The build2 Toolchain Introduction

Copyright © 2014-2025 the build2 authors.
Permission is granted to copy, distribute and/or modify this document under the terms of the MIT
License.

Revision 0. 18, June 2025
This revision of the document describes the build2 toolchain 0. 18 . x series.

Table of Contents

Table of Contents

[1 Gettlng Started Gu1de| e 1
(1.1 Hello, World| 1
[1.2 Package Repositories| . . S 1]
[1.3 Adding and Removing Dependen01es| .
[1.4 Upgrading and Downgrading Dependencies] 19
[1.5 Build-Time Dependencies and Linked Configurations| 21
[1.6 Versioning and Release Management 27
[1.7 Developing Multiple Packages and Projectsf 33
[1.8 Package Consumption| . . . 1
[1.9 Using System-Installed Dependenc1es| e X
[1.10 Using Unpackaged Dependencies] 46
[2 Canonical Project Structurel 48
[2.1 Source Subdirectory] 50
[2.2 Source Naming| 54
[2.3 Source Contents| 55
|2 5 Bu11d Outputl . 1

Revision 0.18, June 2025 The build2 Toolchain Introduction i

Preface

Preface

This document is an overall introduction to the build2 toolchain that shows how the main
components, namely the build system, the package dependency manager, and the project depen-
dency manager are used together to handle the entire C/C++ project development lifecycle:
creation, development, testing, and delivery. For additional information, including documentation
for individual toolchain components, man pages, HOWTOs, etc., refer to the build2 project
[Documentation| page.

1 Getting Started Guide

The aim of this guide is to get you started developing C/C++ projects with the build2
toolchain. All the examples in this section include the relevant command output so if you just
want to get a sense of what bui1ldz2 is about, then you don’t have to install the toolchain and run
the commands in order to follow along. Or, alternatively, you can take a short detour to the
[lation Instructions|and then try the examples for yourself.

One of the primary goals of the build2 toolchain is to provide a uniform interface across all the
platforms and compilers. While most of the examples in this document assume a UNIX-like oper-
ation system, they will look pretty similar if you are on Windows. You just have to use appropri-
ate paths, compilers, and options.

The question we will try to answer in this section can be summarized as:

$ git clone .../hello.git && now-what?

That 1s, we clone an existing C/C++ project or would like to create a new one and then start
hacking on it. We want to spend as little time and energy as possible on the initial and ongoing
infrastructure maintenance: setting up build configurations, managing dependencies, continuous
integration and testing, release management, etc. Or, as one C++ user aptly put it, "All [want to
do is program."

1.1 Hello, World

Let’s see what programming with build2 feels like by starting with a customary "Hello,
World!" program (here we assume our current working directory is /tmp):

$ bdep new -1 c++ -t exe hello
created new executable project hello in /tmp/hello/

The bdep—new (1) command creates a build2 project. In this case it is an executable imple-
mented in C++.

Revision 0.18, June 2025 The build2 Toolchain Introduction 1

https://build2.org/doc.xhtml
https://build2.org/install.xhtml
https://build2.org/install.xhtml

1.1 Hello, World

To create a library, pass —t 1ib. By default new also initializes a git repository and generates
suitable .gitignore files (pass —s none if you don’t want that). And for details on naming
your projects, see Package Name.

Note to Windows users: the build2-baseutils package includes core git utilities that are
sufficient for the bdep functionality.

Let’s take a look inside our new project:

$ tree hello

hello/

-— .git/

-— .bdep/

—— build/

--— hello/
|—— hello.cxx
|-- buildfile
-—— testscript

—-— buildfile

-— manifest

—— README.md

-—— repositories.manifest

See [Canonical Project Structure| for a detailed discussion and rationale behind this layout. While
it is recommended, especially for new projects, build2 is flexible enough to support various
arrangements used in today’s C and C++ projects. Furthermore, the bdep—new (1) command
provides a number of customization options and chances are good you will be able to create your
preferred layout automatically. See SOURCE LAYOUT for more information and examples.

Similar to version control tools, we normally run all build2 tools from the project’s source
directory or one of its subdirectories, so:

$ cd hello

While the project layout is discussed in more detail in later sections, let’s examine a couple of
interesting files to get a sense of what’s going on. We start with the source file which should look
familiar:

$ cat hello/hello.cxx
#include <iostream>
int main (int argc, char* argvl[])
{
using namespace std;
if (argc < 2)
{

cerr << "error: missing name" << endl;
return 1;

2 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

}

cout << "Hello, " << argv[l] << "!’7 << endl;

}

If you prefer the . ?pp extensions over . ?xx for your C++ source files, pass -1 c++, cpp to
the new command. See bdep—new (1) for details on this and other customization options.

Let’s take a look at the accompanying buildfile:
$ cat hello/buildfile

libs =
#import libs += libhello%lib{hello}

exe{hello}: {hxx ixx txx cxx}{**} $libs testscript
As the name suggests, this file describes how to build things. While its content might look a bit

cryptic, let’s try to infer a couple of points without going into too much detail (for details see the
build system Introduction).

That exe {hello} on the left of : is a target (executable named hello) and what we have on
the right are prerequisites (C++ source files, libraries, etc). This buildfile uses wildcard
patterns (that **) to automatically locate all the C++ source files. This means we don’t have to
edit our buildfile every time we add, remove, or rename a source file in our project. There
also appears to be some (commented out) infrastructure for importing and linking libraries (that
libs variable). We will see how to use it in a moment.

In simple projects that follow the canonical structure we can often completely ignore the presence
of the build definition files thus approaching the build system-less workflow found in languages
like Rust and Go.

Finally, the buildfile also lists testscript as a prerequisite of hello. This file tests our
target. Let’s take a look inside:

$ cat hello/testscript

: basics

é* '"World’ >"Hello, World!’
: missing—name

$* 2>>EQOE != 0

error: missing name
EOE

Revision 0.18, June 2025 The build2 Toolchain Introduction 3

1.1 Hello, World

Again, we are not going into detail here (see Testscript Introduction for a proper introduction),
but to give you an idea, here we have two tests: the first (with id basics) verifies that our
program prints the expected greeting while the second makes sure it handles the missing name
error condition. Tests written in Testscript are concise, portable, and executed in parallel.

Next upismanifest:

$ cat manifest

: 1

name: hello

version: 0.1.0-a.0.z
language: c++

summary: hello C++ executable
license: other: proprietary
description-file: README.md
url: https://example.org/hello
email: you@example.org
#depends: libhello 71.0.0

The manifest file is what makes a build system project a package. It contains all the metadata
that a user of a package might need to know: its name, version, license, dependencies, etc., all in
one place.

Refer to Manifest Format for the general format of build2 manifest files and to Package Mani-
fest for details on the package manifest values.

As you can see, manifest created by bdep—new (1) contains some dummy values which you
would want to adjust before publishing your package. Specifically, you would want to review
summary, license, url, and email as well as the README.md file referenced by
description—-file. Let’s, however, resist the urge to adjust that strange looking
0.1.0-a.0.z until we discuss package versioning.

Next to manifest you might have noticed the repositories.manifest file — we will
discuss its function later, when we talk about dependencies and where they come from.

Project in hand, let’s build it. Unlike other programming languages, C++ development usually
involves juggling a handful of build configurations: several compilers and/or targets (build2 is
big on cross-compiling), debug/release, different sanitizers and/or static analysis tools, and so on.
As aresult, build?2 is optimized for multi-configuration usage. However, as we will see shortly,
one build configuration can be designated as the default with additional conveniences.

The bdep-init (1) command is used to initialize a project in a build configuration. As a
shortcut, it can also create a new build configuration in the process, which is just what we need
here.

4 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

To create build configurations separately from initialization and to manage them after that, use
the bdep—config (1) subcommands.

Let’s start with GCC (remember we are in the project’s root directory):

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++
initializing in project /tmp/hello/
created configuration @gcc /tmp/hello-gcc/ default,auto-synchronized
synchronizing:
new hello/0.1.0-a.0.19700101000000

The ——config-create | -C option instructs init to create a new configuration in the speci-
fied directory (. . /hello—gcc in our case). To make referring to configurations easier, we can
give it a name, which is what we do with @gcc.

Note to Windows users: a command line argument with leading @ has a special meaning in
PowerShell. To work around this, you can use the alternative —Q@gcc syntax or the -n gcc
option.

The next argument (cc, stands for C-common) is the build system module we would like to
configure. It implements compilation and linking rules for the C and C++ languages. Finally,
config.cxx=g++ is (one of) this module’s configuration variables that specifies the C++
compiler we would like to use (the corresponding C compiler will be determined automatically).
Let’s for now also ignore that synchronizing:... bit along with strange-looking
19700101000000 in the version — it will become clear what’s going on here in a moment.

If you would like to generate a JSON compilation database for this project so that, for example,
you can edit its source files from your IDE, then change the above init command to read:

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++ —— \
config.cc.compiledb=./

Once you build this project for the first time (see below), you will find the
compile_commands. json file in its root directory. See Compilation Database for details on
this functionality.

Now the same for Clang:

$ bdep init -C ../hello-clang Qclang cc config.cxx=clang++
initializing in project /tmp/hello/
created configuration @clang /tmp/hello-clang/ auto-synchronized
synchronizing:

new hello/0.1.0-a.0.19700101000000

If we check the parent directory, we should now see two build configurations next to our project:

Revision 0.18, June 2025 The build2 Toolchain Introduction 5

1.1 Hello, World

$ 1s

hello/
hello—gcc/
hello-clang/

If, as in the above examples, our configuration directories are next to the project and their names
are in the pr j—name—cfg—name form, then we can use the shortcut version of the init
command:

$ bdep init -C @clang cc config.cxx=clang++

Things will also look pretty similar if you are on Windows instead of a UNIX-like operating
system. For example, to initialize our project on Windows with Visual Studio, start a command
prompt and then run:

> bdep init -C ..\hello-debug @debug cc *
"config.cxx=cl /MDd" ~
"config.cc.coptions=/0d /Zi" ~
config.cc.loptions=/DEBUG:FULL

> bdep init -C ..\hello-release Q@release cc "

config.cxx=cl

config.cc.coptions=/02

A

For Visual Studio, build2 by default will use the latest available version and build for the
x86_64 target (x64 in the Microsoft’s terminology). You can, however, override these defaults
by either running from a suitable Visual Studio development command prompt or by specifying
an absolute path to c1 . exe that you wish to use. For example:

> bdep init -C ..\hello-debug-32 Qdebug-32 cc ~
"config.cxx=...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl.exe"

In case of the command prompt, you may also want to make your configuration hermetic
(Hermetic Build Configurations):

> bdep init -C ... cc ... config.config.hermetic=true

Hermetically configuring our project in a suitable Visual Studio command prompt makes us free
to build it from any other prompt or shell, IDE, etc.

Besides the coptions (compile options) and Loptions (link options), other commonly used
cc module configuration variables are poptions (preprocess options) and libs (extra
libraries to link). Here is the complete list with their rough make equivalents:

* .poptions preprocess CPPFLAGS

* coptions compile CFLAGS/CXXFLAGS
*.loptions link LDFLAGS
*.aoptions archive ARFLAGS

*.libs extra libraries LIBS/LDLIBS

6 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

We can also use their config.c.* (C compilation) and config.cxx.* (C++ compilation)
variants if we only want them applied during the respective language compilation/linking. For
example:

$ bdep init ... cc \
config.cxx=g++ \
config.cc.poptions=-D_FORTIFY_SOURCE=2 \
config.cxx.poptions=-D_GLIBCXX_ASSERTIONS

Finally, we can specify the "compiler mode" options as part of the compiler executable in
config.c and config.cxx. Such options cannot be modified by buildfiles and they will
appear last on the command lines. For example:

$ bdep init ... cc \
config.c="clang -m32" \
config.cxx="clang++ -m32 -stdlib=libc++"

The compiler mode options are also the correct place to specify system-like header (-I) and
library (-L, /LIBPATH) search paths. Where by system-like we mean common installation
directories like /usr/include or /usr/local/lib which may contain older versions of
the libraries we are trying to build and/or use. By specifying these paths as part of the mode
options (as opposed to config.*.poptions and config.*.loptions) we make sure
they will be considered last, similar to the compiler’s build-in search paths. For example:

$ bdep init ... cc config.cxx="g++ -L/opt/install"

One difference you might have noticed when creating the gcc and clang configurations above
is that the first one was designated as the default. The default configuration is used by bdep
commands if no configuration is specified explicitly (see bdep—projects—configs (1) for
details). It is also the configuration that is used if we run the build system in the project’s source
directory. So, normally, you would make your every day development configuration the default.
Let’s try that:

$ bdep status
hello configured 0.1.0-a.0.19700101000000

$b

c++ hello/cxx{hello} —> ../hello-gcc/hello/hello/obje{hello}
1d ../hello-gcc/hello/hello/exe{hello}

In ../hello-gcc/hello/hello/exe{hello} -> hello/

$ b test
test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

$ hello/hello World
Hello, World!

Revision 0.18, June 2025 The build2 Toolchain Introduction 7

1.1 Hello, World

To see the actual compilation command lines, run b —v and for even more details, run b -V.
See b (1) for more information on these and other build system options.

In contrast, the Clang configuration has to be requested explicitly:

$ bdep status @clang
hello configured 0.1.0-a.0.19700101000000

$ b ../hello-clang/hello/
c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}
1d ../hello-clang/hello/hello/exe{hello}

$ b test: ../hello-clang/hello/
test ../hello-clang/hello/hello/exe{hello} +
hello/testscript{testscript}

$../hello-clang/hello/hello/hello World
Hello, World!

As you can see, using the build system directly on configurations other than the default requires
explicitly specifying their paths. It would have been more convenient if we could refer to them by
names. The bdep—update (1) and bdep—-test (1) commands allow us to do exactly that:

$ bdep test Qclang

c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}

1d ../hello-clang/hello/hello/exe{hello}

test ../hello-clang/hello/hello/exe{hello} +
hello/testscript{testscript}

And we can also perform the desired build system operation on several (or ——all |-a) configu-
rations at once:

$ bdep test @gcc @clang

in configuration @gcc:

test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

in configuration @clang:

test ../hello-clang/hello/hello/exe{hello} +
hello/testscript{testscript}

As we will see later, the bdep—-test (1) command also allows us to test immediate (——imme—
diate|-1i)orall (-—recursive|-r) dependencies of our project. We call it deep testing.

While we are here, let’s also check how hard it would be to cross-compile:

8 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

$ bdep init -C @mingw cc config.cxx=x86_64-w64-mingw32—-g++
initializing in project /tmp/hello/
created configuration @mingw /tmp/hello-mingw/ auto-synchronized
synchronizing:

new hello/0.1.0-a.0.19700101000000

$ bdep update @mingw
c++ hello/cxx{hello} -> ../hello-mingw/hello/hello/obje{hello}
1d ../hello-mingw/hello/hello/exe{hello}

As you can see, cross-compiling in build?2 is nothing special. In our case, on a properly setup
GNU/Linux machine (that automatically uses wine as an .exe interpreter) we can even run
tests (in build2 this is called cross-testing):

$ bdep test @mingw
test ../hello-mingw/hello/hello/exe{hello} +
hello/testscript{testscript}

$../hello-mingw/hello/hello/hello.exe Windows
Hello, Windows!

Let’s review what it takes to initialize a project’s infrastructure and perform the first build. For an
existing project:

$ git clone .../hello.git

$ cd hello

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++
$b

For a new project:

$ bdep new -1 c++ -t exe hello

$ cd hello

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++
$b

If you prefer, the new and init steps can be combined into a single command:

$ bdep new -1 c++ -t exe hello -C hello-gcc @gcc cc config.cxx=g++

And if you need to deinitialize a project in one or more build configurations, there is the
bdep-deinit (1) command for that:

$ bdep deinit @gcc @clang
deinitializing in project /tmp/hello/
in configuration @gcc:
synchronizing:

drop hello

in configuration @clang:

synchronizing:
drop hello

Revision 0.18, June 2025 The build2 Toolchain Introduction 9

1.1 Hello, World

By default bdep initializes a project for development by automatically passing
config.<project>.develop=true unless a custom value is specified. For example:

$ bdep init ... @gcc cc config.cxx=g++ config.hello.develop=false

To change the development mode of an already initialized project, use bdep—sync (1) :

$ bdep sync @gcc config.hello.develop=false
See Project Configuration for background on the development mode.

As mentioned earlier, by default bdep—new (1) initializes a git repository for us. Now that we
have successfully built and tested our project, it might be a good idea to make a first commit and
publish it to a remote repository where others can find it. Using GitHub as an example:

$ git add .

$ git commit -m "Initial implementation"

$ git remote add origin git@github.com:john-doe/hello.git
$ git push -u

We could have also done it the other way around: first created a project on one of the hosting
services (GitHub, GitLab, etc) cloned it, and then ran new on that. One advantage of this
approach is the new command’s ability to automatically extract the license and description from
the existing LICENSE and README . md files and use that to generate the manifest file. This
way we only need to specify things once and everything is nice and consistent. Here is an
example of this streamlined project creation workflow (notice also the omitted project name in
the new command):

Create a project with LICENSE and README.md on one of the Git
hosting services (GitHub, GitLab, etc) and then:

$ git clone .../hello.git
$ cd hello

$ bdep new -1 c++ -t exe

While we have managed to test a couple of platforms (Linux and Windows) and compiler
versions (Clang and GCC) locally, there are quite a few combinations that we haven’t tried (Mac
OS with Apple Clang and Windows with MSVC, to name the major ones). We could test them
manually, some with the help of virtualization while for others (such as Mac OS) we may need
physical hardware. Add a few versions for each compiler and we are looking at a dozen build
configurations. Needless to say, testing on all of them manually is a lot of work. Now that we
have our project available from a public remote repository, we can instead use the remote testing
functionality offered by the bdep—ci (1) command. For example:

10 The build2 Toolchain Introduction Revision 0.18, June 2025

1.1 Hello, World

$ bdep ci
submitting:
to: https://ci.cppget.org
in: https://github.com/john-doe/hello.git#master@93eldbc94baa
package: hello
version: 0.1.0-a.0.20180907091517.93eldbc9%4baa
continue? [y/n] y
FHAFHFHHEF A AR S 100.0%
CI request is queued:
https://ci.cppget.org/Q@d6eed90f4-21a9-47a0-ab5a-7cd2£521d3d8

Let’s see what’s going on here. By default ci submits a test request to a public CI
service run by the bui1d2 project (see available [Build Configurations| and [Use Policies)). In our

case it will be testing the current working tree state (branch and commit) of our package which
should be available from our remote repository (on GitHub in this example) since that’s where
the CI service expects to get it from. In response we get a URL where we can see the build and
test results, logs, etc.

This push CI model works particularly well with the "feature branch" development workflow.
Specifically, you would develop a new feature in a separate branch, publishing and remote-testing
it as necessary. When the feature is ready, you would merge any changes from master, test the
result one more time, and then merge (fast-forward) the feature into master.

Now is a good time to get an overview of the build2 toolchain. After all, we have already used
two of its tools (bdep and b) without a clear understanding of what they actually are.

Unlike most other programming languages that encapsulate the build system, package depen-
dency manager, and project dependency manager into a single tool (such as Rust’s cargo or
Go’s go), build2 is a hierarchy of several tools that you will be using directly and which
together with your version control system (VCS) will constitute the core of your project manage-
ment toolset.

While build2 can work without a VCS, this will result in reduced functionality.

At the bottom of the hierarchy is the build?2 build system, which we invoke using the b (1)
driver. Next comes the package dependency manager, bpkg (1) . It is primarily used for package
consumption and depends on the build system. The top of the hierarchy is the project dependency
manager, bdep (1) . It is used for project development and relies on bpkg for building project
packages and their dependencies.

The main reason for this separation is modularity and the resulting flexibility: there are situations
where we only need the build system (for example, when building a package for a system
package manager where all the dependencies should be satisfied from the system repository), or
only the build system and package manager (for example, when a build bot is building a package
for testing).

Revision 0.18, June 2025 The build2 Toolchain Introduction 11

https://ci.cppget.org/
https://ci.cppget.org?build-configs/
https://ci.cppget.org?ci/

1.1 Hello, World

Note also that strictly speaking build2 is not C/C++-specific; its build model is general enough
to handle any DAG-based operations and its package/project dependency management can be
used for any compiled language.

As we will see in a moment, build2 also integrates with your VCS in order to automate project
versioning. Note that currently only git (1) is supported.

Now that we understand the tooling, let’s also revisit the notion of build configuration (those
hello-gcc and hello-clang directories). While we often talk of build configurations in the
abstract, as a set of common options used to build our code, in build2 this term also has a very
concrete meaning — a directory where our projects and their dependencies are built with such a set
of common options.

The concept of a build configuration appears prominently throughout the toolchain: a bdep build
configuration is actually a bpkg build configuration which, in the build system terms, is a special
kind of an amalgamation — a project that contains subprojects. In our case, the subprojects in
these amalgamations will be the projects we have initialized with init and, as we will see in a
moment, packages that they depend on. For example, here is what our hello-gcc contains:

$ tree hello-gcc
hello—gcc/
|-- .bpkg/
| -— build/
| -—— config.build
-—— hello/
| -— build/
| -—— config.build
-—— hello/
|-- hello
-—— hello.o

Underneath bdep-init (1) with the ~—config-create | -C option calls
bpkg-cfg-create (1) which, in turn, performs the build system create meta-operation
(see b (1) for details).

The important point here is that the bdep build configuration is not a black box that you should
never look inside of. On the contrary, it is a well-defined concept of the package manager and the
build system and as long as you understand what you are doing, you should feel free to interact
with it directly.

Let’s now move on to the reason why there is dep in the bdep name: dependency management.

12 The build2 Toolchain Introduction Revision 0.18, June 2025

1.2 Package Repositories

1.2 Package Repositories

Say we have realized that writing "Hello, World!" programs is a fairly common task and that
someone must have written a library to help with that. So let’s see if we can find something suit-
able to use in our project.

Where should we look? That’s a good question. But before we can try to answer it, we need to
understand where build2 can source dependencies. In build2 packages usually come from
package repositories. Two commonly used repository types are version control and
archive-based (see bpkg—-repository-types (1) for details).

As the name suggests, a version control-based repository uses a VCS as its distribution mecha-
nism. Currently, only git is supported. Such a repository normally contains multiple versions of
a single package or, perhaps, of a few related packages.

An archive-based repository contains multiple, potentially unrelated packages/versions as
archives along with some metadate (package list, prerequisite/complement repositories, signa-
tures, etc) that are all accessible via HTTP(S).

Version control and archive-based repositories have different trade-offs. Version control-based
repositories are great for package developers since with services like GitHub they are trivial to
setup. In fact, your project’s (already existing) VCS repository will normally be the build2
package repository — you might need to add a few files, but that’s about it.

However, version control-based repositories are not without drawbacks: It will be hard for your
users to discover your packages (try searching for "hello library" on GitHub — most of the results
are not even in C++ let alone packaged for buildz2). There is also the issue of continuous avail-
ability: users can delete their repositories, services may change their policies or go out of busi-
ness, and so on. Version control-based repositories also lack repository authentication and
package signing. Finally, obtaining the available package list for such repositories can be slow.

A central, archive-based repository would address all these drawbacks: It would be a single place
to search for packages. Published packages will never disappear and can be easily mirrored.
Packages are signed and the repository is authenticated (see bpkg-reposi-
tory-signing (1) for details). And, last, but not least, archive-based repositories are fast.

is the build2 community’s central package repository. While centralized, it is also
easy to mirror since its contents are accessible via plain HTTPS (you can browse [pkg.cppget.org|
to get an idea). As an added benefit, packages on are continuously [built and tested| on
all the major platform/compiler combinations with the results available as part of the package
description.

Revision 0.18, June 2025 The build2 Toolchain Introduction 13

https://cppget.org/
https://pkg.cppget.org/
https://cppget.org/
https://cppget.org/?builds

1.2 Package Repositories

The main drawback of archive-based repositories is the setup cost. Getting a basic repository
going is relatively easy — all you need is an HTTP(S) server. Adding a repository web interface
like that on will require running And adding CI will require running a bunch of
build bots (bbot). Note also that in build2 archive-based repositories can be federated with
different sections of the repository being hosted/managed potentially independently.

To summarize, version control-based repositories are great for package developers while a
central, archive-based repository is convenient for package consumers. A reasonable strategy then
is for package developers to publish their releases to a central repository. Package consumers can
then decide which repository to use based on their needs. For example, one could use
as a (fast, reliable, and secure) source of stable versions but also add, say, git repositories for
select packages (perhaps with the #HEAD fragment filter to improve download speed) for testing
development snapshots. In this model the two repository types complement each other.

Publishing of packages to archive-based repositories is discussed in [Versioning and Release

Management]

Let’s see how all this works in practice. Go over to and type "hello library" in the
search box. At the top of the search result you should see the package and if you
follow the link you will see the package description page along with a list of available versions.
Pick a version that you like and you will see the package version description page with quite a bit
of information, including the list of platform/compiler combinations that this version has been
successfully (or unsuccessfully) tested with. If you like what you see, copy the repository
value — this is the repository location where this package version can be sourced from.

The [cppget.org repository is split into several sections: stable, testing, beta, alpha and
legacy, with each section having its own repository location (see the repository’s page
for details on each section’s policies). Note also that testing is complemented by stable,
beta by testing, and so on, so you only need to choose the lowest stability level and you will
automatically "see" packages from the more stable sections.

The stable sections will always contain the 1ibhello library version 1.0 .X that
was generated using the following bdep—new (1) command line:

$ bdep new -1 c++ -t lib libhello
It can be used as a predictable test dependency when setting up new projects.

Let’s say we’ve visited the 1ibhello project’s (for example by following a link
from the package details page) and noticed that it is being developed in a git repository. How
can we see what’s available there? If the releases are tagged, then we can infer the available
released versions from the tags. But that doesn’t tell us anything about what’s happening on the
HEAD or in the branches. For that we can use the package manager’s bpkg—rep—info (1)
command:

14 The build2 Toolchain Introduction Revision 0.18, June 2025

https://cppget.org/
https://cppget.org/brep
https://cppget.org/bbot
https://cppget.org/
https://cppget.org/
https://cppget.org/libhello
https://cppget.org/
https://cppget.org/?about
https://cppget.org/
https://git.build2.org/cgit/hello/libhello/

1.3 Adding and Removing Dependencies

$ bpkg rep-info https://git.build2.org/hello/libhello.git
libhello/1.0.0
libhello/1.1.0

As you can see, besides 1.0.0 that we have seen in cppget.org/stable, there is also
1.1.0 (which is perhaps being tested in cppget .org/testing). We can also check what
might be available on the HEAD (see bpkg—repository—-types (1) for details on the git
repository URL format):

$ bpkg rep-info https://git.build2.org/hello/libhello.git#HEAD
libhello/1.1.1-a.0.20180504111511.2e82£7378519

We can also use the rep—info command on archive-based repositories, however, if available,
the web interface is usually more convenient and provides more information.

To summarize, we found two repositories for the libhello package: the archive-based
that contains the released versions as well as its development git repository where
we can get the bleeding edge stuff. Let’s now see how we can add 1ibhello to our project.

1.3 Adding and Removing Dependencies

So we found 1ibhello that we would like to use in our hello project. First, we edit the
repositories.manifest file found in the root directory of our project and add one of the

libhello repositories as a prerequisite. Let’s start with [cppget.orgt

role: prerequisite
location: https://pkg.cppget.org/l/stable

Refer to Repository Manifest for details on the repository manifest values.

Next, we edit the manifest file (again, found in the root of our project) and specify the depen-
dency on 1ibhello with optional version constraint. For example:

depends: libhello 71.0.0

Let’s briefly discuss version constraints (for details see the depends value documentation). A
version constraint can be expressed with a comparison operator (==, >, <, >=, <=), a range short-
cut operator (~ and "), or a range. Here are a few examples:

depends: libhello == 1.2.3
depends: libhello >= 1.2.3

depends: libhello ~1.2.3
depends: libhello *1.2.3

depends: libhello [1.2.3 1.2.9)

Revision 0.18, June 2025 The build2 Toolchain Introduction 15

https://cppget.org/
https://cppget.org/

1.3 Adding and Removing Dependencies

You may already be familiar with the tilde (~) and caret () constraints from dependency
managers for other languages. To recap, tilde allows upgrades to any further patch versions while
caret also allows upgrades to further minor versions. They are equivalent to the following ranges:

~X.Y.Z [X.Y.Z X.Y+1.0)

~"X.Y.Z [X.Y.Z X+1.0.0) 41if X >
~0.Y.Z [0.Y.Z 0.Y+1.0) if X ==

0
0

Zero major version component is customarily used during early development where the minor
version effectively becomes major. As a result, the caret constraint has a special treatment of this
case.

Unless you have good reasons not to (for example, a dependency does not use semantic version-
ing), we suggest that you use the ~ constraint which provides a good balance between compatibil-
ity and upgradability with ~ being a more conservative option.

Besides the version constraint, the dependency declaration supports a number of more advanced
features, including conditional dependencies, dependency alternatives, and dependency configu-
ration. For details, see the depends value documentation.

Ok, we’ve specified where our package comes from (repositories.manifest) and which
versions we find acceptable (manifest). The next step is to edit hello/buildfile and
import the 1ibhello library into our build:

import libs += libhello%lib{hello}

Finally, we modify our source code to use the library:

#include <libhello/hello.hxx>

int main (int argc, char* argvl[])

{

hello::say_hello (cout, argv[1l]);
}

You are probably wondering why we have to specify this repeating information in so many
places. Let’s start with the source code: we can’t specify the version constraint or location there
because it will have to be repeated in every source file that uses the dependency.

Moving up, buildfile is also not a good place to specify this information for the same reason
(a library can be imported in multiple buildfiles) plus the build system doesn’t really know
anything about version constraints or repositories which is the purview of the dependency
management tools.

16 The build2 Toolchain Introduction Revision 0.18, June 2025

1.3 Adding and Removing Dependencies

Finally, we have to separate the version constraint and the location because the same package can
be present in multiple repositories with different policies. For example, when a package from a
version control-based repository is published in an archive-based repository, its reposito—
ries.manifest file is ignored and all its dependencies should be available from the
archive-based repository itself (or its fixed set of prerequisite repositories). In other words,
manifest belongs to a package while repositories.manifest — to arepository.

Also note that this is unlikely to become burdensome since adding new dependencies is not some-
thing that happens often. There are also ideas to automate this with a bdep-add (1) command
in the future.

To summarize, these are the files we had to modify to add a dependency to our project:

repositories.manifest # add https://pkg.cppget.org/l/stable
manifest # add ’"depends: libhello 71.0.0’
buildfile # import libhello library

#

hello.cxx include libhello header (or import module)

While the repository URL and package name are easy to find on the [cppget.orgls package
description page, the C/C++ library ecosystem unfortunately does not follow any predictable
library or header naming scheme. If the library documentation does not provide any clues, then
another place to check are the library tests and examples that can often be found in the package
source directory (or source repository). In particular, every library in the stable section of the

[cppget.org] repository should provide at least a basic test.

With a new dependency added, let’s check the status of our project:

$ bdep status

fetching pkg:cppget.org/stable (prerequisite of dir:/tmp/hello)

warning: authenticity of the certificate for pkg:cppget.org/stable
cannot be established

certificate is for cppget.org, "Code Synthesis" <admin@cppget.org>

certificate SHA256 fingerprint:

70:64:FE:E4:E0:F3:60:F1:B4:<...>:E5:C2:68:63:4C:A6:47:39:43

trust this certificate? [y/n] y

.0.19700101000000
.0.19700101000000#1

hello configured
available

0.1.0-a
0.1.0-a
The bdep-status (1) command has detected that the dependency information has changed
and tells us that a new iteration of our project (that #1) is now available for synchronization with
the build configuration.

We’ve also been prompted to authenticate the prerequisite repository. This will have to happen
once for every build configuration we initialize our project in and can quickly become tedious. To
overcome this, we can mention the certificate fingerprint that we wish to automatically trust in
the repositories.manifest file (replace it with the actual fingerprint from the reposi-
tory’s about page):

Revision 0.18, June 2025 The build2 Toolchain Introduction 17

https://cppget.org/
https://cppget.org/

1.3 Adding and Removing Dependencies

role: prerequisite
location: https://pkg.cppget.org/l/stable
trust: 70:64:FE:E4:E0:F3:60:F1:B4:<...>:E5:C2:68:63:4C:A6:47:39:43

To synchronize a project with one or more build configurations we use the bdep-sync (1)
command:

$ bdep sync

synchronizing:
new libhello/1.0.0 (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#1

Or we could just build the project without an explicit sync — if necessary, it will be automati-
cally synchronized:

$b
synchronizing:
new libhello/1.0.0 (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#1
c++ ../hello-gcc/libhello-1.0.0/1libhello/cxx{hello} —>
../hello—gcc/libhello-1.0.0/1libhello/objs{hello}
1d ../hello-gcc/libhello-1.0.0/1libhello/libs{hello}
c++ hello/cxx{hello} —> ../hello-gcc/hello/hello/obje{hello}
1d ../hello-gcc/hello/hello/exe{hello}
In ../hello-gcc/hello/hello/exe{hello} -> hello/

The synchronization as performed by the sync command is two-way: dependency packages are
first added, removed, upgraded, or downgraded in build configurations according to the project’s
version constraints and user input. Then the actual versions of the dependencies present in the
build configurations are recorded in the project’s lockfile so that if desired, the build can be
reproduced exactly. The Lockfile functionality is not yet implemented. For a new dependency
the latest available version that satisfies the version constraint is used.

Synchronization is also the last step in the bdep—init (1) command’s logic.

Let’s now examine the status in all (——all | —a) the build configurations and include the imme-
diate dependencies (-—immediate | -1i):

$ bdep status -ai

in configuration @gcc:

hello configured 0.1.0-a.0.19700101000000#1
libhello 71.0.0 configured 1.0.0

in configuration @clang:
hello configured 0.1.0-a.0.19700101000000
available 0.1.0-a.0.19700101000000#1

Since we didn’t specify a configuration explicitly, only the default (gcc) was synchronized.
Normally, you would try a new dependency in one configuration, make sure everything looks
good, then synchronize the rest with ——all |-a (or, again, just build what you need directly).

18 The build2 Toolchain Introduction Revision 0.18, June 2025

1.4 Upgrading and Downgrading Dependencies

Here are a few examples (see bdep—projects—configs (1) for details):

$ bdep sync -a
$ bdep sync @gcc @clang
$ bdep sync -c ../hello-mingw

After adding a new (or upgrading/downgrading existing) dependency, it’s a good idea to
deep-test our project: run not only our own tests but also of its immediate (——immediate|-1i)
or even all (——recursive | -r) dependencies. For example:

$ bdep test -ai

in configuration @gcc:

test ../hello-gcc/libhello-1.0.0/tests/basics/exe{driver}

test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

in configuration @clang:

test ../hello-clang/libhello-1.0.0/tests/basics/exe{driver}

test ../hello-clang/hello/hello/exe{hello} +
hello/testscript{testscript}

To get rid of a dependency, we simply remove it from the manifest file and synchronize the
project. For example, assuming libhello is no longer mentioned as a dependency in our
manifests:

$ bdep status
hello configured 0.1.0-a.0.19700101000000#1
available 0.1.0-a.0.19700101000000#2

$ bdep sync
synchronizing:
drop libhello/1.0.0 (unused)
upgrade hello/0.1.0-a.0.19700101000000#2

If instead of building a dependency from source you would prefer to use a version that is installed
by your system package manager, see [Using System-Installed Dependencies} And for information
on using dependencies that are not build2 packages refer to|Using Unpackaged Dependencies|

1.4 Upgrading and Downgrading Dependencies

Let’s say we would like to try that 1.1 .0 version we have seen in the 1ibhello git reposi-
tory. First, we need to add the repository to the repositories.manifest file:

role: prerequisite
location: https://git.build2.org/hello/libhello.git

Note that we don’t need the t rust value since git repositories are not authenticated.

Revision 0.18, June 2025 The build2 Toolchain Introduction 19

1.4 Upgrading and Downgrading Dependencies

To refresh the list of available dependency versions we use the bdep—£fetch (1) command (or
the ——fetch|—f option to status):

$ bdep fetch
$ bdep status libhello
libhello configured 1.0.0 available [1.1.0]

To upgrade (or downgrade) dependencies we again use the bdep—sync (1) command. We can
upgrade one or more specific dependencies by listing them as arguments to sync:

$ bdep sync libhello

synchronizing:
new libformat/1.0.0 (required by libhello)
new libprint/1.0.0 (required by libhello)
upgrade libhello/1.1.0
upgrade hello/0.1.0-a.0.19700101000000#3

Without an explicit version or the ——patch | —p option, sync will upgrade the specified depen-
dencies to the latest available versions. For example, if we don’t like version 1.1.0, we can
downgrade it back to 1.0.0 by specifying the version explicitly (we pass ——old-avail-
able|-oto status to see the old versions):

$ bdep status -o libhello
libhello configured 1.1.0 available (1.1.0) [1.0.0]

$ bdep sync libhello/1.0.0
synchronizing:
drop libprint/1.0.0 (unused)
drop libformat/1.0.0 (unused)
downgrade libhello/1.0.0
reconfigure hello/0.1.0-a.0.19700101000000#3

The available versions are listed in the descending order with [] indicating that the version is
only available as a dependency and () marking the current version.

Instead of specific dependencies we can also upgrade (--upgrade|-u) or patch
(--patch | —-p) immediate (——immediate | —-i)orall (-—recursive | -r) dependencies of
our project.

As a more realistic example, version 1.1.0 of 1ibhello depends on two other libraries:
libformat and libprint. Here is our project’s dependency tree while we were still using
that version:

$ bdep status -r
hello configured 0.1.0-a.0.19700101000000#3
libhello 71.0.0 configured 1.1.0
libformat 71.0.0 configured 1.0.0
libprint 71.0.0 configured 1.0.0

20 The build2 Toolchain Introduction Revision 0.18, June 2025

1.5 Build-Time Dependencies and Linked Configurations

A typical conservative dependency management workflow would look like this:

$ bdep status —-fi # refresh and examine immediate dependencies
hello configured 0.1.0-a.0.19700101000000#%3
libhello configured 1.1.0 available [2.0.0] [1.2.0] [1.1.2] [1.1.1]

$ bdep sync -pi # upgrade immediate to latest patch version
synchronizing:

upgrade libhello/1.1.2

reconfigure hello/0.1.0-a.0.19700101000000#3
continue? [Y/n] y

Notice that in case of such mass upgrades you are prompted for confirmation before anything is
actually changed (unless you pass ——yes | -y).

In contrast, the following would be a fairly aggressive workflow where we upgrade everything to
the latest available version (version constraints permitting; here we assume ~1. 0.0 was used for
all the dependencies):

$ bdep status —-fr # refresh and examine all dependencies
hello configured 0.1.0-a.0.19700101000000#%3
libhello configured 1.1.0 available [2.0.0] [1.2.0] [1.1.1]
libprint configured 1.0.0 available [2.0.0] [1.1.0] [1.0.1]
libformat configured 1.0.0 available [2.0.0] [1.1.0] [1.0.1]

$ bdep sync -ur # upgrade all to latest available version
synchronizing:

upgrade libprint/1.1.0

upgrade libformat/1.1.0

upgrade libhello/1.2.0

reconfigure hello/0.1.0-a.0.19700101000000#3
continue? [Y/n] y

We can also have something in between: patch all (sync -pr), upgrade immediate
(sync -ui), or even upgrade immediate and patch the rest (sync —ui followed by

sync —pr).

1.5 Build-Time Dependencies and Linked Configurations

The 1ibhello dependency we’ve been playing with in the previous two sections is a runtime
dependency, that is, our hello executable needs it at run-time. This is typical of libraries and
most of our dependencies will be of this kind. However, sometimes we may only wish to use a
dependency during the build, typically a tool, such as a source code generator. This kind of
dependency is called a build-time dependency.

Build-time dependencies are an advanced topic and if you don’t have an immediate need for this
functionality, you may skip this section without any loss of continuity.

Revision 0.18, June 2025 The build2 Toolchain Introduction 21

1.5 Build-Time Dependencies and Linked Configurations

Why do we need to distinguish between the two kinds of dependencies? The primary reason is
cross-compilation: if we build a tool in the same (cross-compiling) build configuration as our
project, then we will not be able to execute it during the build (since it’s built for a different target
than what we are running). But even if you are not planning to cross-compile, there are other
good reasons: if you have multiple build configurations for your project, you may want to share a
single build of your tool between them (why waste time building the same thing multiple times).
And even if you only have a single build of your project, you may want to build the tool with
different options (for example, optimized instead of debug).

You can probably see where this is going: in order to properly support build-time dependencies,
we need to distinguish them from runtime and we need an ability to build them in a separate build
configuration.

Let’s see how all this works using the tool as an example. If you are not familiar, xxd is a
hexdump utility which can be used to embed external binary data into C/C++ code in a portable
manner. Specifically, it can read a binary file and produce a C array definition of its contents. For
example:

$ xxd -1 names.txt

unsigned char names_txt[] = {
0x57, Oxe6f, 0x72, 0Ox6c, 0x64, 0x0a, 0x55, Ox6e, 0x69, 0x76, 0x65,
0x72, 0x73, 0x65, 0x0a, 0x50, 0x65, Ox6f, 0x70, Ox6c, 0x65, 0x0a,
0x4d, Ox6l, 0x72, 0x74, 0x69, 0x6l, Ox6e, 0x73, 0x0a

}i

unsigned int names_txt_len = 31;

While the above output is a bit old school (using unsigned int instead of size_t) and the
array/length names are derived from the input file name (including directories), xxd can also
produce just the array values allowing us to wrap it into an array of our choice. See the
package description for examples of build2 recipes that do that.

So here is an idea: instead of failing if the user did not specify the name to greet, let’s improve
our hello program to greet a random generic name from a pre-defined list. To make this list
easier to maintain, let’s keep it in a separate file called names.txt and use xxd to embed it
into our hello executable. We can use the one name per line format, for example:

$ cat names.txt
World

Universe

People

Martians

The first step in our plan is to add a build-time dependency on xxd to our project’s manifest,
similar to how we did for 1ibhello:

22 The build2 Toolchain Introduction Revision 0.18, June 2025

https://cppget.org/xxd
https://cppget.org/xxd

1.5 Build-Time Dependencies and Linked Configurations

depends: libhello 71.0.0
depends: * xxd >= 8.2.0

The * mark in front of the xxd name indicates that it’s a build-time dependency.

Next we import xxd in our buildfile:

import libs += libhello%lib{hello}

import! [metadata] xxd = xxd%exe{xxd}

There are two main differences compared to the way we import the 1ibhello library: we
request metadata ([metadata]) and we do immediate importation (import!). Let’s briefly
discuss what this means (for details, refer to Target Importation in the build system manual).
Metadata for an executable contains information that helps the build system do a better job when
an executable is used as part of the build. For example, it includes the uniform program name to
be used for low-verbosity diagnostics as well as the version, checksum, and environment that are
used to detect changes. And immediate importation instructs the build system to skip rule-specific
importation (for example, search for libraries in compiler-specific search paths) and import the
target here and now, failing if that’s not possible. It is usually appropriate for importing executa-
bles. Note also that the metadata can only be requested in immediate importation.

While requesting the metadata means that you will have a simpler buildfile and a more reli-
able build, it also likely means that you won’t be able to use the system-installed version of the
executable since it needs to be patched to provide the metadata.

Now that we have the xxd tool, let’s use it from an ad hoc recipe to convert names.txt to
names . cxx. Here is the complete buildfile for our hello executable:

libs =
import libs += libhello%lib{hello}

import! [metadata] xxd = xxd%exe{xxd}
exe{hello}: {hxx ixx txx cxx}{** —-names} cxx{names} $libs testscript
cxx{names}: file{names.txt} $xxd
{{
i = Spath($<[0])

env —-cwd $directory ($i) —-- $xxd —-i $leaf ($i) >S$path($>)
+}

Revision 0.18, June 2025 The build2 Toolchain Introduction 23

1.5 Build-Time Dependencies and Linked Configurations

The last bit that we need to do is to modify hello.cxx to use the list of fallback names (the
actual implementation is left as an exercise for the reader):

#include <iostream>

extern unsigned char names_txt[];
extern unsigned int names_txt_len;

int main (int argc, char* argvl[])
{

using namespace std;

if (argc < 2)

{
// TODO: pick a random name from names_txt using newline as
// a name separator.

Let’s recap what we’ve achieved so far: we’ve added a build-time dependency on xxd, we’ve
imported it in our buildfile and used it in an ad hoc recipe to generate names .cxx, and
we’ve modified hello.cxx to use the generated list of names. The only step left is to actually
try to build it. But before doing that, let’s also print the list of build configurations we currently
have associated with our project (see the 11 st subcommand in bdep—config(1)):

$ bdep config list
@gcc /tmp/hello-gcc/ 1 target default, forwarded, auto—-synchronized
@clang /tmp/hello-clang/ 2 target auto-synchronized

$b
creating configuration of host type in /tmp/hello-host/ and
associating it with project(s):
/tmp/hello/
as i1f by executing command(s) :
bdep config create Qhost —-type host ——no-default /tmp/hello-host \
cc config.config.load=~host
while searching for configuration for build-time dependency xxd of
package hello/0.1.0-a.0.19700101000000%#4
while synchronizing configuration /tmp/hello-gcc/
continue? [Y/n] y

synchronizing /tmp/hello-gcc/:
new xxd/8.2.3075 [/tmp/hello-host/] (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#4

c ../hello-host/xxd-8.2.3075+1/c{xxd} —>
../hello-host/xxd-8.2.3075+1/obje{xxd}

1d ../hello-host/xxd-8.2.3075/exe{xxd}

xxd hello/file{names.txt} —-> ../hello-gcc/hello/hello/cxx{names}

24 The build2 Toolchain Introduction Revision 0.18, June 2025

1.5 Build-Time Dependencies and Linked Configurations

c++ ../hello-gcc/hello/hello/cxx{names} —>
../hello—gcc/hello/hello/obje{names}

c++ hello/cxx{hello} —> ../hello-gcc/hello/hello/obje{hello}

1d ../hello-gcc/hello/hello/exe{hello}

While the diagnostics is hopefully fairly self-explanatory, let’s go over the key points. The first
part goes exactly as in the previous section: because we’ve added a new dependency, the build
configuration needs to be synchronized with the project state. However, this is a build-time
dependency and build-time dependencies are built in configurations of type host. So bdep first
looks for such a configuration among the configurations already associated with the project. In
our case there isn’t one (from the listing above we can see that all our configurations are of type
target). In this case, bdep offers to create one automatically. We accept this offer by answer-
ing y at the prompt and the rest should again look familiar: the new dependency is configured and
built (but now in the host configuration) and our project is updated (which involves running the
new dependency). If we now again print the list of build configurations associated with our
project, we will see the new configuration among them:

$ bdep config list

@gcc /tmp/hello-gcc/ 1 target default, forwarded, auto—synchronized
@clang /tmp/hello-clang/ 2 target auto-synchronized

@host /tmp/hello-host/ 3 host forwarded,auto-synchronized

Let’s also try to update our project in the clang configuration:

$ bdep update @clang
synchronizing:
upgrade hello/0.1.0-a.0.19700101000000#4

xxd hello/file{names.txt} -> ../hello-clang/hello/hello/cxx{names}

c++ ../hello-clang/hello/hello/cxx{names} —>
../hello-clang/hello/hello/obje{names}

c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}

1d ../hello-clang/hello/hello/exe{hello}

This time we are neither prompted to create another configuration nor is a new instance of xxd
built — as we would have expected, the existing host configuration with the already built xxd is
reused.

From the above output we can see that bdep creates the host configuration using the default host
compiler and build options (~host) which means the result will most likely be optimized. But if
we don’t like something about the host configuration that bdep offers us to create, we can
answer n at the prompt, create one ourselves (by perhaps copying and tweaking the command
line bdep was going to use), and then restart the build.

Besides the target and host types, the third pre-defined configuration type is build2, which
is used for build system modules. If you would like to try a build-time dependency on a build
system module, there is a dummy 1ibbuild2-hello module that you can use. Simply add the
following line to your manifest:

Revision 0.18, June 2025 The build2 Toolchain Introduction 25

1.5 Build-Time Dependencies and Linked Configurations

depends: * libbuild2-hello

And the following line somewhere in your buildfile:

using hello
Then build the project and see what happens.

The target type signifies a configuration for the end-result of our build. If no type is specified
during the configuration creation with the ——type option (or ——config-type if using
bdep—new), then target is assumed.

The host type signifies a configuration corresponding to the host machine, that is, the machine
on which the build is performed. It is expected that an executable built in the host configuration
can be executed. Oftentimes, target and host are the same. In this case, if you would prefer not to
have separate configurations, then you can make your target configuration self-hosted by using
the host type rather than target. For example:

$ bdep init -C ../hello-gcc Q@gcc ——-type host cc config.cxx=g++

The build2 type is a special kind of host configuration that is used to build build system
modules. It cannot be self-hosted.

Building build-time dependencies in separate configurations is just one application of the more
general configuration linking mechanism which allows us to build a package in one configuration
while its dependencies — in one or more linked configurations. This, for example, can be used to
create a "base" configuration with common dependencies that are shared between multiple
configurations (sometimes also referred to as build configuration overlaying).

Let’s see how this works on our hello project. Imagine 1ibhello that we depend on is very
big and takes a while to compile. We also aren’t really interested in building it in both gcc and
clang configurations (it’s our project that we are interested in building with different compil-
ers). Since these two compilers are ABI-compatible (at least on Linux), we could build
libhello with just one of them and reuse the result with the other. Let’s see how we can
achieve this with linked configurations (refer to bdep—config (1) for details on subcommands
involved):

$ bdep config create ../hello-base @base —--no-default cc config.cxx=g++
$ bdep config create ../hello-gcc @gcc —-default cc config.cxx=g++
$ bdep config create ../hello-clang @clang cc config.cxx=clang++

$ bdep config link @gcc @base
$ bdep config link @clang @base

$ bdep init @gcc { @base }+ ?libhello
$ bdep init @clang

26 The build2 Toolchain Introduction Revision 0.18, June 2025

1.6 Versioning and Release Management

Most of the commands are hopefully self-explanatory except for the { @base }+
?libhello part. Here ? is a package flag that instructs bdep to treat 1ibhello as a depen-
dency. And { @base }+ tells it to build this dependency in the base configuration (we don’t
have to do the same for clang since the dependency is already built). See bdep—sync (1) for
details on this syntax.

1.6 Versioning and Release Management

Let’s now discuss versioning and release management and, yes, that strange-looking
0.1.0-a.0.19700101000000 we keep seeing. While a build system project doesn’t need a
version and a bpkg package can use custom versioning schemes (see Package Version), a project
managed by bdep must use standard versioning. A dependency, which is a bpkg package, need
not use standard versioning.

Standard versioning (stdver) is a [semantic versioning| (semver) scheme with a more precisely
defined pre-release component and without any build metadata.

If you believe that semver is just ma jor.minor.patch, then in your worldview stdver would
be the same as semver. In reality, semver also allows loosely defined pre-release and build meta-
data components. For example, 1.2 .3-beta.l+build.23456 is a valid semver.

A standard version has the following form:
major.minor.patch|[—prerel]

The major, minor, and patch components have the same meaning as in semver. The
prerel component is used to provide continuous versioning of our project between releases.
Specifically, during development of a new version we may want to publish several pre-releases,
for example, alpha or beta. In between those we may also want to publish a number of snapshots,
for example, for CI. With continuous versioning all these releases, pre-releases, and snapshots are
assigned unique, properly ordered versions.

Continuous versioning is a cornerstone of the build2 project dependency management. In case
of snapshots, an appropriate version is assigned automatically in cooperation with your VCS.

The prerel component for a pre-release has the following form:
(a|b) .num

Here a stands for alpha, b stands for beta, and num is the alpha/beta number. For example:

Revision 0.18, June 2025 The build2 Toolchain Introduction 27

https://semver.org/

1.6 Versioning and Release Management

1.1.0 # final release for 1.1.0
1.2.0-a.l # first alpha pre-release for 1.2.0
1.2.0-a.2 # second alpha pre-release for 1.2.0
1.2.0-b.1 # first Dbeta pre-release for 1.2.0
1.2.0 # final release for 1.2.0

The prerel component for a snapshot has the following form:
(a | b) . num. snapsn|.snapid]

Where snapsn is the snapshot sequence number and snapid is the snapshot id. In case of
git, snapsn is the commit timestamp in the YYYYMMDDhhmmss form and UTC timezone
while snapidis a 12-character abbreviated commit id. For example:

1.2.3-a2.1.20180319215815.26efe301f4a7

Notice also that a snapshot version is ordered after the corresponding pre-release version. That is,
1.2.3-a.1 < 1.2.3-a.1.1.As aresult, it is customary to start the development of a new
version with X.Y.Z-a.0.z, that is, a snapshot after the (non-existent) zero’th alpha release.
We will explain the meaning of z in this version momentarily. The following chronologi-
cally-ordered versions illustrate a typical release flow of a project that uses git as its VCS:

0.1.0-a.0.19700101000000 # snapshot (no commits yet)
0.1.0-a.0.20180319215815.26efe301f4a7 # snapshot (first commit)
.. # more commits/snapshots
0.1.0-a.1 # pre-release (first alpha)
0.1.0-a.1.20180319221826.a6£f0f41205b8 # snapshot
.. # more commits/snapshots
0.1.0-a.2 # pre-release (second alpha)
0.1.0-a.2.20180319231937.b701052316c9 # snapshot
.. # more commits/snapshots
0.1.0-b.1 # pre-release (first beta)
0.1.0-b.1.20180319242038.c812163417da # snapshot

.. # more commits/snapshots
0.1.0 # release
0.2.0-a.0.20180319252139.d923274528¢eb # snapshot (first in 0.2.0)

For a more detailed discussion of standard versioning and its support in build2 refer to
version Module.

Let’s now see how this works in practice by publishing a couple of versions for our hello
project. By now it should be clear what that 0.1.0-a.0.19700101000000 means — it is the
first snapshot version of our project. Since there are no commits yet, it has the UNIX epoch as its
commit timestamp. Let’s see what changes after we’ve made our first commit:

28 The build2 Toolchain Introduction Revision 0.18, June 2025

1.6 Versioning and Release Management

$ git add .
$ git commit -m "Initial implementation"

$ bdep status
hello configured
available

.0.19700101000000
.0.20180507062614.ee006880fc7e

0.1.0-a
0.1.0-a
Just like with changes to dependency information, status has detected that a new (snapshot)
version of our project is available for synchronization.

Another way to view the project’s version (which works even if we are not using bdep) is with
the build system’s info meta-operation:

S b info

project: hello

version: 0.1.0-a.0.20180507062614.ee006880£fc7e
summary: hello C++ executable

Let’s synchronize with the default build configuration:

$ bdep sync
synchronizing:
upgrade hello/0.1.0-a.0.20180507062614.ee006880fc7e

$ bdep status
hello configured 0.1.0-a.0.20180507062614.ee006880fc7e

Notice that we didn’t have to manually change the version anywhere. All we had to do was
commit our changes and a new snapshot version was automatically derived by build2 from the
new git commit. Without this automation continuous versioning would hardly be practical.

If we now make another commit, we will see a similar picture:

$ bdep status
hello configured 0.1.0-a.0.20180507062614.ee006880fc7e
available 0.1.0-a.0.20180507062615.8fb9de05b38f

Note that you don’t need to manually run sync after every commit. As discussed earlier, you can
simply run the build system to update your project and things will get automatically synchronized
if necessary.

Ok, time for our first release. Let’s start with 0.1.0-a. 1. Unlike snapshots, for pre-releases as
well as final releases we have to change the version in the manifest file:

version: 0.1.0-a.1l

The manifest file is the singular place where we specify the package version. The build
system’s version module makes it available in various forms in buildfiles and even source
code.

Revision 0.18, June 2025 The build2 Toolchain Introduction 29

1.6 Versioning and Release Management

To ensure continuous versioning, this change to version must be the last commit for this
(pre-)release which itself must be immediately followed by a second change to the version start-
ing the development of the next (pre-)release. We also recommend that you tag the release
commit with a tag name in the vX. Y. Z form.

Having regular release tag names with the v prefix allows one to distinguish them from other
tags, for example, with wildcard patterns.

Here is the release workflow for our example:

$ git commit —-a -m "Release version 0.1.0-a.l1"
$ git tag -a v0.1.0-a.l1l -m "Tag version 0.1.0-a.1"
$ git push --follow-tags

Version 0.1.0-a.l is now public.

$ edit manifest # change ’version: 0.1
$ git commit —-a -m "Change version to 0.
$ git push

Master is now open for business.

Notice also that when specifying a snapshot version in manifest we use the special z snapshot
value (for example, 0.1.0-a.1l.z) which is recognized and automatically replaced by
build2 with, in case of git, the current commit timestamp and id (refer to version Module
for details).

While not particularly complicated, performing the release steps manually is both tedious and
error-prone. Instead, this process can be automated with the bdep—release (1) command.
Specifically, in its default mode, this command will update the version in the manifest file,
commit and tag this change, open the next development cycle (again, by changing manifest
and committing), and, finally, if ——push is specified, push everything to the remote. So, instead
of the above manual steps, we could have simply run:

$ bdep release —--alpha —--push

releasing:
package: hello
current: 0.1.0-a.0
release: 0.1.0-a.l
O0-a.l

open: 0.1.0- .Z
commit: vyes

tag: v0.1.0-a.l
push: origin/master

continue? [y/n] y
[master 82a7e65] Release version 0.1.0-a.l
[master e6cf3c0] Change version to 0.1.0-a.l.z
pushing branch master, tag v0.1.0-a.l
To github.com: john-doe/hello.git
26ec5c9..e6cf3c0 master —-> master
* [new tag] v0.1.0-a.1l —> v0.1.0-a.1

30 The build2 Toolchain Introduction Revision 0.18, June 2025

1.6 Versioning and Release Management

The release command has a number of alternative modes, such as for releasing a package revi-
sion, as well as a number of options that control which version will be released and which version
will be opened. See bdep—-release (1) for details.

Publishing the final release to the version control repository is exactly the same. This time,
however, let’s see how we can also publish it to an archive-based repository. The first step is
again to make the release, which we will do with the help of the release command. Except
now we will delay opening the next development cycle by passing ——no—-open (there is also no
——alpha since this is the final release):

$ bdep release —--no-open —-push
releasing:

package: hello

current: 0.1.0-a.l.z

release: 0.1.0

commit: yes
tag: v0.1.0
push: origin/master

continue? [y/n] y
[master 00ed45a] Release version 0.1.0
pushing branch master, tag v0.1.0
To github.com:john-doe/hello.git
5d5094c..00ed45a master —-> master
* [new tag] v0.1.0 —> v0.1.0

To publish our project to an archive-based repository we use the bdep—-publish (1)
command. For example:

$ bdep publish

publishing:
to: https://cppget.org
as: John Doe <john@example.org>

package: hello

version: 0.1.0

project: hello

section: alpha

control: https://github.com/john-doe/hello.git
continue? [y/n] y
pushing branch build2-control
submitting hello-0.1.0.tar.gz
FHAFHFHH AR S 100.0%
package submission is queued: https://queue.cppget.org/hello/0.1.0
reference: 0c596fca2017

Let’s see what’s going on here. By default publish submits to the repository. On
cppget . org package names are assigned on a first come first serve basis. But instead of using
logins or emails to authenticate package ownership, cppget.org uses your version control
repository as a proxy. In a nutshell, when we submit a package for the first time, its control repos-
itory is associated with its name and all subsequent submissions have to use the same control
repository (the authentication part). When submitting a package, publish also adds a file to the
build2-control branch of the control repository with the package archive checksum. On the

Revision 0.18, June 2025 The build2 Toolchain Introduction 31

https://cppget.org/

1.6 Versioning and Release Management

other side, cppget .org checks for the presence of this file to make sure that whomever is
making this submission has write access to the control repository (the authorization part). See
bdep-publish (1) for details.

The rest should be pretty straightforward: publish prepares and uploads a distribution of our
package which goes into the alpha section of the repository (because it has 0 major version). In
response we get a URL which we can use to check the status of our submission on
[queue.cppget.orgl And after some basic testing and verification, our package should appear on
cppget .org (the exact steps are described in [Submission Policies). Note also that package
submissions to cppget.org are public and permanent and cannot be removed under any
circumstances.

Finally, we also shouldn’t forget to increment the version for the next development cycle. For that
we can use the ——open mode of the release command. For example:

$ bdep release —--open —--push
opening:

package: hello

current: 0.1.0

open: 0.2.0-a.0.z
commit: vyes
push: origin/master

continue? [y/n] y

[master ace2f6e] Change version to 0.2.0-a.0.z

pushing branch master

To github.com: john-doe/hello.git
00ed45a..ace2f6e master —-> master

One sticky point of continuous versioning is choosing the next version. For example, above
should we continue with 0.1.1-a.0, 0.2.0-a.0, or 1.0.0-a.0? The important rule to
keep in mind is that we can jump forward to any further version at any time and without breaking
continuous versioning. But we can never jump backwards.

For example, we can start with 0.2 . 0-a. 0 but if we later realize that this will actually be a new
major release, we can easily change it to 1.0.0-a.0. As a result, the general guideline is to
start conservatively by either incrementing the patch or the minor version component. And the
recommended strategy is to increment the minor component and, if required, release patch
versions from a separate branch (created by branching off from the release commit). This is the
default behavior of the release command.

Note also that you don’t have to make any pre-releases if you don’t need them. While during
development you would still keep the version as X.Y.Z-a. 0, at release you simply change it
directly to the final X.Y. Z.

32 The build2 Toolchain Introduction Revision 0.18, June 2025

https://queue.cppget.org/
https://cppget.org?submit/

1.7 Developing Multiple Packages and Projects

When publishing the final release you may also want to clean up now obsolete pre-release tags.
For example:

$ git tag -1 ’v0.1.0-*" | xargs git push —--delete origin
$ git tag -1 ’v0.1.0-*" | xargs git tag —--delete

While at first removing such tags may seem like a bad idea, pre-releases are by nature temporary
and their use only makes sense until the final release is published.

Also note that having a git repository with a large number of published but unused version tags
may result in a significant download overhead.

Let’s also briefly discuss in which situations we should increment each of the version compo-
nents. While semver gives basic guidelines, there are several ways to apply them in the context of
C/C++ where there is a distinction between binary and source compatibility. We recommend that
you reserve patch releases for specific bug fixes and security issues that you can guarantee with a
high level of certainty to be binary-compatible. Otherwise, if the changes are source-compatible,
increment minor. And if they are breaking (that is, the user code likely will need adjustments),
increment major. During early development, when breaking changes are frequent, it is customary
to use the 0.Y.Z versions where Y effectively becomes the major component. Again, refer to the
version Module for a more detailed discussion of this topic.

1.7 Developing Multiple Packages and Projects

How does a library like 1ibhello get developed? It’s possible someone woke up one day and
realized that they were going to build a useful library that everyone was going to use. But
somehow this doesn’t feel like how it really works. In the real world things start organically:
someone had a project like hello and then needed the same functionality in another project. Or
someone else needed it and asked the author to factor it out into a library. For this approach to
work, however, moving such common functionality into a library and then continue its parallel
development must be a simple, frictionless process. Let’s see how this works in build2.

First, we need to decide whether to make 1ibhello another package in our hello project (that
is, in the same git repository) or a separate project (with a separate repository). Both arrange-
ments are equally well supported.

A multi-package project works best if all the packages have the same version and are released
together. While the packages themselves can have different versions (since each has its own
manifest), in this scenario following the release tagging recommendations discussed earlier
will be problematic.

Let’s start with a separate project since it is simpler. As the first step we use bdep—new (1) to
create a new library project next to our hello:

Revision 0.18, June 2025 The build2 Toolchain Introduction 33

1.7 Developing Multiple Packages and Projects

$ bdep new -1 c++ -t lib libhello
created new library project libhello in /tmp/libhello/

$ 1s

hello/
libhello/
hello—gcc/
hello-clang/

$ tree libhello

libhello/

—— build/

—— libhello/
|-- hello.hxx
|—— hello.cxx
+—— buildfile

—-— buildfile

—-— manifest

—— README.md

-—— repositories.manifest

Similar to the executable project, this layout is not mandatory and bdep—new (1) can create a
number of alternative library structures. For example, if you prefer the include/src split, try:

$ bdep new -1 c++ -t 1lib,split libhello
See SOURCE LAYOUT for more examples.

Let’s edit the generated manifest file and add the project value (customarily after
version) to indicate that our library belongs to the same overall project as our executable:

$ cat libhello/manifest

: 1

name: libhello

version: 0.1.0-a.0.z
project: hello

summary: hello C++ library

The project value is used to group related packages together in order to help with their organi-
zation and discovery. For example, if later we create 1ibhello2 or l1ibhello-extra, then
it would make sense for them to also belong to the hello project. See the project value
documentation for details.

Our two projects will be sharing the same set of build configurations, so next we initialize
libhello in hello—gcc and hello-clang (notice the use of ——config—add|—A
hmwadof——config—create|—C)

34 The build2 Toolchain Introduction Revision 0.18, June 2025

1.7 Developing Multiple Packages and Projects

$ cd libhello

$ bdep init -A ../hello-gcc @gcc
initializing in project /tmp/libhello/
added configuration Qgcc /tmp/hello-gcc/ default,auto-synchronized
synchronizing:
new libhello/0.1.0-a.0.19700101000000

$ bdep init -A ../hello-clang Qclang
initializing in project /tmp/libhello/
added configuration Q@clang /tmp/hello-clang/ auto-synchronized
synchronizing:
new libhello/0.1.0-a.0.19700101000000

If two or more projects share the same build configuration, then all of them are always synchro-
nized at once, regardless of the originating project. It also makes sense to have the same default
configuration and use identical configuration names in all the projects.

The last step is to move the desired functionality from hello to 1ibhello and at the same
time add a dependency on 1ibhello, just as we did earlier (add a depends entry to mani-
fest, then import the library in buildfile, and so on). One interesting question is what to put
as a prerequisite repository in repositories.manifest. Our own setup will work even if
we don’t put anything there — the dependency will be automatically resolved to our local version
of 1ibhello since we have initialized it in all our build configurations. However, in case our
hello repository is used by someone else, it’s a good idea to add the remote git repository for
libhello as a prerequisite.

By now you have probably realized that our project directory is just another type of package
repository. See bpkg—-repository—-types (1) for more information.

And that’s it, now we can build and test our new arrangement:

$ cd ../hello # back to hello project root

$ bdep test -1

c++ ../libhello/libhello/cxx{hello} ->
../hello—gcc/libhello/libhello/objs{hello}

c++ ../libhello/tests/basics/cxx{driver} ->
../hello-gcc/libhello/tests/basics/obje{driver}

c++ hello/cxx{hello} —> ../hello-gcc/hello/hello/obje{hello}

1d ../hello-gcc/libhello/libhello/libs{hello}

1d ../hello-gcc/libhello/tests/basics/exe{driver}

1d ../hello-gcc/hello/hello/exe{hello}

test ../hello-gcc/libhello/tests/basics/exe{driver}

test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

This is also the approach we would use if we wanted to fix a bug in someone else’s library. That
is, we would clone their library repository and initialize it in the build configurations of our
project which will "upgrade" the dependency to use the local version. Then we make the fix,
submit it upstream, and continue using the local version until our fix is merged/published, at
which point we deinitialize their library repository and our project will be automatically switched

Revision 0.18, June 2025 The build2 Toolchain Introduction 35

1.7 Developing Multiple Packages and Projects

back to using the new upstream version of the library. Here is the summary of the steps in this
workflow:

$ cd hello/ # Our project.
$ bdep init -C @Qgcc ... # Configures libhello as a dependency.
$ git clone .../libhello.git # Need to fix a bug in libhello.

$ cd libhello
$ bdep init -A ../hello-gcc @gcc # Upgrades libhello to local version.

Fix the bug in libhello, test, and submit upstream.
Continue using local libhello until the bugfix is published.

$ cd libhello # Bugfix has been published.
$ bdep deinit @gcc # Switches libhello back to dependency.
S rm -r libhello # If no longer needed.

Let’s now examine the second option: making 1ibhello a package inside hello. Here is the
original structure of our hello project:

hello/
-— .git/
—— build/
-— hello/
|—— hello.cxx
-—— buildfile
—-— buildfile
-— manifest
—— README.md
-—— repositories.manifest

As the first step, we move the hello program into its own subdirectory:

hello/
-— .git/
-— hello/
| -— build/
|-- hello/
| |—— hello.cxx
| -—— buildfile
|-- buildfile
|-- manifest
-—— README .md
-—— repositories.manifest

Next we again use bdep—new (1) to create a new library but this time as a package inside an
already existing project:

$ cd hello

$ bdep new —--package -1 c++ -t 1lib libhello
created new library package libhello in /tmp/hello/libhello/

36 The build2 Toolchain Introduction Revision 0.18, June 2025

1.7 Developing Multiple Packages and Projects

Let’s see what our project looks like now:

hello/
-— .git/
-— hello/
-—— manifest
—— libhello/
-—— manifest
—-— buildfile
—-— packages.manifest
-—— repositories.manifest

Notice that, as discussed earlier, repositories.manifest belongs to the project (reposi-
tory) while manifest — to the package.

Besides the 1ibhello directory the new command also created the buildfile and pack-
ages.manifest files in the root directory of our project. First let’s take a look inside build-
file:

import pkgs = */

./: Spkgs

This is what we call a glue buildfile. Its purpose is to "pull” together several packages so that
we are able to invoke the build system driver from the project root. See Target Importation for
details.

Now let’s examine packages.manifest:

$ cat packages.manifest
: 1
location: libhello/

Up until now our hello was a simple, single-package project that didn’t need this file — mani-
fest in its root directory was sufficient (see bpkg—repository—-types (1) for details on
the project repository structure). But now it contains several packages and we need to specify
where they are located within the project. So let’s go ahead and add the location of the hello
package:

$ cat packages.manifest

: 1

location: libhello/

location: hello/

Revision 0.18, June 2025 The build2 Toolchain Introduction 37

1.7 Developing Multiple Packages and Projects

Packages in a project can reside next to each other or in subdirectories but they cannot nest.
When published to an archive-based repository, each such package will be placed into its own
archive.

Next we initialize the new package in all our build configurations:

$ cd libhello

$ bdep init -a

initializing in project /tmp/hello/

in configuration @gcc:

synchronizing:
upgrade hello/0.1.0-a.0.19700101000000#1
new libhello/0.1.0-a.0.19700101000000

in configuration @clang:

synchronizing:
upgrade hello/0.1.0-a.0.19700101000000#1
new libhello/0.1.0-a.0.19700101000000

Notice that the hel1o package has been "upgraded"” to reflect its new location.

Finally, as before, we move the desired functionality from hello to 1ibhello and at the same
time add a dependency on 1ibhello. Note, however, that in this case we don’t need to add
anything to repositories.manifest since both packages are in the same project (reposi-
tory). And that’s it, now we can build and test our new arrangement:

$ cd .. # back to hello project root

$ bdep test

c++ libhello/libhello/cxx{hello} —->
../hello—-gcc/libhello/libhello/objs{hello}

c++ libhello/tests/basics/cxx{driver} —->
../hello-gcc/libhello/tests/basics/obje{driver}

c++ hello/hello/cxx{hello} —-> ../hello—gcc/hello/hello/obje{hello}

1d ../hello-gcc/libhello/libhello/libs{hello}

1d ../hello-gcc/libhello/tests/basics/exe{driver}

1d ../hello-gcc/hello/hello/exe{hello}

test ../hello-gcc/libhello/tests/basics/exe{driver}

test ../hello-gcc/hello/hello/exe{hello} +
hello/hello/testscript{testscript}

A multi-package project could have several files, such as README . md and LICENSE, which,
while shared by all the packages, must nevertheless reside within each package’s directory. The
recommended way to avoid the duplication is to use symlinks. For example:

hello/

-— .git/

-— hello/
|—— ...
|-- LICENSE -> ../LICENSE
-—— manifest

-— libhello/

38 The build2 Toolchain Introduction Revision 0.18, June 2025

1.8 Package Consumption

| |-- LICENSE -> ../LICENSE
| +—— manifest

| -- LICENSE

|-- buildfile

|—— packages.manifest

-—— repositories.manifest

See[Using Symlinks in build2 Projects|for details.

1.8 Package Consumption

Ok, now that we have published a few releases of hello, how would the users of our project get
them? While they could clone the repository and use bdep just like we did, this is more of a
development than a consumption workflow. For consumption it is much easier to use the package
dependency manager, bpkg (1), directly.

Note that this approach also works for libraries in case you wish to use them in a project with a
build system other than build2. See |[Using Unpackaged Dependencies| for background on
cross-build system library consumption.

First, we create a suitable build configuration with the bpkg—cfg—create (1) command. We
can use the same place for building all our tools so let’s call the directory tools. Seeing that we
are only interested in using (rather than developing) such tools, let’s build them optimized and
also configure a suitable installation location:

$ bpkg create -d tools cc
config.cxx=g++
config.cc.coptions=-03
config.install.root=/usr/local
config.install.sudo=sudo

created new configuration in /tmp/tools/

\
\
\
\

The same step on Windows using Visual Studio would look like this:
$ bpkg create -d tools cc *
config.cxx=cl

config.cc.coptions=/02
config.install.root= C:\install

A

A

To fetch and build packages (as well as all their dependencies) we use the
bpkg-pkg-build (1) command. We can use either an archive-based repository like

or build directly from git:
$ cd tools

$ bpkg build hello@Rhttps://git.build2.org/hello/hello.git
fetching from https://git.build2.org/hello/hello.git

new libformat/1.0.0 (required by libhello)

new libprint/1.0.0 (required by libhello)

new libhello/1.1.0 (required by hello)

Revision 0.18, June 2025 The build2 Toolchain Introduction 39

https://build2.org/article/symlinks.xhtml
https://cppget.org/

1.8 Package Consumption

new hello/1.0.0

continue? [Y/n] y

configured libformat/1.0.0

configured libprint/1.0.0

configured libhello/1.1.0

configured hello/1.0.0

c++ libprint-1.0.0/libprint/cxx{print} —>
libprint-1.0.0/libprint/objs{print}

c++ hello-1.0.0/hello/cxx{hello} —> hello-1.0.0/hello/obje{hello}

c++ libhello-1.1.0/libhello/cxx{hello} —->
libhello-1.1.0/1libhello/objs{hello}

c++ libformat-1.0.0/libformat/cxx{format} —->
libformat-1.0.0/libformat/objs{format}

1d libprint-1.0.0/libprint/libs{print}

1d libformat-1.0.0/libformat/libs{format}

1d libhello-1.1.0/libhello/libs{hello}

1d hello-1.0.0/hello/exe{hello}

updated hello/1.0.0

Passing a repository URL to the build command is a shortcut to the following sequence of
commands:

$ bpkg add https://git.build2.org/hello/hello.git # add repository
$ bpkg fetch # fetch package list
$ bpkg build hello # build package by name

If building a package involves building a build-time dependency and no configuration of type
host (or build2, if the dependency is a build system module) is linked with the target configu-
ration, then a private configuration of a suitable type is automatically created and linked. See
[Build-Time Dependencies and Linked Configurations|for background on build-time dependencies
and bpkg-cfg—create (1) for more information on bpkg configuration linking.

Once built, we can install the package to the location that we have specified with
config.install.root using the bpkg-pkg—install (1) command:

$ bpkg install hello

install libformat-1.0.0/libformat/libs{format} -> /usr/local/lib/
install libprint-1.0.0/libprint/libs{print} -> /usr/local/lib/
install libhello-1.1.0/l1libhello/libs{hello} -> /usr/local/lib/
install hello-1.0.0/hello/exe{hello} -> /usr/local/bin/

S hello World
Hello, World!

If on your system the installed executables don’t run from /usr/local because of the unre-
solved shared libraries (or if you are installing somewhere else, such as /opt), then the easiest
way to fix this is with rpath. Simply add the following configuration variable when creating the
build configuration (or as an argument to the install command):

40 The build2 Toolchain Introduction Revision 0.18, June 2025

1.8 Package Consumption

config.bin.rpath=/usr/local/lib

Note to Windows users: this is not an issue on this platform since executables and shared (DLL)
libraries are installed into the same subdirectory (bin) of the installation directory.

The installation contents and layout under config.install.root would be along these
lines:

/usr/local/
|-- bin/
|A & --- hello
|-— lib/
| |-- libformat-1.0.so
| |-- libhello-1.1.so
| -—— libprint-1.0.so
-—— share/

-—— doc/

-—— hello/
|-- manifest
-—— README.md

2 = =
2 = =

The installation locations of various types of files (executables, libraries, headers, documentation,
etc) can be customized using a number of the config.install.* variables with the most
commonly used ones and their defaults (relative to config.install. root) listed below (see
the install build system module documentation for the complete list).

config.install.bin = root/bin/
config.install.lib = root/lib/
config.install.doc = root/share/doc/
config.install.man = root/share/man/
config.install.include = root/include/

If we need to uninstall a previously installed package, there is the bpkg—pkg—uninstall (1)
command:

$ bpkg uninstall hello

uninstall hello-1.0.0/hello/exe{hello} <- /usr/local/bin/

uninstall libhello-1.1.0/libhello/libs{hello} <- /usr/local/lib/
uninstall libprint-1.0.0/libprint/libs{print} <- /usr/local/lib/
uninstall libformat-1.0.0/libformat/libs{format} <- /usr/local/lib/

From the above listing we can gather that only the shared library binaries were installed. In
particular, neither static library binaries nor headers and other development-related files (such as
non-versioned shared library symlinks, pkg-—config . pc files, etc) were installed.

The reason for this behavior is that by default the bpkg-—pkg—install (1) command only
instructs the build system to install packages that were specified on the command line (hello in
out case) while the build system in turn installs from dependency packages only what’s necessary
for the packages it was instructed to install. In our case, installing the hello also requires

Revision 0.18, June 2025 The build2 Toolchain Introduction 41

1.8 Package Consumption

installing the shared library binaries that it uses but none of the development-related files (we
don’t need library headers in order to run an executable).

However, this default behavior of bpkg-pkg-install(l) (and bpkg-pkg-unin-
stall (1)) can be changed with the ——recursive option, which instructs bpkg to addition-
ally fully install/uninstall dependency packages.

Rather than installing the package locally we could instead generate a binary distribution package
for it using the bpkg—-pkg-bindist (1) command. Such a binary package can then be
installed on a different machine. Currently, the bindist command supports producing Debian
(and alike, such as Ubuntu) and Fedora (and alike, such as RHEL) packages as well as installa-
tion archives for all operating systems. For example, to generate a Debian package for our
hello (running on Debian or alike):

$ bpkg bindist —--recursive=auto —-private -o /tmp/hello-deb/ hello

generated debian package for hello/1.0.0:
/tmp/hello-deb/hello_1.0.0-0~debianl2_amd64.deb
/tmp/hello-deb/hello—-dbgsym_1.0.0-0~debianl2_amdé64.deb
/tmp/hello-deb/hello_1.0.0-0~debianl2_amd64.buildinfo
/tmp/hello-deb/hello_1.0.0-0~debianl2_amd64.changes

$ sudo apt—get install /tmp/hello-deb/hello_1.0.0-0~debianl2_amdé64.deb

And to generate a Fedora package (running on Fedora or alike):
$ bpkg bindist —--recursive=auto —--private hello

generated fedora package for hello/1.0.0:
~/rpmbuild/RPMS/x86_64/hello-1.0.0-1.fc38.x86_64.rpm
~/rpmbuild/RPMS/x86_64/hello-debuginfo-1.0.0-1.£fc38.x86_64.rpm

$ sudo dnf install ~/rpmbuild/RPMS/x86_64/hello-1.0.0-1.fc38.x86_64.rpm

And to generate an installation archive (running on Windows in this example):
$ bpkg bindist —--recursive=auto ~
—--private
——distribution=archive
—o C:\tmp\hello-zip\ ~
config.install.relocatable=true *
hello

A

A

generated archive package for hello/1.0.0:
C:\tmp\hello-zip\hello-1.0.0-x86_64-windowsl0.zip

To upgrade or downgrade packages we again use the build command. Here is a typical upgrade
workflow:

42 The build2 Toolchain Introduction Revision 0.18, June 2025

1.9 Using System-Installed Dependencies

$ bpkg fetch # refresh available package list

$ bpkg status # see if new versions are available
$ bpkg uninstall hello # uninstall old version

$ bpkg build hello # upgrade to the latest version

$ bpkg install hello # install new version

Similar to bdep, to downgrade we have to specify the desired version explicitly. There are also
the ——upgrade|—u and ——patch|—p as well as ——immediate|—i and —-recur-
sive|-r options that allow us to upgrade or patch packages that we have built and/or their
immediate or all dependencies (see bpkg—pkg-build (1) for details). For example, to make
sure everything is patched, run:

$ bpkg fetch
$ bpkg build -pr

If a package is no longer needed, we can remove it from the configuration with
bpkg-pkg—-drop (1):

$ bpkg drop hello
following dependencies were automatically built but
will no longer be used:
libhello
libformat
libprint
drop unused packages? [Y/n] y
drop hello
drop libhello
drop libformat
drop libprint
continue? [Y/n] y
purged hello
purged libhello
purged libformat
purged libprint

1.9 Using System-Installed Dependencies

Our operating system might already have a package manager (which we will refer to as system
package manager) and for various reasons we may want to use the system-installed version of a
dependency rather than building one from source.

Using system-installed versions works best for mature rather than rapidly-developed packages
since for the latter you often need to track the latest version (which may not yet be available from
the system repository) and/or test with multiple versions (which is not something that many
system package managers support).

Revision 0.18, June 2025 The build2 Toolchain Introduction 43

1.9 Using System-Installed Dependencies

We can also have some build configurations using a system-installed version of a dependency
while in others building it from source, for example, for testing.

We can instruct build2 to configure a dependency package as available from the system rather
than building it from source. Specifically, we can install a suitable version manually (for
example, using the system package manager) and then communicate this fact as well as the
version installed to build2 so that it can use this information when resolving version
constraints. Furthermore, for Debian (and alike, such as Ubuntu) and Fedora (and alike, such as
RHEL) build2 can automatically query the system package manager for the installed version
and, if requested, automatically install a suitable version from the system repository if none is
already installed.

Let’s see how all this works in an example. Say, we want to use [Libsglite3|in our hello
project.

The first step is to add it as a dependency, just like we did for 1ibhello. That is, add another
depends entry to manifest, then import it in buildfile, and so on.

Now, if we just run sync or try to build our project, build2 will download and build the new
dependency from source, just like it did for 1ibhello. Instead, we can issue an explicit sync
command that configures the 1ibsglite3 package as coming from the system:

$ bdep sync ?sys:libsqglite3

Here ? is a package flag that instructs buildz2 to treat it as a dependency and sys is a package
scheme that tells bui1ld2 it comes from the system. See bpkg—pkg-build (1) for details.

Now what exactly happens in this case depends on which operating system we are running as
well as whether 1ibsglite3 is already installed. Let’s examine each combination in turn.

If we are running on an operating system for which there is build2 support for the system
package manager interactions (currently Debian, Fedora, or alike) and 1ibsglite3 is already
installed, then build2 will get its version from the system package manager and use that when
resolving version constraints. For example, running the above command on Debian with
libsglite3-dev version 3.42.0 already installed:

$ bdep sync ?sys:libsqglite3

synchronizing:
configure sys:libsglite3/3.42.0 (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#3

If, on the other hand, we are running on an operating system for which there is build2 support
for the system package manager interactions but 1ibsglite3 is not installed, then build2
will fail:

44 The build2 Toolchain Introduction Revision 0.18, June 2025

https://cppget.org/libsqlite3

1.9 Using System-Installed Dependencies

$ bdep sync ?sys:libsqglite3
error: no installed system package for libsqglite3
info: specify —--sys-install to try to install it
info: specify libsglite3/* if package is not installed with system
package manager
info: specify —--sys—-no-query to disable system package manager
interactions

As you can see, build2 will not attempt to automatically install system packages unless explic-
itly requested with the —-sys—-install option. Let’s try to add that (again, running on
Debian):

$ bdep sync —--sys-install ?sys:libsqglite3

updating debian package index...

synchronizing:
sys—install libsglite3-0/3.42.0-1 (required by sys:libsqglite3)
configure sys:libsglite3/3.42.0 (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#3

installing debian packages...

The following NEW packages will be installed:
libsglite3-dev

The following packages will be upgraded:
libsglite3-0 sglite3

Do you want to continue? [Y/n] y

Setting up libsqglite3-0:amd64 (3.42.0-1)
Setting up libsglite3-dev:amd64 (3.42.0-1)
Setting up sglite3 (3.42.0-1)

You can suppress the system package manager confirmation prompt with the ——sys-yes
option. By default build2 uses sudo for system package manager interactions that normally
require administrative privileges (fetch package metadata, install packages, etc). This can be
customized with the ——sys—-sudo option.

Finally, if we are running on an operating system for which there is no build2 support for the
system package manager interactions, then, as mentioned earlier, it is the user’s responsibility to
make sure a suitable package is installed and, optionally, communicate its version. In this case,
unless we specify the installed version explicitly, a system-installed package is assumed to satisfy
any dependency constraint (indicated with the * wildcard instead of the version):

$ bdep sync ?sys:libsqglite3

synchronizing:
configure sys:libsglite3/* (required by hello)
upgrade hello/0.1.0-a.0.19700101000000#3

You can reduce the supported system package manager case to this case by disabling the system
package manager interactions with the ——sys—no-query option.

Revision 0.18, June 2025 The build2 Toolchain Introduction 45

1.10 Using Unpackaged Dependencies

The system-installed dependency doesn’t really have to come from the system package manager.
It can also be manually installed and, as discussed in [Using Unpackaged Dependencies| not
necessarily into the system-default location like /usr/local.

In the above examples our dependency (1ibsglite3) still has to be packaged and available
from one of the project’s prerequisite repositories. But it can be a stub — a package that does not
contain any source code and that can only be "obtained" from the system.

The purpose of a stub is to provide the build2 package to system package name and version
mapping, in case it cannot be deduced automatically. See Package Version and *-{name,
version, to-downstream-version} package manifest values for details.

If we would like to use a completely unpackaged dependency, then, for the supported system
package manager case, we will need to pass the ——sys—no-stub option:

$ bdep sync —--sys—-install —--sys—-no-stub ?sys:libsqglite3

And for the unsupported system package manager case we will have to specify the system version
explicitly either as the actual version or as the * wildcard, for example:

$ bdep sync ?sys:libsglite3/* ?sys:libcurl/7.47.0

The reason at least a stub is required by default is due to the automatic mapping between
build2 and system packages often being unreliable.

1.10 Using Unpackaged Dependencies

Generally, we will have a much better time if all our dependencies come as build2 packages.
Unfortunately, this won’t always be the case in the real world and some libraries that you may
need will use other build systems.

There is also the opposite problem: you may want to consume a library that uses build2 in a
project that uses a different build system. For that refer to [Package Consumption}

The standard way to consume such unpackaged libraries is to install them (not necessarily into a
system-default location like /usr/local) so that we have a single directory with their headers
and a single directory with their libraries. We can then configure our builds to use these directo-
ries when searching for imported libraries.

Needless to say, none of the build2 dependency management mechanisms such as version
constraints or upgrade/downgrade will work on such unpackaged libraries. You will have to
manage all these yourself manually.

46 The build2 Toolchain Introduction Revision 0.18, June 2025

1.10 Using Unpackaged Dependencies

Let’s see how this all works in an example. Say, we want to use 1 ibextra that uses a different
build system in our hello project. The first step is to manually build and install this library for
each build configuration that we have. For example, we can install all such unpackaged libraries
into unpkg—gcc and unpkg-clang, next to our hello—gcc and hello-clang build
configurations:

$ 1s

hello/
hello—gcc/
unpkg-gcc/
hello-clang/
unpkg-clang/

If you would like to try this out but don’t have a suitable 1ibextra, you can create and install
one with these commands:

$ bdep new -1 c++ -t 1lib libextra -C libextra-gcc cc config.cxx=g++
$ b install: libextra-gcc/ config.install.root=/tmp/unpkg-gcc

If we look inside one of these unpkg—* directories, we should see something like this:

$ tree unpkg-gcc
unpkg-gcc/
| -- include/
| -—— libextra/
| +—— extra.hxx
«—— 1lib/

|—— libextra.a

|—— libextra.so

-—— pkgconfig/

-—— libextra.pc

Notice that 1ibextra.pc —it’s a pkg—config (1) file that contains any extra compile and
link options that may be necessary to consume this library. This is the de facto standard for build
systems to communicate library build information to each other and is today supported by most
commonly used implementations. Speaking of build2, it both recognizes .pc files when
consuming third-party libraries and automatically produces them when installing its own.

While this may all seem foreign to Windows users, there is nothing platform-specific about this
approach, including support for pkg—config, which, at least in case of build2, works equally
well on Windows.

Next, we create a build configuration and configure it to use one of these unpkg—* directories
(replace . . . with the absolute path):

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++ \
config.cc.poptions=-I.../unpkg—gcc/include \
config.cc.loptions=-L.../unpkg—-gcc/lib

Revision 0.18, June 2025 The build2 Toolchain Introduction 47

2 Canonical Project Structure

If using Visual Studio, replace —I with /I and -L with /LIBPATH:.

Alternatively, if you want to reconfigure one of the existing build configurations, then simply edit
the build/config.build file (thatis, hello-gcc/build/config.build in our case)
and adjust the poptions and loptions values. Or you can use the build system directly to
reconfigure the build configuration (see b (1) for details):

b configure: ../hello-gcc/ \
config.cc.poptions+=-I.../unpkg-gcc/include \
config.cc.loptions+=-L.../unpkg-gcc/lib

If all the unpackaged libraries included . pc files, then the —L alone would have been sufficient.
However, it doesn’t hurt to also add - I, for good measure.

Once this is done, adjust your buildfile to import the library:

import libs += libextra%$lib{extra}

And your source code to use it:

#include <libextra/extra.hxx>

Notice that we don’t add the corresponding depends value to the project’s manifest since
this library is not a package. However, it is a good idea to instead add a requires entry as a
documentation to users of our project.

2 Canonical Project Structure

The goal of establishing a canonical build2 project structure is to create an ecosystem of pack-
ages that can coexist, are easy to comprehend by both humans and tools, scale to complex,
real-world requirements, and, last but not least, are pleasant to work with.

Here by canonical we mean a structure that on balance achieves these objectives in the simplest
possible way. However, not everyone agrees with where that balance should be struck. As a
result, this structure is only recommended and build2 is flexible enough to support various
arrangements used in modern C and C++ projects. Furthermore, the bdep—new (1) command
provides a number of customization options and chances are you will be able to create your
preferred layout automatically. See SOURCE LAYOUT for more information and examples.

This canonical structure is primarily meant for a package — a single library or program (or, some-
times, a collection of related libraries or programs) with a specific and well-defined function.
While it may be less suitable for more elaborate, multi-library/program end-products that are not
meant to be packaged, most of the recommendations discussed below would still apply. Often-
times, you would start with a canonical project and expand from there. Note also that while the
discussion below focuses on C++, most of it applies equally to C projects.

48 The build2 Toolchain Introduction Revision 0.18, June 2025

2 Canonical Project Structure

We often find ourselves factoring common functionality out of such end-products and into sepa-
rate packages, for example, in order to be reused in another end-product. In this light, it can be
helpful to organize a new end-product project as a composition of individual packages or source
subdirectories that follow the canonical structure. The bdep-new(l) —--package and
——source modes can be used to automate this process.

By default, projects created by the bdep—new (1) command have the canonical structure. The
overall layouts for executable (-t exe) and library (-t 1ib) projects are presented below.

<name>/
—-— build/
—— <name>/
|—— <name>.Cxx
| -— <name>.test.cxx
|- testscript
+—— buildfile
-— buildfile
—-— manifest
-—— README .md

lib<name>/

—— build/

—— lib<name>/
|—— <name>.hxx
|—— <name>.CxXx
| -— <name>.test.cxx
|—— export.hxx
|—— version.hxx.in
+—— buildfile

-— tests/

—-— buildfile

—-— manifest

-—— README .md

The canonical structure for both project types is discussed in detail in the following sections with
a short summary of the key points presented below.

® Header and source files (or module interface and implementation files) are next to each
other (no include/ and src/ split).

® Headers are included with <> and contain the project name as a subdirectory prefix, for
example, <libhello/hello.hxx>.

® Header and source file extensions are either . hpp/.cpp or .hxx/.cxx (.mpp or .mxx
for module interfaces).

® No special characters other than _ and — in file names with . only used for extensions.

Let’s start with naming our projects: A project name should only contain ASCII alphabetic char-
acters ([a—-zA-Z1]), digits ([0—91), underscores (_), plus/minus (+-), and dots (.) as well as be
at least two characters long (see Package Name for additional restrictions and recommendations).

Revision 0.18, June 2025 The build2 Toolchain Introduction 49

2.1 Source Subdirectory

If a project consists of a library and an executable, then they should be split into separate pack-
ages (see [Developing Multiple Packages and Projects| for some common arrangements). In this
case, by convention, the library name should start with the 1ib prefix, for example, 1ibhello
and hello. It is also recommended (but not required) to follow this convention in new projects,
even if there are no plans to have a related executable.

Using the 1ib prefix consistently offers several benefits:

1. Itis clear from the name to both humans and tools what kind of project it is.

2. All libraries are consistently named (as opposed to some with the 1ib prefix and some
without).

3. All library names are future-proofed to co-exist with executables. If one starts with a library
without the 1ib prefix but later decides to add an executable, renaming the library would
unlikely be an option. And there is no need to spend mental energy on thinking whether it’s
possible that an executable will be added later.

The project’s root directory should contain the root buildfile and package manifest file.
Other recommended top-level subdirectory names are examples/ (for libraries it is normally a
subproject like tests/, as discussed below), doc/, and etc/ (sample configurations, scripts,
third-party contributions, etc). See also build system Project Structure for details on the
build-related files (buildfile) and subdirectories (build/) as well as the available alterna-
tive naming scheme.

2.1 Source Subdirectory

The project’s source code is placed into a subdirectory of the root directory named the same as
the project, for example, hello/hello/ or libhello/libhello/. It is called the
project’s source subdirectory.

There are several reasons for this layout: It implements the canonical inclusion scheme (discussed
below) where each header is prefixed with its project name as a subdirectory. It also has a
predictable name where users (and tools) can expect to find our project’s source code. Finally,
this layout prevents clutter in the project’s root directory which usually contains various other
files (like README, LICENSE) and directories (like doc/, tests/, examples/).

Another popular approach is to place public headers into the include/ subdirectory and source
files as well as private headers into src/. The cited advantage of this layout is the predictable
location (include/) that contains only the project’s public headers (that is, its API). This can
make the project easier to navigate and understand while harder to misuse, for example, by
including a private header.

50 The build2 Toolchain Introduction Revision 0.18, June 2025

2.1 Source Subdirectory

However, this split layout is not without drawbacks:

® Navigating between corresponding headers and sources is cumbersome. This affects editing,
grep’ing, as well as code browsing (for example, on GitHub).

® Implementing the canonical inclusion scheme would require an extra level of subdirectories
(for example, include/libhello/ and src/libhello/), which only amplifies the
previous issue.

® Supporting generated source code can be challenging: Source code generators rarely provide
support for writing headers and sources into different directories. Even if we can move
things around post-generation, build systems may not support this arrangement (for example,
build2 does not currently support target groups with members in different directories).

Also, the stated advantage of this layout — separation of public headers from private — is not as
clear cut as it may seem at first. The common assumption of the split layout is that only headers
from include/ are installed and, conversely, to use the headers in-place, all one has to do is
add —TI pointing to include/. On the other hand, it is common for public headers to include
private headers to, for example, call an implementation detail function in inline or template code
(note that the same applies to private modules imported in public module interfaces). Which
means such private (or probably now more accurately called implementation detail) headers have
to be placed in the include/ directory as well, perhaps into a subdirectory (such as
details/) or with a file name suffix (such as —impl) to signal to the user that they are still
"private". Needless to say, in an actively developed project, keeping track of which private
headers can still stay in src/ and which have to be moved to include/ (and vice versa) is a
tedious, error-prone task. As a result, practically, the split layout quickly degrades into the "all
headers in include/" arrangement which negates its main advantage.

It is also not clear how the split layout will translate to modularized projects. With modules, both
the interface and implementation (including non-inline/template function definitions) can reside
in the same file with a substantial number of C++ developers finding this arrangement appealing.
If a project consists of only such single-file modules, then include/ and src/ have effectively
become the same thing (note that there couldn’t be any "private" modules in src/ since there
would be nobody to import them). In a sense, we already have this situation with header-only
libraries except that, in the case of modules, calling the directory include/ would be an
anachronism.

To summarize, the split directory arrangement offers little benefit over the combined directory
layout, has a number of real drawbacks, and does not fit modularized projects well. In practice,
private headers are placed into include/, often either in a subdirectory or with a special file
name suffix, a mechanism that is readily available in the combined directory layout.

All headers within a project should be included using the <> style inclusion and contain the
project name as a subdirectory prefix. And all headers means all headers — public, private, or
implementation detail, in executables or in libraries.

Revision 0.18, June 2025 The build2 Toolchain Introduction 51

2.1 Source Subdirectory

As an example, let’s say we’ve added utility.hxx to our hello project. This is how it
should be included in hello. cxx:

// #include "utility.hxx" // Wrong.
// #include <utility.hxx> // Wrong.
// #include "../hello/utility.hxx" // Wrong.

#include <hello/utility.hxx>

Similarly, if we want to include hello.hxx from 1libhello, then the inclusion should look
like this:

#include <libhello/hello.hxx>

The problem with the " " style inclusion is if the header is not found relative to the including file,
most compilers will continue looking for it in the include search paths, the same as for <>. As a
result, if the header is not present in the right place (for example, because it was mistakenly not
listed as to be installed), chances are that a completely unrelated header with the same name will
be found and included. Needless to say, debugging situations like these is unpleasant.

Prefixing all inclusions with the project name as subdirectory also makes sure that headers with
common names (for example, utility.hxx) can coexist (for example, when installed into a
system-wide directory, such as /usr/include). The subdirectory prefix also plays an impor-
tant role in supporting auto-generated headers.

Note also that this header inclusion scheme is consistent with the module importation, for
example:

import hello.utility;

Finally, note that while adding the subdirectory prefix to the "" style inclusion (for example,
"libhello/hello.hxx") will make finding an unrelated header unlikely, there is still a
possibility. And it is not clear why take the chance when there are no benefits. So let’s imagine
the " " style inclusion does not exist and we will all have a much better time.

If you have to disregard every rule and recommendation in this section but one, for example,
because you are working on an existing library, then at minimum insist on this: public header
inclusions must use the library name as a subdirectory prefix.

The project’s source subdirectory can have subdirectories of its own, for example, to organize the
code into components. Naturally, header inclusions will need to contain such subdirectories, for
example <libhello/core/hello.hxx>. When the project’s headers are installed (for
example, into /usr/include), this subdirectory hierarchy is automatically recreated.

52 The build2 Toolchain Introduction Revision 0.18, June 2025

2.1 Source Subdirectory

If you would like to separate public API headers/modules from implementation details, the
convention is to place them into the details/ subdirectory. For example:

libhello/
-—— libhello/
| -— details/
| -—— utility.hxx

If a project has truly private headers (for example, proprietary code) that must be clearly sepa-
rated from public and implementation detail headers, then they can be placed into the private/
subdirectory, next to details/. In a sense, this arrangement mimics the C++
public/protected/private member access.

It is recommended that you still install the implementation detail headers and modules for the
reasons discussed above. If, however, you would like to disable their installation, you can add the
following line to your source subdirectory buildfile:

details/hxx{*}: install = false

If you are creating a family of libraries with a common name prefix, then it may make sense to
use a nested source subdirectory layout with a common top-level directory. As an example, let’s
say we have the libstud-path and libstud-url libraries that belong to the same
libstud family. Their source subdirectory layouts could look like this:

libstud-path/
+—— libstud/
-—— path/
|—— path.hxx
|—— path-io.hxx
- ..

+—— buildfile

libstud-url/
+—— libstud/
«—— url/
|—— url.hxx
|—— url-io.hxx

+—— buildfile

With the header inclusion paths adjusted accordingly:

#include <libstud/path/path.hxx>
#include <libstud/url/url.hxx>

The bdep—new (1) command provides the subdir project type sub-option that allows us to
customize the source subdirectory within a project. For example:

Revision 0.18, June 2025 The build2 Toolchain Introduction 53

2.2 Source Naming

$ bdep new -1 c++ -t lib, subdir=libstud/path libstud-path

2.2 Source Naming

When naming source files, only use ASCII alphabetic characters, digits, as well as _ (underscore)
and — (minus). Use . (dot) only for extensions, that is, trailing parts of the name that classify your
files. Examples of good names:

SmallVector.hxx
small-vector.hxx
small_vector.hxx
small-vector.test.cxx

Examples of bad names:

small+vector.hxx
small.vector.hxx

If you are using _ or — as word separators in filesystem names, pick one and use it consistently
throughout the project.

The C source file extensions are always .h/.c. The two alternative C++ source file extension
schemes are . ?pp and . ?xx:

file .?Pp . ?x%XX
header .hpp .hxx
module .Mmpp .mxx
inline Jdpp Lixx
template .tpp . txx
source .CpPp .CXX

The .mxx/.mpp extension is for the module interface translation units with module implementa-
tion units (if any) using the . cxx/. cpp extension. If both are present, then it makes sense to use
the same base name, similar to headers. For example:

hello-core.mxx
hello-core.cxx

The use of inline and template files is a matter of taste. If used, they are included at the end of the
header/module files and contain definitions of inline and non-inline template functions, respec-
tively. The . ?xx/. ?pp files with the same name (or, sometimes, name prefix) are assumed to be
related and are collectively called a module. This term is meant to correspond directly to a C++
module.

By default the bdep—new (1) command uses the naming . ?xx scheme. To use . ?pp instead,
pass -t c++, cpp.

54 The build2 Toolchain Introduction Revision 0.18, June 2025

2.3 Source Contents

There are several reasons not to "reuse"” the .h C header extension for C++ files:

® There can be a need for both C and C++ headers for the same module.
® [t allows tools to accurately determine the language from the file name.
® [t is easier to search for C++ source code using wildcard patterns (* . ?pp).

The last two reasons are also why headers without extensions are probably not worth the trouble.

Source files corresponding to C++ modules need to embed a sufficient amount of "module name
tail" in their names to unambiguously resolve all the modules used in a project. When deriving
file names from C++ module names, . (dot) should be replaced with either _ (underscore), —
(minus), a case change, or a directory separator, according to your project’s file naming scheme.
For example, if our 1ibhello had two modules, hello.core and hello.extra, then their
interface units could be named as follows:

hello-core.mxx
hello-extra.mxx

hello_core.mxx
hello_extra.mxx

HelloCore.mxx
HelloExtra.mxx

hello/core.mxx
hello/extra.mxx

core.mxx
extra.mxx

As discussed in the next section, public module names should start with the project name and for
such modules it is customary to omit this first component from file names (the last variant in the
above example). See also Building Modules for a more detailed discussion of the module name to
file name mapping.

2.3 Source Contents

Let’s now move inside our source files. All macros defined by a project, such as include guards,
version and symbol export macros, etc., must all start with the project name (including the 1ib
prefix for libraries), for example LIBHELLO_VERSION. Similarly, the library’s namespace and
module names (both public and implementation detail) should all start with the library name but
without the 11ib prefix. For example:

Revision 0.18, June 2025 The build2 Toolchain Introduction 55

2.4 Tests

// libhello/hello.mxx
export module hello.core;

namespace hello

{

}

An executable project may use a namespace (in which case it is natural to name it after the
project) and its (private) modules shouldn’t be qualified with the project name (in order not to
clash with similarly named modules from the corresponding library, if any). A library may also
have private modules in which case they shouldn’t be qualified either.

Hopefully by now the recommendation for the 1ib prefix should be easy to understand: often-
times executables and libraries come in pairs, for example hello and 1libhello, with the
reusable functionality being factored out from the executable into the library. It is natural to want
to use the same name stem (hello in our case) for both.

The above naming scheme (with the 1ib prefix present in some names but not others) is care-
fully chosen to allow such library/executable pairs to coexist and be used together without too
much friction. For example, both the library and executable can have a header called
utility.hxx with the executable being able to include both and even get the "merged" func-
tionality without extra effort (since they use the same namespace):

// hello/hello.cxx

#include <hello/utility.hxx>
#include <libhello/utility.hxx>

namespace hello

{

// Contains names from both utilities.

}

A canonical library project contains two special headers: export .hxx (or export .hpp) that
defines the library’s symbol exporting macro as well as version.hxx (or version.hpp)
that defines the library’s version macros (see version Module for details).

2.4 Tests

A project may have unit and/or functional/integration tests. Unit tests exercise each module’s
(potentially private) functionality in isolation. In contrast, functional/integration tests exercise the
project via its public API, just like the real users of the project would.

56 The build2 Toolchain Introduction Revision 0.18, June 2025

2.4 Tests

A source file that implements a module’s unit tests should be placed next to that module’s files
and be called with the module’s name plus the .test second-level extension. It is expected to
implement an executable (that is, define main ()). If a module uses Testscript for unit testing,
then the corresponding file should be called with the module’s name plus the
.test.testscript extension. For example:

libhello/
+—— libhello/
|-- hello.hxx
|—— hello.cxx
|—— hello.test.cxx
-—— hello.test.testscript

All source files (that is, headers, modules, etc) with the .test second-level extension are
assumed to belong to unit tests and are automatically excluded from the library/executable
sources.

A library’s functional/integration tests should go into the tests/ subdirectory. Each such test
should reside in a separate subdirectory, potentially organized into nested subdirectories (for
instance, to correspond to the source subdirectory components). For example, if we were creating
an XML parsing and serialization library, then our tests/ could have the following layout:

tests/
-— basics/
|—— driver.cxx
+—— buildfile
—-— parser/
|-- pull/
| |—— driver.cxx
| -—— buildfile
-—— push/
|—— driver.cxx
+—— buildfile
+—— serializer/

In the canonical library project created by bdep-new the tests/ subdirectory is an unnamed
subproject (in the build system terms). This allows us to build and run tests against an installed
version of the library (see Testing for more information on the contents of this directory).

The build2 CI implementation will automatically perform the installation test if a project
contains the test s/ subproject. See bbot Worker Logic for details.

By default executable projects do not have the tests/ subprojects instead placing integration
tests next to the source code (the testscript file; see The build2 Testscript Language for
details). However, if desired, executable projects can have the tests/ subproject, the same as
libraries.

Revision 0.18, June 2025 The build2 Toolchain Introduction 57

2.5 Build Output

By default projects created by bdep—new include support for functional/integration testing but
exclude support for unit testing. These defaults, however, can be overridden with no-tests and
unit-tests options, respectively. For example:

$ bdep new -1 c++ -t lib,unit-tests libhello

The rationale behind these defaults is that if a functionality can be tested through the public API,
then we should generally prefer integration to unit testing. And in simple projects the entire func-
tionality is often exposed through the public API. At the same time, support for unit testing adds
extra complexity to the build infrastructure. Note also that it is fairly straightforward to add
support for unit testing at a later stage. The relevant build logic is localized in the source subdi-
rectory buildfile so you can simply generate a new project with unit tests enabled and copy
over the relevant parts.

2.5 Build Output

There are no bin/ or obj/ subdirectories: build output (object files, libraries, executables, etc)
go into a parallel directory structure (in case of an out of source build) or next to the sources (in
case of an in source build). See Output Directories and Scopes for details on in and out of source
builds.

Projects managed with bdep (1) are always built out of source. However, by default, the source
directory is configured as forwarded to one of the out of source builds. This has two effects: we
can run the build system driver b (1) directly in the source directory and certain "interesting"
targets (such as executables, documentation, test results, etc) will be automatically backlinked to
the source directory (see Configuration for details on forwarded configurations). The following
listing illustrates this setup for our he1l1lo project (executables are marked with *):

hello—-gcc/
hello/ > -—— hello/
| -- build/ ~~> | -- build/
-—— hello/ > -—— hello/
|-- hello.cxx |-- hello.o
-—— hello -=> -—— *hello

The result is an as-if in source build with all the benefits (such as having both source and relevant
output in the same directory) but without any of the drawbacks (such as the inability to have
multiple builds or source directory cluttered with object files).

The often cited motivation for placing executables into bin/ is that in many build systems it is
the only way to make things runnable in a reasonably cross-platform manner. The major draw-
back of this arrangement is the need for unique executable names which is especially constraining
when writing tests where it is convenient to call the executable just driver or test.

58 The build2 Toolchain Introduction Revision 0.18, June 2025

2.5 Build Output

In build2 there is no such restriction and all executables can run in-place. This is achieved with
rpath which is emulated with DLL assemblies on Windows.

Revision 0.18, June 2025 The build2 Toolchain Introduction 59

	Preface
	1 Getting Started Guide
	1.1 Hello, World
	1.2 Package Repositories
	1.3 Adding and Removing Dependencies
	1.4 Upgrading and Downgrading Dependencies
	1.5 Build-Time Dependencies and Linked Configurations
	1.6 Versioning and Release Management
	1.7 Developing Multiple Packages and Projects
	1.8 Package Consumption
	1.9 Using System-Installed Dependencies
	1.10 Using Unpackaged Dependencies

	2 Canonical Project Structure
	2.1 Source Subdirectory
	2.2 Source Naming
	2.3 Source Contents
	2.4 Tests
	2.5 Build Output

