build. However, if your
project depends on a number of libraries with such extra debugging support and it generally
makes sense to also enable this support in dependencies if it is enabled in your project, then
you may want to propagate your .debug configuration value to the dependencies (see the
depends package manifest value for details on dependency configuration). You,
however, should still allow the user to override this decision on the per-dependency basis.

84 The build2 Packaging Guide Revision 0.18, June 2025

4.6 How do | deal with tests that don’t terminate?

Continuing with the above example, let’s say we have libbar with
config.libbar.debug that depends on 1ibfoo and wishes by default to enable debug-
ging in 1ibfoo if it is enabled in 1ibbar. This is how we can correctly arrange for this in
libbar’smanifest:

depends:
\
libfoo 71.2.3
{
We prefer to enable debug in libfoo if enabled in libbar
but accept if it’s disabled (for example, by the user).
#
prefer
{
if $config.libbar.debug
config.libfoo.debug = true

}

accept (true)
}
\

4.6 How do I deal with tests that don’t terminate?

If upstream tests don’t terminate in a reasonable time (or at all), then your CI jobs will be
failing with timeouts.

Naturally, we cannot afford tests to run indefinitely or unreasonably long on our CI infrastruc-
ture and, as a result, we impose a timeout on tests execution. Currently it 1s 25 minutes.

If you find yourself in this situation, the first step is to examine such tests for a mechanism,
typically a command line option, that allows you to set a limit on test execution, such as a
time limit, number of test iterations, etc.

If there is an option, then we can pass it with test .options (see Testing for background):

exe{driver}: test.options = —--iterations 100

If, however, there is no mechanism for limiting upstream test execution, then the last resort is
to set a test execution timeout that is treated as success. For details on how to achieve this see
[How do I sanitize the execution of my tests?|

4.7 How do I deal with compiler/linker running out of RAM?

If a third-party project contains very large/complex translation units or is linking a large
number of object files, then the compiler or linker may run out of memory, especially if
compilation/linking is performed in parallel with other compilation/linking jobs. For compila-
tion, this is normally triggered when compiling with optimization enabled. For example, on
Linux with GCC this could manifest in an error like this:

Revision 0.18, June 2025 The build2 Packaging Guide 85

https://github.com/build2/HOWTO/blob/master/entries/sanitize-test-execution.md

5 Packaging FAQ

Out of memory: Killed process 1857 (cclplus) ... pgtables:13572kB ...

The recommended way to deal with such issues is to serialize the compilation or linking of the
targets in question. Specifically, both the C/C++ compile and link rules recognize the
cc.serialize boolean variable which instructs them to compile/link serially (as opposed
to in parallel) with regards to any other recipe. For example:

obj{memory-hog}: cc.serialize = true
exe{very-large}: cc.serialize true

To identify which source files require a large amount of RAM, build serially (-s) with opti-
mization enabled while watching the amount of RAM used by the compiler. Similarly, for
linking binaries, watch the amount of RAM used by the linker.

5 Packaging FAQ

5.1 Publishing FAQ

5.1.1 Why is my package in alpha rather than stable?

If your package uses a semver version (or semver-like, that is, has three version components)
and the first component is zero (for example, 0.1 .0), then, according to the semver specifi-
cation, this is an alpha version and bdep—-publish (1) automatically published such a
version to the alpha section of the repository.

Sometimes, however, in a third-party package, while the version may look like semver,
upstream may not assign the zero first component any special meaning. In such cases you can
override the bdep-publish behavior with the ——sect ion option, for example:

$ bdep publish —--section=stable

Note that you should only do this if you are satisfied that by having the zero first component
upstream does not imply alpha quality. Getting an explicit statement to this effect from
upstream is recommended.

5.1.2 Where to publish if package requires staged toolchain?

If your package requires the [staged toolchain} for example, because it needs a feature or
bugfix that is not yet available in the released toolchain, then you won’t be able to publish it
to cppget . org. Specifically, if your package has the accurate build2 version constraint
and you attempt to publish it, you will get an error like this:

error: package archive is not wvalid
info: unable to satisfy constraint (build2 >= 0.17.0-) for package foo
info: available build2 version is 0.16.0

86 The build2 Packaging Guide Revision 0.18, June 2025

https://build2.org/community.xhtml#stage

5.1.3 Why "project owner authentication failed" while publishing?

There are three alternative ways to proceed in this situation:

1. Wait until the next release and then publish the package to cppget .org.

2. If the requirement for the staged toolchain is "minor", that is, it doesn’t affect the
common functionality of the package or only affects a small subset of platforms/compil-
ers, then you can lower the toolchain version requirement and publish the package to
cppget . org. For example, if you require the staged toolchain because of a bugfix that
only affects one platform, it doesn’t make sense to delay publishing the package since it
is perfectly usable on all the other platforms in the meantime.

3. Publish it to [queue.stage.build2.org} the staging package repository. This repository
contain new packages that require the staged toolchain to work and which will be auto-
matically moved to cppget . org once the staged version is released. The other advan-
tage of publishing to this repository (besides not having to remember to manually publish
the package once the staged version is released) is that your package becomes available
from an archive repository, which is substantially faster than a git repository.

To publish to this repository, use the following bdep—-publish command line:

$ bdep publish —--repository=https://stage.build2.org ...

5.1.3 Why '"'project owner authentication failed'' while publishing?

If you are getting the following error while attempting to publish a new version of a package:
$ bdep publish

error: project owner authentication failed

Then this means the remote git repository you are using does not match the one from which
you (or someone else) has published the initial version of the package.

In build2 we use the ownership of the package git repository as a proxy for the ownership
of the package name on Specifically, when you publish the package for the first
time, we record the git URL for its package repository. And any further versions of this
package can only be submitted by someone who has write access to this repository. See
bdep-publish (1) for details.

Based on this background, the first step you need to take when getting the above owner
authentication error is to understand its cause. For that, first use the git—config command
to see the URL you are using locally:

$ git config —-—-get remote.origin.url

Then look in the |[git repositories| that back [cppget.org| and [queue.cppget.orgl and find the
URL that is recorded in the owners/ subdirectory in the corresponding
package—owner.manifest file.

Revision 0.18, June 2025 The build2 Packaging Guide 87

https://queue.stage.build2.org/
https://cppget.org/
https://github.com/cppget/
https://cppget.org/
https://queue.cppget.org/

6 Package Review

Note that your local URL will normally be SSH while the recorded URL will always be
HTTPS. Provided that the host names match, the part to look in for differences is the path
component. One common cause of a mismatch is the missing .git extension. For example
(local first, recorded second):

git@github.com:build2-packaging/zstd
https://github.com/build2-packaging/zstd.git

In this case adding the missing extension to the local URL should fix the error.

If, however, the discrepancy is expected, for example, because you have renamed the package
repository or moved it to a new location, the ownership information will need to be updated
manually. In this case feel free to submit a pull request with the necessary changes or
touch|

6 Package Review

Due to the complexity of packaging C/C++ software and to maintain a standard of quality,
package submissions must be reviewed by someone knowledgeable in build2 and experi-
enced in packaging third-party software before they can be deemed stable and moved from the
testing to the stable section of the repository. This applies to initial package
submissions, new versions, and new revisions. This chapter describes the review process.

First, let’s recap the package transition policies from |[queue.cppget.org| to [cppget.org| and
between the various [sections of cppget.org]

All three types of submissions (initial, new version, and new revision) are performed with
bdep-publish (1) and automatically placed into [queue.cppget.orgl where they are built
and tested as archive packages in the same set of build configuration as

Publishing the package into the queue is the only automatic step and all other transitions are
currently performed manually after review or evaluation by a build2 core team member
(though some steps may be automated in the future).

When the package is published to |queue.cppget.orgl it ends up in one of the
alpha, beta, or testing. The destination section is normally determined automatically

by bdep-publish (1) based on the package version: alpha semver versions go to alpha,
beta — to beta, and the rest (as well as non-semver versions) go to testing.

If the package published to [queue.cppget.org| successfully builds in at least one build configu-
ration, then it is migrated to[cppget.orgl When the package is migrated from [queue.cppget.org]
it is placed into the corresponding section of that is, a package from the alpha
section of the former go to alpha of the latter, beta — to beta, and testing — to
testing.

88 The build2 Packaging Guide Revision 0.18, June 2025

https://build2.org/community.xhtml#help
https://build2.org/community.xhtml#help
https://cppget.org/
https://queue.cppget.org/
https://cppget.org/
https://cppget.org/?about
https://queue.cppget.org/
https://cppget.org/
https://queue.cppget.org/
https://queue.cppget.org/?about
https://queue.cppget.org/
https://cppget.org/
https://queue.cppget.org/
https://cppget.org/

6 Package Review

If the package was migrated to either the alpha or beta section, then this is its final desti-
nation. If, however, the package was placed into the test ing section, then it stays there for
some time (at least a week) to allow further testing and review by any interested users. It is
then migrated to the stable section provided the following conditions are met:

1. The package has at least one positive review that was performed by an experienced
build2 user.
2. There are no serious issues reported with the package based on further testing.

If the package has no reviews, then it will remain in the testing section until reviewed,
potentially indefinitely. Likewise, if the package has a negative review that identified block-
ing issues, then they must be addressed by the package author in a revision, published to
queue, and re-reviewed. Until then the package will remain in testing but in severe cases
(for example, security vulnerability and no forthcoming fix), it may also be dropped.

If the package has both positive and negative reviews, then the contradictions will be recon-
ciled by the build2 core team members.

Packages in the alpha and beta sections can also be reviewed and a negative review may
lead to the package being dropped in severe cases.

For completeness, let’s also mention the legacy section of A package that is no
longer maintained (either by upstream or by the build2 project) may be moved to legacy
for two primary reasons: to signal to the users that it has serious issues (such as security
vulnerabilities) and/or not to waste CI resources on building it.

How are the transitions effected, exactly? Both |queue.cppget.org| and [cppget.org| package
repositories are backed by git repositories hosted at [github.com/cppgetl Each transition
described above (including the initial submission by bdep—publish (1)) is recorded as a
commit in one or both of these repositories (study their commit histories to get a sense of how
this works).

While all the transitions can be performed manually by moving files around and using git
directly, the manage script in [opkg—util|provides a high-level interface for the common
transitions.

Note also that the person doing a review and the person effecting a package transition need
not be the same. For security, package transitions can currently only be performed by the
build2 core team members.

With this background, let’s now turn to the review process. At the outset you may be wonder-
ing why perform it so late in the packaging process when the final version has been released
and published. Specifically, would it not be better to review some form of work-in-progress so
that any issues can be corrected before releasing the final version?

Revision 0.18, June 2025 The build2 Packaging Guide 89

https://cppget.org/
https://queue.cppget.org/
https://cppget.org/
https://github.com/cppget/
https://github.com/build2/bpkg-util

6 Package Review

There are several reasons why we prefer to review the released version. Firstly, we want to
base our reviews on the build results of the final package archives as they will be published to
Basing reviews on anything other than that means we will need to re-examine
them when the final version is submitted.

The second reason is consideration for the reviewer. Reviewing other people’s packaging
work, often for software you personally have no interest in using, is a thankless and often
frustrating job (things tend to get frustrating when you have to point out the same basic
mistakes over and over again). As a result, we want to make this job as streamlined as possi-
ble without (hopefully) multiple rounds of reviews. Also, the finality of the submission will
hopefully encourage authors to try to submit finished work rather than something incomplete,
for example, in the hope that the reviewer will help them fix it into shape.

Having said that, nothing prevents members of the build2 community from performing ad
hoc pre-reviews, for example, for packaging efforts of new authors that require some help and
guidance.

For background, this review process was heavily inspired by the Linux kernel development.
Specifically, Linux developers review proposed changes and mark them with a number of
tags, such as [Reviewed-byl Below is the relevant quote from that document that gives a
good description for what it means to offer a Reviewed-by tag and that matches many of
the aspects of this review policy:

Revieweras statement of oversight
By offering my Reviewed-by tag, I state that:

1. I have carried out a technical review of this patch to evaluate its appropriateness and
readiness for inclusion into the mainline kernel.

2. Any problems, concerns, or questions relating to the patch have been communicated
back to the submitter. I am satisfied with the submitteras response to my comments.

3. While there may be things that could be improved with this submission, I believe that it
is, at this time, (1) a worthwhile modification to the kernel, and (2) free of known issues
which would argue against its inclusion.

4. While I have reviewed the patch and believe it to be sound, I do not (unless explicitly
stated elsewhere) make any warranties or guarantees that it will achieve its stated
purpose or function properly in any given situation.

A Reviewed-by tag is a statement of opinion that the patch is an appropriate modification
of the kernel without any remaining serious technical issues. Any interested reviewer (who
has done the work) can offer a Reviewed-by tag for a patch. This tag serves to give credit
to reviewers and to inform maintainers of the degree of review which has been done on the
patch. Reviewed-by tags, when supplied by reviewers known to understand the subject
area and to perform thorough reviews, will normally increase the likelihood of your patch
getting into the kernel.

90 The build2 Packaging Guide Revision 0.18, June 2025

https://cppget.org/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes

6.1 Reviewing initial package submission

Before we delve into the review process, let’s also discuss how one finds packages to review.
There are two common strategies: The first is to look at the packages that you are using in
your own projects and, if there are any unreviewed versions that you would like to use, to
consider reviewing them. Alternatively, if you would like to help the build2 community by
reviewing packages, pick any from the unreviewed list. For both cases you could use
[Advanced Package Search| limiting the result to specific packages in the first case. For
example, you could search forjunreviewed packages in the testing section}

The review process for the three types of submissions (initial, new version, and new revision)
are described in the following sections.

At this stage of the repository evolution, where it primarily contains third-party
packages, we are only concerned with reviewing the build and packaging support, ignoring
everything else (source code, documentation, etc). This, however, may change in the future.

6.1 Reviewing initial package submission

A review process for an initial package submission is the most elaborate since we need to
review everything from scratch.

6.1.1 Create review issue

The first step in reviewing the initial package submission is to create a review issue on the
package repository. The issue title should be in the following form (here and below X.Y. Z is
the version being reviewed):

Review of the ‘X.Y.Z' version (initial package submission)

Before actually creating the issue you may also want to check if someone else is already
reviewing this package and thus has already created the issue. While there is nothing wrong
with having multiple reviews, you may want to consider picking something else to review in
order to increase coverage.

For issue description, copy and paste the contents of [packaging-initial-review-checklist.md}

Then create the issue.

6.1.2 Create review pull request

The only place where GitHub supports code reviews is a pull request (PR). As a result, we
create a dummy draft pull request against the master/main branch whose only purpose is to
serve as a code review vehicle. The procedure is as follows:

1. Clone the package repository (referred to as <repo>) locally:

git clone —--recurse-submodules --shallow-submodules git@github.com:build2-packaging/<repo>.git
cd <repo>

2. Find the first commit:

Revision 0.18, June 2025 The build2 Packaging Guide 91

https://cppget.org/?advanced-search
https://cppget.org/?advanced-search&rp=pkg%3Acppget.org%2Ftesting&rv=unreviewed
https://cppget.org/
https://raw.githubusercontent.com/build2/build2-toolchain/master/doc/packaging-initial-review-checklist.md

6.1.3 Go through review checklist

git rev-list --all | tail -1

Make sure it is the canonical Initialize package repository commit from
the [[nitialize package repository with bdep new|step:

git log -p "$(git rev-list --all | tail -1)"

The changes made in this commit will not be part of the review so we need to make sure
nothing was lumped into it beside the project infrastructure created by bdep-new. We
have to skip this commit because the two branches we will be creating the pull request
from (see below) must have common history.

3. Create the review branch:

git branch review-X.Y.Z "$(git rev-list --all | tail -1)"
git push origin review-X.Y.Z

4. Create pull request:
1. Open the GitHub link printed by the above git—-push command.
2. Change base: branch to review—X.Y.Z, compare: branch to master/main.
3. For PR title use:

Dummy draft pull request for version ‘X.Y.Z' review (do not merge)
4. In PR description link to the review issue (<N> is the review issue number):
See review issue #<N>.

5. Change the creation mode to Create draft pull request and create the
PR.

The review pull request is setup as if we wanted to merge the master/main branch into
review-X.Y.Z, which generally doesn’t make much sense (and is the reason why this PR
should never be merged). However, this setup allows us to do code reviews of all the changes
since the first commit. What’s more, if the package author addresses some issues by releasing
revisions, the revision commits will be automatically added to this PR and their changes avail-
able to further review.

6.1.3 Go through review checklist
Go through the review checklist in the review issue ticking off successfully completed items.

While reviewing an item you may identify an issue or have something to note. A note is a
general observation that is worth mentioning to the package author. For example, while
checking this item:

[1 If library without 1lib prefix, no clashes with executable names

You may note that while there are no clashes with executables installed in PATH locations,
there is a package in Debian that has a private executable named like this. So you may make a
note along these lines:

92 The build2 Packaging Guide Revision 0.18, June 2025

6.1.4 Add review outcome comment

There is a file in Debian named ftest. It’s not an executable installed
in a PATH location so I guess having this library named without the

lib prefix is technically allowed, though not ideal. Consider in the
future to follow the recommendation in the packaging guide and name
libraries with the 1lib prefix to sidestep such considerations.

An issue can be blocking or non-blocking. As the name suggests, a blocking issue fails the
review and must be addressed in a revision. A non-blocking issue does not fail the review and
can be optionally addressed in a revision or in the next version.

Whether an issue is blocking or not is a judgment call of the reviewer (which is one of the
reasons why a reviewer needs to be knowledgeable in build2 and have experience packag-
ing third-party projects). The overall guideline is to consider two dimensions: severity and
impact. An issue that would prevent a large proportion of users from using the package is
most likely blocking. Also, conceptual issues, like using compile/link options that should not|
[be specified in buildfiles) are always blocking. Finally, also consider whether it will be
possible to fix the issue later without breaking backwards-compatibility. For example, renam-
ing the package once it’s published will be disruptive. If you are unsure whether an issue
should be considered blocking, contact other reviewers to discuss.

A note or an issue can be communicated to the package author in two ways: you can add it to
the outcome comment for the review issue (created in the following step) or you can add it as
a code review comment in the review PR.

The first way is more appropriate for general notes (like the example above) and issues (like
missing README file). While code review comments work best when the issue is with a
specific code fragment that can be pointed to.

To add code review comments, go to the review PR created in the previous step, select the
"Files changed" tab, and start the code review. For each comment, specify whether it is a
blocking issue, a non-blocking issue, or a note.

6.1.4 Add review outcome comment

Once you are done with the checklist, add a comment to the review issue with the outcome to
notify the package author.

If the review was successful (no blocking issues), start the comment with the following para-
graph (here <AUTHOR> is the package author’s user name on GitHub):

@<AUTHOR> Thank you for your submission! This version has passed the
review. Below you will find a list of non-blocking issues and notes
that have been identified during review. You can address the issues
with a revision if you wish or, alternatively, in the next version.

Adjust the last two sentences accordingly if there are no issues/notes.

If, however, there are blocking issues, start it with the following:

Revision 0.18, June 2025 The build2 Packaging Guide 93

https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md
https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md

6.1.5 Finish successful review

@<AUTHOR> Thank you for your submission! Unfortunately there are
blocking issues and this version has failed the review. The list
of blocking issues is provided below. Please consider addressing
them (as well as the non-blocking issues, if you wish) in a
revision and publishing it to continue this review.

Adjust the last sentence accordingly if there are no non-blocking issues.

Then continue the comment with a list of blocking issues, non-blocking issues, and finally
notes (remove sections that have no items):

Blocking issues:

Non-blocking issues:

Notes:

If one or more issues or notes are captured as code review comments, then add a link to the
review PR. Otherwise, describe them in the comment. For example (here <NUM> is the review
PR number):

Blocking issues:
* A number of blocking issues described in the code review: #<NUM>
Non-blocking issues:
* A number of non-blocking issues described in the code review: #<NUM>
Notes:
* There is a file in Debian named ftest. It’s not an executable installed
in a PATH location so I guess having this library named without the
lib prefix is technically allowed, though not ideal. Consider in the

future to follow the recommendation in the packaging guide and name
libraries with the 1lib prefix to sidestep such considerations.

6.1.5 Finish successful review

If the review is successful and once the outcome comment has been added, edit the issue
description and remove the first sentence that says the review is in progress.

Also close (note: not merge) the review PR and, if there are no non-blocking issues, the
review issue.

If there are non-blocking issues, then we leave the review issue open as a reminder to the
package author to address them in the next version.

94 The build2 Packaging Guide Revision 0.18, June 2025

6.1.6 Continue with unsuccessful review

Finally, send a notification email to review@cppget .org as described in
[notification email}

6.1.6 Continue with unsuccessful review

If the review is unsuccessful and once the outcome comment has been added, send a notifica-
tion email to review@cppget . org as described in|Send review notification emaill

Then wait for the package author to address blocking issues and publish a revision (which will
be reflected in the review PR). Also watch out for any questions in the review issue or code
review comments in the PR.

Once the revision is published, re-review the relevant changes and confirm they address
blocking issues. Check off any outstanding items in the review checklist and also note which
non-blocking issues were addressed for the new outcome comment.

Then continue from the |[Add review outcome comment| step by adding a new outcome
comment. If all the blocking issues were addressed and no new blocking issues were identi-
fied, then the outcome is successful. Otherwise, it is unsuccessful and another review round is
required: wait for another revision/comments, re-review, add another outcome comment, etc.

6.1.7 Send review notification email

In case of both successful and wunsuccessful reviews, send an email to
review@cppget .org in order to notify the build2 core team about the outcome. The
requirements for this email are as follows:

® The From field should contain your real name. Your review is a statement of oversight
and without a real name it doesn’t have much value.
® The Subject filed should be in the following form:

Review <PROJECT> <VERSION>

Here <PROJECT> is the project name to which the reviewed package or packages
belong and <VERSION> is their version. Note that all the packages in a multi-package
project must be reviewed together.

® In the body of the email include the following information:
O List of packages reviewed.
O Review outcome: pass or fail
O Link to the outcome comment in the review issue.

For example:

From: John Doe <john@example.org>
Subject: Review spdlog 1.14.1+2

Packages reviewed:

Revision 0.18, June 2025 The build2 Packaging Guide 95

6.2 Reviewing new version submission

spdlog

spdlog-tests
spdlog-bench

Review outcome: fail

Outcome link:

https://github.com/build2-packaging/spdlog/issues/l#issuecomment-123

For a successful review of a new revision or version of an existing package that has no
non-blocking issues or notes, there may be no review issue (see [Reviewing new version |
submission| for details). In such cases the outcome link may be omitted.

The review outcome is recorded in the package metadata that is stored in the backing git
repository. See Package Review Manifest for details.

6.2 Reviewing new version submission

The following discussion assumes that you have read through [Reviewing initial package |

submissio

The extent of changes to the build and packaging support in a new version can range from no
changes, to only minor changes, to a complete rewrite. As a result, the review procedure for a
new version varies depending on the changes and broadly consists of the following three alter-
natives:

1. If there are no substantial changes and no issues (blocking or non-blocking), then we can
skip creating the review issue and go straight to the notification email.

2. If there are no substantial changes but there are issues (blocking or non-blocking), then
we create the review issue but skip the checklist. Creating the review PR is also optional.

3. If there are substantial changes then we should use the [Reviewing initial package |
[submission| procedure to re-review the package from scratch with the checklist.

6.2.1 Determine the extent of changes

In order to select the appropriate review procedure we need to determine the extent of the
changes in the new version compared to the previous version, which we will refer to as the
"base version".

The previous version on which we are basing this review needs to be already reviewed.
Failing that, reviewing the difference doesn’t make much sense. If the immediately preceding
version is not reviewed, you have two choices: either review it first or base your review on an
earlier, already reviewed version. If its review is unsuccessful, then you will need to pay
attention to the issues identified in the previous review.

The recommended next step is to get a sense of the changes by examining the difference
between the base and the new versions. This can be done in several ways. You could clone the
package repository locally and use your favorite git tool (git-diff, gitk, etc) to view

96 The build2 Packaging Guide Revision 0.18, June 2025

6.2.2 Create review issue

the cumulative changes between the two release commits. Alternatively, you can use the
GitHub commit comparison support to compare the two release tags:

https://github.com/build2-packaging/<project>/compare/v1.2.0...v1.3.0

Because the source code for the package comes from a git submodule, the changes that we
see will be conveniently limited to the build and packaging support plus the related documen-
tation.

Study the changes and determine which review procedure is appropriate. While all the consid-
eration described in [Reviewing initial package submission| (and its checklist) apply to new
versions, additional attention must be paid to backwards compatibility. Unfortunately, it’s not
uncommon for inexperienced package authors to break backwards compatibility at the build
level (for example, by renaming exported targets, configuration variables, etc) even though
the upstream respects its backwards compatibility obligations as signaled by the version.

The common case when reviewing a new version is no changes to the build and packaging
support other than the version increment in manifest. If that’s the case or you don’t see any
issues with other changes, then you can proceed directly to [Send review notification emaill In
this case you can omit the outcome link.

Another common case that can use the same shortcut is when the upgrade to the new version
was contributed as a PR by someone other than the package author. If such a PR was
reviewed and merged by the package author, then this same review can also count as a
package review and the package author can [Send review notification email| using the PR as
the outcome link.

At the other, thankfully more rare, extreme you may find the package substantially changed or
completely rewritten. This, for example, can happen in response to a major version release if
upstream decides to re-architect their source code layout. But it can also be the result of more
benign changes. For example, if upstream adds a dependency on a testing framework in its
tests, then the build2 package will need to split the tests into a separate package. In case of
such substantial changes it is recommended to follow the [Reviewing initial package submis

procedure.

With the two extremes covered, this leaves the case of some changes that have issues, block-
ing or non-blocking. In this case the next step is to create the review issue.

6.2.2 Create review issue

If the changes in the new version have some issues, then we create the review issue on the
package repository. The issue title should be in the following form (here and below X.Y.Z is
the version being reviewed):

Review of the 'X.Y.Z‘ version

Revision 0.18, June 2025 The build2 Packaging Guide 97

6.2.3 Finish successful review

Before actually creating the issue you may also want to check if someone else is already
reviewing this package and thus has already created the issue. While there is nothing wrong
with having multiple reviews, you may want to consider picking something else to review in
order to increase coverage.

Unlike the initial package submission, here we don’t use the review checklist since most items
won’t apply (but you are welcome to refer to it if you like). Instead, you can put your feed-
back directly in the issue description, similar to [Add review outcome comment}

If you find it helpful, you can also create a review pull request similar to [Create review pull |
In this case use the base version’s release commit as the starting commit for the
review branch.

6.2.3 Finish successful review

If the review is successful (no blocking issues), close (note: not merge) the review PR if one
was created and, if there are no non-blocking issues, the review issue.

If there are non-blocking issues, then we leave the review issue open as a reminder to the
package author to address them in the next version.

Finally, send a notification email to review@cppget .org as described in
[notification email}

6.2.4 Continue with unsuccessful review

If the review is unsuccessful, send a notification email to review@cppget.org as
described in|Send review notification emaill

Then wait for the package author to address blocking issues and publish a revision (which will
be reflected in the review PR, if any). Also watch out for any questions in the review issue or
code review comments in the PR.

Once the revision is published, re-review the relevant changes and confirm they address
blocking issues. Also note which non-blocking issues were addressed for the outcome
comment.

Then continue from the |Create review issue| step except this time adding your feedback as an
outcome comment rather than in the issue description. If all the blocking issues were
addressed and no new blocking issues were identified, then the outcome is successful. Other-
wise, it is unsuccessful and another review round is required: wait for another revi-
sion/comments, re-review, add another outcome comment, etc.

98 The build2 Packaging Guide Revision 0.18, June 2025

6.3 Reviewing new revision submission

6.3 Reviewing new revision submission

The procedure for reviewing a new revision submission is essentially the same as
[new version submission| (including sending the notification email). However, there are the
additional requirement of the revision containing only minor changes and being strictly back-
wards-compatible with the version it replaces. See [Don’t make extensive changes in a revision|
for background and details.

Revision 0.18, June 2025 The build2 Packaging Guide 99

	Preface
	1 Introduction
	1.1 Terminology

	2 Common Guidelines
	2.1 Setup the package repository
	2.1.1 Check if package repository already exists
	2.1.2 Use upstream repository name as package repository name
	2.1.3 Create package repository in personal workspace
	2.1.4 Initialize package repository with bdep new
	2.1.5 Add upstream repository as git submodule

	2.2 Create package and generate buildfile templates
	2.2.1 Decide on the package name
	2.2.2 Decide on the package source code layout
	2.2.3 Craft bdep new command line to create package
	2.2.4 Review and test auto-generated buildfile templates
	2.2.5 Create final package
	2.2.6 Adjust package version

	2.3 Fill package with source code and add dependencies
	2.3.1 Initialize package in build configurations
	2.3.2 Add dependencies
	2.3.3 Fill with upstream source code

	2.4 Adjust project-wide and source buildfiles
	2.4.1 Adjust project-wide build system files in build/
	2.4.2 Adjust source subdirectory buildfiles
	2.4.3 Adjust header buildfile
	2.4.4 Adjust source buildfile: overview
	2.4.5 Adjust source buildfile: cleanup
	2.4.6 Adjust source buildfile: dependencies
	2.4.7 Adjust source buildfile: public headers
	2.4.8 Adjust source buildfile: sources, private headers
	2.4.9 Adjust source buildfile: build and export options
	2.4.10 Adjust source buildfile: symbol exporting
	2.4.11 Adjust source buildfile: shared library version
	2.4.12 Adjust source buildfile: executables
	2.4.13 Adjust source buildfile: extra requirements
	2.4.14 Test library build

	2.5 Make smoke test
	2.5.1 Adjust project-wide build system files in tests/build/
	2.5.2 Convert generated test to library smoke test
	2.5.3 Make smoke test: executables
	2.5.4 Test locally
	2.5.5 Test locally: installation
	2.5.6 Test locally: distribution
	2.5.7 Commit and test with CI

	2.6 Replace smoke test with upstream tests
	2.6.1 Understand how upstream tests work
	2.6.2 Convert smoke test to upstream tests
	2.6.3 Test locally
	2.6.4 Commit and test with CI

	2.7 Add upstream examples, benchmarks, if any
	2.8 Adjust root files (buildfile, manifest, etc)
	2.8.1 Adjust root buildfile
	2.8.2 Adjust root buildfile: other subdirectories
	2.8.3 Adjust root buildfile: commit and test
	2.8.4 Adjust manifest
	2.8.5 Adjust manifest: summary
	2.8.6 Adjust manifest: license
	2.8.7 Adjust manifest: commit and test
	2.8.8 Adjust PACKAGE-README.md

	2.9 Adjust package repository README.md
	2.10 Release and publish
	2.10.1 Transfer package repository
	2.10.2 Release final version
	2.10.3 Publish released version

	2.11 Package version management
	2.11.1 New revision
	2.11.2 New version
	2.11.3 New version: create new work branch
	2.11.4 New version: open new version
	2.11.5 New version: update upstream submodule
	2.11.6 New version: review upstream changes
	2.11.7 New version: layout changes
	2.11.8 New version: new/old dependencies
	2.11.9 New version: new/old source files
	2.11.10 New version: changes to build system
	2.11.11 New version: other new/old files/subdirectories
	2.11.12 New version: review manifest and PACKAGE-README.md
	2.11.13 New version: review repository README.md
	2.11.14 New version: review/fix accumulated issues
	2.11.15 New version: test locally and with CI
	2.11.16 New version: merge, release, and publish
	2.11.17 New version/revision in old release series

	3 What Not to Do
	3.1 Don't write buildfiles from scratch, use bdep-new
	3.2 Avoid fixing upstream issues in the build2 package
	3.3 Avoid changing upstream source code layout
	3.4 Don't make library header-only if it can be compiled
	3.5 Don't bundle dependencies
	3.6 Don't build your main targets in the root buildfile
	3.7 Don't make extensive changes in a revision

	4 Packaging HOWTO
	4.1 How do I patch upstream source code?
	4.1.1 Modifying upstream source code manually
	4.1.2 Modifying upstream source code during build
	4.1.3 Modifying upstream source code with C/C++ preprocessor

	4.2 How do I deal with bad header inclusion practice?
	4.3 How do I handle extra header installation subdirectory?
	4.4 How do I handle headers without an extension?
	4.5 How do I expose extra debug macros of a library?
	4.6 How do I deal with tests that don't terminate?
	4.7 How do I deal with compiler/linker running out of RAM?

	5 Packaging FAQ
	5.1 Publishing FAQ
	5.1.1 Why is my package in alpha rather than stable?
	5.1.2 Where to publish if package requires staged toolchain?
	5.1.3 Why "project owner authentication failed" while publishing?

	6 Package Review
	6.1 Reviewing initial package submission
	6.1.1 Create review issue
	6.1.2 Create review pull request
	6.1.3 Go through review checklist
	6.1.4 Add review outcome comment
	6.1.5 Finish successful review
	6.1.6 Continue with unsuccessful review
	6.1.7 Send review notification email

	6.2 Reviewing new version submission
	6.2.1 Determine the extent of changes
	6.2.2 Create review issue
	6.2.3 Finish successful review
	6.2.4 Continue with unsuccessful review

	6.3 Reviewing new revision submission

