
The build2 Toolchain Installation and

Upgrade

Copyright © 2014-2025 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.18, June 2025

This revision of the document describes the build2 toolchain 0.18.x series.

Table of Contents

................... 1Preface

.................. 11 Introduction

.............. 22 Bootstrapping on Windows

.......... 42.1 Bootstrapping on Windows with MSVC

.......... 92.2 Bootstrapping on Windows with Clang

.......... 132.3 Bootstrapping on Windows with MinGW

.............. 183 Bootstrapping on Mac OS X

............... 184 Bootstrapping on UNIX

.................. 245 Upgrading

iRevision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

Table of Contents

Preface

The recommended way to install and upgrade the build2 toolchain in most circumstances is

using the automated install scripts as described on the Install page. This document describes the

manual installation and upgrade process which offers greater control that can be helpful in situa­

tions where the automated scripts cannot be used (packaging for system package managers,

unsupported by the install scripts platform/compiler, etc).

1 Introduction

One of the primary goals of the build2 toolchain is to provide a uniform build interface across

all the platforms and compilers. As a result, if you already have the toolchain installed and would

like to upgrade to a newer version, then there is a single set of upgrade instructions for all the

platforms.

If, however, you need to install the toolchain for the first time, then it has to be bootstrapped and

that process is platform-specific. The rest of this section discusses a few general bootstrap consid­

erations and then directs you to the appropriate platform-specific instructions.

In the rest of this guide we use the $ symbol for a UNIX shell prompt and > for the Windows

command prompt. Similarly, we use \ for UNIX command line continuations and ^ for

Windows. Usually you should be able to copy and paste (sans the prompt) example commands in

order to execute them but sometimes you might need to change a thing or two (for example,

replace X.Y.Z with the actual version). Once we are able to use the build2 toolchain, the

command line interface becomes regular and we usually only show the UNIX version of the

commands. In this case making a Windows version is a simple matter of adjusting paths and, if

used, line continuations.

The build2 toolchain requires a C++14 compiler. From the commonly-used options, GCC 4.9,

Clang 3.7, and MSVC 14 (2015) Update 3 or any later versions of these compilers should work.

Note that the C++ compiler that you use to build the build2 toolchain and the one that you will

use to build your projects need not be the same. For example, if you are using MSVC 12 (2013)

(which cannot build build2), it is perfectly fine to get a minimal MinGW toolchain and use that

to build build2; you will still be able to use MSVC 12 to build your own code.

At the high level, the bootstrap process involves the following 5 steps.

1. Bootstrap, Phase 1

First, a minimal build system executable is built using provided shell scripts/batch files or a

GNU makefile. The result is only guaranteed to be able to rebuild the build system itself.

1Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

Preface

https://build2.org/install.xhtml

2. Bootstrap, Phase 2

Then, the build system is rebuilt with static libraries. The result is only guaranteed to be able

to build the build system and the package manager.

3. Stage

At this step the build system and package manager are built with shared libraries and then

staged.

4. Install

Next, the staged tools are used to build and install the entire toolchain from the package

repository with the package manager.

5. Clean

Finally, the staged at step 3 tools are uninstalled.

The end result of the bootstrap process is the installed toolchain as well as the package manager

configuration (created at step 4) that can be used to upgrade to newer versions.

You can skip step 4 and instead install at step 3 if for some reason you prefer not to build from

packages (for example, because the machine is offline).

For Windows, if you are using either MSVC, Clang, or MinGW, continue with Bootstrapping on

Windows. If using WSL, MSYS, or Cygwin, then instead refer to Bootstrapping on UNIX.

For Mac OS X, continue with Bootstrapping on Mac OS X.

For other UNIX-like operating systems (GNU/Linux, FreeBSD, etc; this also includes WSL,

MSYS, and Cygwin), continue with Bootstrapping on UNIX.

2 Bootstrapping on Windows

The following instructions are for bootstrapping build2 from the Windows command prompt

with either MSVC, Clang (targeting the MSVC runtime), or MinGW. If you are using any kind of

UNIX emulation layer (for example, WSL, MSYS, or Cygwin) and already have a UNIX shell

with standard utilities, then you most likely should follow Bootstrapping on UNIX instead.

Note that if you continue with these instructions but you already have your own installation of

MSYS and/or MinGW, then make sure that their paths are not in your PATH environment vari­

able when building and using build2 since they may provide conflicting DLLs.

The build2 toolchain on Windows requires a set of extra utilities (install, diff, curl,

tar, etc). These are provided by the build2-baseutils package (see the README file

inside for details). Normally, the build2 toolchain itself is installed into the same directory as

the utilities in order to produce the combined installation.

Revision 0.18, June 20252 The build2 Toolchain Installation and Upgrade

2 Bootstrapping on Windows

To build on Windows you will need either MSVC 14 Update 3 or later, Clang 8 or later (either

bundled with MSVC or installed separately), or MinGW GCC 4.9 or later. If you don’t already

have a suitable C++ compiler, then you can use the build2-mingw package which provides a

minimal MinGW-W64 GCC distribution (see the README file inside for details). If used, then it

should be unpacked into the same directory as build2-baseutils.

If using your own MinGW GCC installation, make sure it is configured with the posix thread­

ing model (this is currently the only configuration that implements C++11 threads; run g++ -v
to verify).

Only 64-bit variants of the baseutils and mingw packages are provided and they must match

the width of the build2 toolchain. Note also that the 64-bit build2 toolchain can be used to

build 32-bit applications without any restrictions.

To bootstrap on Windows with either MSVC, Clang, or MinGW start with the following common

steps:

1. Open Command Prompt

Start the standard Windows Command Prompt. If you plan to build with MSVC or Clang

bundled with MSVC, then you may go ahead and start the Visual Studio "x64 Native Tools

Command Prompt" (or wait for MSVC/Clang-specific instructions).

2. Create Build Directory

You will want to keep this directory around in order to upgrade to new toolchain versions in

the future. In this guide we use C:\build2-build\ as the build directory and

C:\build2\ as the installation directory but you can use other paths.

> cd /D C:\
> mkdir build2-build
> cd build2-build

3. Download Archives

Download the following files as well as their .sha256 checksums from the Download

page:

build2-baseutils-X.Y.Z-x86_64-windows.zip
build2-mingw-X.Y.Z-x86_64-windows.tar.xz (if required)
build2-toolchain-X.Y.Z.tar.xz

Place everything into C:\build2-build\ (build directory).

4. Verify Archive Checksums

Verify archive checksums match (compare visually):

> type *.sha256
> for %f in (*.zip *.xz) do certutil -hashfile %f SHA256

3Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

2 Bootstrapping on Windows

https://build2.org/download.xhtml

5. Unpack build2-baseutils

Unpack the build2-baseutils-X.Y.Z-x86_64-windows.zip archive into C:\
using Windows Explorer (for example, copy the archive directory and then paste it). Rename

it to C:\build2\. This will be the toolchain installation directory.

6. Set PATH

Set the PATH environment variable and verify that the utilities are found and work:

> set "PATH=C:\build2\bin;%PATH%"
> where tar
> tar --version

7. Unpack build2-mingw (optional)

If required, unpack the build2-mingw-X.Y.Z-x86_64-windows.tar.xz archive

into C:\build2\:

> xz -d build2-mingw-X.Y.Z-x86_64-windows.tar.xz
> tar -xf build2-mingw-X.Y.Z-x86_64-windows.tar ^
 --one-top-level=C:\build2 --strip-components=1

Verify that the MinGW GCC is found and works:

> where g++
> g++ --version

8. Unpack build2-toolchain

Unpack the build2-toolchain-X.Y.Z.tar.xz archive and change to its directory:

> xz -d build2-toolchain-X.Y.Z.tar.xz
> tar -xf build2-toolchain-X.Y.Z.tar
> cd build2-toolchain-X.Y.Z

If building with MSVC, continue with Bootstrapping on Windows with MSVC.

If building with Clang, continue with Bootstrapping on Windows with Clang.

If building with MinGW, continue with Bootstrapping on Windows with MinGW.

2.1 Bootstrapping on Windows with MSVC

Continuing from Bootstrapping on Windows, if you have already started an appropriate Visual

Studio command prompt, then you can continue using it. Otherwise, start the Visual Studio "x64

Native Tools Command Prompt". Also set the PATH environment variable as on the previous

steps:

> set "PATH=C:\build2\bin;%PATH%"

Revision 0.18, June 20254 The build2 Toolchain Installation and Upgrade

2.1 Bootstrapping on Windows with MSVC

To build with MSVC you can either perform the following steps manually or, if after reviewing

the steps you are happy with using the defaults, run the build-msvc.bat batch file. It

performs (and echoes) the same set of steps as outlined below but only allows you to customize

the installation directory and a few other things (run build-msvc.bat /? for usage).

For example, you could run this batch file (from the above-mentioned command prompt) like

this:

> .\build-msvc.bat

Note that at about half way through (bpkg fetch at step 4 below) the script will stop and

prompt you to verify the authenticity of the repository certificate. To run the script unattended

you can specify the certificate fingerprint with the --trust option (see build-msvc.bat
/? for details).

The end result of the bootstrap process (performed either with the script or manually) is the

installed toolchain as well as the bpkg configuration in build2-toolchain-X.Y\ that can

be used to upgrade to newer versions. It can also be used to uninstall the toolchain:

> cd build2-toolchain-X.Y
> bpkg uninstall --all

Note that in both cases (manual or scripted bootstrap), if something goes wrong and you need to

restart the process, you must start with a clean toolchain source by unpacking it afresh from the

archive.

The rest of this section outlines the manual bootstrap process.

1. Bootstrap, Phase 1

First, we build a minimal build system with the provided bootstrap-msvc.bat batch

file. Normally, the only argument you will pass to this script is the C++ compiler to use but

there is also a way to specify compile options; run bootstrap-msvc.bat /? and see

the build2\INSTALL file for details.

> cd build2
> .\bootstrap-msvc.bat cl /w /MP8

> b\b-boot --version

2. Bootstrap, Phase 2

Then, we rebuild the build system with the result of Phase 1 linking libraries statically.

> b\b-boot config.cxx=cl config.bin.lib=static b\exe{b}
> move /y b\b.exe b\b-boot.exe

> b\b-boot --version

5Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

2.1 Bootstrapping on Windows with MSVC

3. Stage

At this step the build system and package manager are built with shared libraries and then

staged:

> cd .. # Back to build2-toolchain-X.Y.Z\

> build2\b\b-boot configure ^
 config.cxx=cl ^
 config.bin.lib=shared ^
 config.bin.suffix=-stage ^
 config.install.root=C:\build2 ^
 config.install.data_root=root\stage

> build2\b\b-boot install: build2\ bpkg\

The strange-looking config.install.data_root=root\stage means install data

files (as opposed to executable files) into the stage\ subdirectory of wherever

config.install.root points to (so in our case it will be C:\build2\stage\).

This subdirectory is temporary and will be removed in a few steps.

Verify that the toolchain binaries can be found and work (this relies on the PATH environ­

ment variable we have set earlier):

> where b-stage
C:\build2\bin\b-stage.exe

> where bpkg-stage
C:\build2\bin\bpkg-stage.exe

> b-stage --version
> bpkg-stage --version

At the next step we will use bpkg to build and install the entire toolchain. If for some

reason you prefer not to build from packages (for example, because the machine is offline),

then you can convert this step into a local installation and skip the rest of the steps.

To perform a local installation with the build-msvc.bat batch file, pass the --local

option.

To perform a local installation you will need to change the configure and install
command lines above along these lines (see also a note on the following step about only

building shared libraries, toolchain executables prefix/suffix, etc):

Revision 0.18, June 20256 The build2 Toolchain Installation and Upgrade

2.1 Bootstrapping on Windows with MSVC

> build2\b\b-boot configure ^
 config.config.hermetic=true ^
 config.cxx=cl ^
 config.cc.coptions=/O2 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

> build2\b\b-boot install: build2\ bpkg\ bdep\

You will also need to build and install the standard build system modules:

> b install: !config.install.scope=project libbuild2-*\

To verify the build system modules installation you can load them with the following

command:

> b noop: tests\libbuild2-*\

To uninstall such a local installation, run:

> b uninstall: build2\ bpkg\ bdep\ libbuild2-*\

4. Install

Next, we use the staged tools to build and install the entire toolchain from the package

repository with the bpkg package manager. First, we create the bpkg configuration. The

configuration values are pretty similar to the previous step and you may want/need to make

similar adjustments.

> cd .. # Back to build2-build\
> md build2-toolchain-X.Y
> cd build2-toolchain-X.Y

> bpkg-stage create ^
 cc ^
 config.config.hermetic=true ^
 config.cxx=cl ^
 config.cc.coptions=/O2 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

The above configuration will only build shared libraries. If you would like to build both

shared and static, remove config.bin.lib=shared.

To add a custom prefix/suffix to the toolchain executables names, add

config.bin.exe.prefix=... and/or config.bin.exe.suffix=....

The config.config.hermetic=true configuration variable in the above command

makes sure the embedded ~host and ~build2 configurations include the current environ­

ment. This is especially important for ~build2 which is used to dynamically build and

load ad hoc recipes and build system modules and must therefore match the environment

7Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

2.1 Bootstrapping on Windows with MSVC

that was used to build the build system itself.

Next, we add the package repository, build, and install:

> bpkg-stage add https://pkg.cppget.org/1/alpha
> bpkg-stage fetch
> bpkg-stage build --for install build2 bpkg bdep
> bpkg-stage install --all

By default bpkg will build the latest available version of each package. You can, however,

specify the desired versions explicitly, for example:

> bpkg-stage build --for install build2/X.Y.Z bpkg/X.Y.Z bdep/X.Y.Z

To verify the result, run:

> where b
C:\build2\bin\b.exe

> where bpkg
C:\build2\bin\bpkg.exe

> where bdep
C:\build2\bin\bdep.exe

> b --version
> bpkg --version
> bdep --version

Finally, we build and install the standard build system modules:

> bpkg build --for install libbuild2-autoconf libbuild2-kconfig
> bpkg install !config.install.scope=project ^
 --all-pattern=libbuild2-*

To get a list of the standard pre-installed build system modules in a specific version of the

toolchain, run:

> cd ..\build2-toolchain-X.Y.Z
> dir /B libbuild2-*

To verify the build system modules installation you can load them with the following

command:

> b noop: ..\build2-toolchain-X.Y.Z\tests\libbuild2-*\

5. Clean

The last thing we need to do is uninstall the staged tools:

Revision 0.18, June 20258 The build2 Toolchain Installation and Upgrade

2.1 Bootstrapping on Windows with MSVC

> cd ..\build2-toolchain-X.Y.Z # Back to bootstrap.
> b uninstall: build2\ bpkg\

2.2 Bootstrapping on Windows with Clang

Continuing from Bootstrapping on Windows, there are two common ways to obtain Clang on

Windows: bundled with the MSVC installation or as a separate installation. If you are using a

separate installation, then the Clang compiler is most likely already in your PATH environment

variable and, after confirming this is the case, you can continue using the command prompt

started on the previous step:

> where clang++

Otherwise, if you are using Clang that is bundled with MSVC (and haven’t manually added its

compiler to PATH), start the Visual Studio "x64 Native Tools Command Prompt" and set the

PATH environment variable:

> set "PATH=C:\build2\bin;%VCINSTALLDIR%Tools\Llvm\bin;%PATH%"
> where clang++

To build with Clang you can either perform the following steps manually or, if after reviewing

the steps you are happy with using the defaults, run the build-clang.bat batch file. It

performs (and echoes) the same set of steps as outlined below but only allows you to customize

the installation directory and a few other things (run build-clang.bat /? for usage).

For example, you could run this batch file (from the above-mentioned command prompt) like

this:

> .\build-clang.bat

Note that at about half way through (bpkg fetch at step 4 below) the script will stop and

prompt you to verify the authenticity of the repository certificate. To run the script unattended

you can specify the certificate fingerprint with the --trust option (see build-clang.bat
/? for details).

The end result of the bootstrap process (performed either with the script or manually) is the

installed toolchain as well as the bpkg configuration in build2-toolchain-X.Y\ that can

be used to upgrade to newer versions. It can also be used to uninstall the toolchain:

> cd build2-toolchain-X.Y
> bpkg uninstall --all

Note that in both cases (manual or scripted bootstrap), if something goes wrong and you need to

restart the process, you must start with a clean toolchain source by unpacking it afresh from the

archive.

9Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

2.2 Bootstrapping on Windows with Clang

The rest of this section outlines the manual bootstrap process.

1. Bootstrap, Phase 1

First, we build a minimal build system with the provided bootstrap-clang.bat batch

file. Normally, the only argument you will pass to this script is the C++ compiler to use but

there is also a way to specify compile options; run bootstrap-clang.bat /? and see

the build2\INSTALL file for details.

> cd build2
> .\bootstrap-clang.bat clang++ -m64 -w

> b\b-boot --version

Alternatively, we can use the bootstrap.gmake GNU makefile to bootstrap in parallel:

> cd build2
> mingw32-make -f bootstrap.gmake -j 8 CXX=clang++ "CXXFLAGS=-m64 -w"

> b\b-boot --version

2. Bootstrap, Phase 2

Then, we rebuild the build system with the result of Phase 1 linking libraries statically.

> b\b-boot ^
 "config.cxx=clang++ -m64" ^
 config.bin.lib=static ^
 b\exe{b}

> move /y b\b.exe b\b-boot.exe

> b\b-boot --version

3. Stage

At this step the build system and package manager are built with shared libraries and then

staged:

> cd .. # Back to build2-toolchain-X.Y.Z\

> build2\b\b-boot configure ^
 "config.cxx=clang++ -m64" ^
 config.bin.lib=shared ^
 config.bin.suffix=-stage ^
 config.install.root=C:\build2 ^
 config.install.data_root=root\stage

> build2\b\b-boot install: build2\ bpkg\

The strange-looking config.install.data_root=root\stage means install data

files (as opposed to executable files) into the stage\ subdirectory of wherever

config.install.root points to (so in our case it will be C:\build2\stage\).

This subdirectory is temporary and will be removed in a few steps.

Revision 0.18, June 202510 The build2 Toolchain Installation and Upgrade

2.2 Bootstrapping on Windows with Clang

Verify that the toolchain binaries can be found and work (this relies on the PATH environ­

ment variable we have set earlier):

> where b-stage
C:\build2\bin\b-stage.exe

> where bpkg-stage
C:\build2\bin\bpkg-stage.exe

> b-stage --version
> bpkg-stage --version

At the next step we will use bpkg to build and install the entire toolchain. If for some

reason you prefer not to build from packages (for example, because the machine is offline),

then you can convert this step into a local installation and skip the rest of the steps.

To perform a local installation with the build-clang.bat batch file, pass the --local

option.

To perform a local installation you will need to change the configure and install
command lines above along these lines (see also a note on the following step about only

building shared libraries, toolchain executables prefix/suffix, etc):

> build2\b\b-boot configure ^
 config.config.hermetic=true ^
 "config.cxx=clang++ -m64" ^
 config.cc.coptions=-O2 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

> build2\b\b-boot install: build2\ bpkg\ bdep\

You will also need to build and install the standard build system modules:

> b install: !config.install.scope=project libbuild2-*\

To verify the build system modules installation you can load them with the following

command:

> b noop: tests\libbuild2-*\

To uninstall such a local installation, run:

> b uninstall: build2\ bpkg\ bdep\ libbuild2-*\

4. Install

Next, we use the staged tools to build and install the entire toolchain from the package

repository with the bpkg package manager. First, we create the bpkg configuration. The

configuration values are pretty similar to the previous step and you may want/need to make

similar adjustments.

11Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

2.2 Bootstrapping on Windows with Clang

> cd .. # Back to build2-build\
> md build2-toolchain-X.Y
> cd build2-toolchain-X.Y

> bpkg-stage create ^
 cc ^
 config.config.hermetic=true ^
 "config.cxx=clang++ -m64" ^
 config.cc.coptions=-O2 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

The above configuration will only build shared libraries. If you would like to build both

shared and static, remove config.bin.lib=shared.

To add a custom prefix/suffix to the toolchain executables names, add

config.bin.exe.prefix=... and/or config.bin.exe.suffix=....

The config.config.hermetic=true configuration variable in the above command

makes sure the embedded ~host and ~build2 configurations include the current environ­

ment. This is especially important for ~build2 which is used to dynamically build and

load ad hoc recipes and build system modules and must therefore match the environment

that was used to build the build system itself.

Next, we add the package repository, build, and install:

> bpkg-stage add https://pkg.cppget.org/1/alpha
> bpkg-stage fetch
> bpkg-stage build --for install build2 bpkg bdep
> bpkg-stage install --all

By default bpkg will build the latest available version of each package. You can, however,

specify the desired versions explicitly, for example:

> bpkg-stage build --for install build2/X.Y.Z bpkg/X.Y.Z bdep/X.Y.Z

To verify the result, run:

> where b
C:\build2\bin\b.exe

> where bpkg
C:\build2\bin\bpkg.exe

> where bdep
C:\build2\bin\bdep.exe

> b --version
> bpkg --version
> bdep --version

Revision 0.18, June 202512 The build2 Toolchain Installation and Upgrade

2.2 Bootstrapping on Windows with Clang

Finally, we build and install the standard build system modules:

> bpkg build --for install libbuild2-autoconf libbuild2-kconfig
> bpkg install !config.install.scope=project ^
 --all-pattern=libbuild2-*

To get a list of the standard pre-installed build system modules in a specific version of the

toolchain, run:

> cd ..\build2-toolchain-X.Y.Z
> dir /B libbuild2-*

To verify the build system modules installation you can load them with the following

command:

> b noop: ..\build2-toolchain-X.Y.Z\tests\libbuild2-*\

5. Clean

The last thing we need to do is uninstall the staged tools:

> cd ..\build2-toolchain-X.Y.Z # Back to bootstrap.
> b uninstall: build2\ bpkg\

2.3 Bootstrapping on Windows with MinGW

Continuing from Bootstrapping on Windows, if you are using your own MinGW distribution,

then the resulting build2 binaries will most likely require a number of DLLs in order to run. It

is therefore recommended that you copy the following files from your MinGW bin\ subdirec­

tory to C:\build2\bin\ (* in the last name will normally be dw2-1, seh-1, or sjlj-1):

libwinpthread-1.dll
libstdc++-6.dll
libgcc_s_*.dll

To build with MinGW you can either perform the following steps manually or, if after reviewing

the steps, you are happy with using the defaults, run the build-mingw.bat batch file. It

performs (and echoes) the same set of steps as outlined below but only allows you to customize

the compiler, installation directory, and a few other things (run build-mingw.bat /? for

usage).

For example, if your MinGW distribution is in C:\mingw\, then you could run it (from the

command prompt that we have started earlier) like this:

> .\build-mingw.bat C:\mingw\bin\g++

13Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

2.3 Bootstrapping on Windows with MinGW

If you are using the build2-mingw package then you should be able to use just g++ for the

compiler:

> .\build-mingw.bat g++

If you would like to speed the process up by compiling in parallel, then you can instruct

build-mingw.bat to bootstrap using GNU make (comes in the build2-mingw package),

for example:

> .\build-mingw.bat --make mingw32-make --make -j8 g++

Note that at about half way through (bpkg fetch at step 4 below) the script will stop and

prompt you to verify the authenticity of the repository certificate. To run the script unattended

you can specify the certificate fingerprint with the --trust option (see build-mingw.bat
/? for details).

The end result of the bootstrap process (performed either with the script or manually) is the

installed toolchain as well as the bpkg configuration in build2-toolchain-X.Y\ that can

be used to upgrade to newer versions. It can also be used to uninstall the toolchain:

> cd build2-toolchain-X.Y
> bpkg uninstall --all

Note that in both cases (manual or scripted bootstrap), if something goes wrong and you need to

restart the process, you must start with a clean toolchain source by unpacking it afresh from the

archive.

The rest of this section outlines the manual bootstrap process.

1. Bootstrap, Phase 1

First, we build a minimal build system with the provided bootstrap-mingw.bat batch

file. Normally, the only argument you will pass to this script is the C++ compiler to use but

there is also a way to specify compile options; run bootstrap-mingw.bat /? and see

the build2\INSTALL file for details.

> cd build2
> .\bootstrap-mingw.bat g++ -w -static

> b\b-boot --version

Alternatively, we can use the bootstrap.gmake GNU makefile to bootstrap in parallel:

> cd build2
> mingw32-make -f bootstrap.gmake -j 8 CXX=g++ CXXFLAGS=-w LDFLAGS=-static

> b\b-boot --version

Revision 0.18, June 202514 The build2 Toolchain Installation and Upgrade

2.3 Bootstrapping on Windows with MinGW

2. Bootstrap, Phase 2

Then, we rebuild the build system with the result of Phase 1 linking libraries statically.

> b\b-boot config.cxx=g++ config.bin.lib=static b\exe{b}
> move /y b\b.exe b\b-boot.exe

> b\b-boot --version

3. Stage

At this step the build system and package manager are built with shared libraries and then

staged:

> cd .. # Back to build2-toolchain-X.Y.Z\

> build2\b\b-boot configure ^
 config.cxx=g++ ^
 config.bin.lib=shared ^
 config.bin.suffix=-stage ^
 config.install.root=C:\build2 ^
 config.install.data_root=root\stage

> build2\b\b-boot install: build2\ bpkg\

The strange-looking config.install.data_root=root\stage means install data

files (as opposed to executable files) into the stage\ subdirectory of wherever

config.install.root points to (so in our case it will be C:\build2\stage\).

This subdirectory is temporary and will be removed in a few steps.

Verify that the toolchain binaries can be found and work (this relies on the PATH environ­

ment variable we have set earlier):

> where b-stage
C:\build2\bin\b-stage.exe

> where bpkg-stage
C:\build2\bin\bpkg-stage.exe

> b-stage --version
> bpkg-stage --version

At the next step we will use bpkg to build and install the entire toolchain. If for some

reason you prefer not to build from packages (for example, because the machine is offline),

then you can convert this step into a local installation and skip the rest of the steps.

To perform a local installation with the build-mingw.bat batch file, pass the --local

option.

To perform a local installation you will need to change the configure and install
command lines above along these lines (see also a note on the following step about only

building shared libraries, toolchain executables prefix/suffix, etc):

15Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

2.3 Bootstrapping on Windows with MinGW

> build2\b\b-boot configure ^
 config.config.hermetic=true ^
 config.cxx=g++ ^
 config.cc.coptions=-O3 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

> build2\b\b-boot install: build2\ bpkg\ bdep\

You will also need to build and install the standard build system modules:

> b install: !config.install.scope=project libbuild2-*\

To verify the build system modules installation you can load them with the following

command:

> b noop: tests\libbuild2-*\

To uninstall such a local installation, run:

> b uninstall: build2\ bpkg\ bdep\ libbuild2-*\

4. Install

Next, we use the staged tools to build and install the entire toolchain from the package

repository with the bpkg package manager. First, we create the bpkg configuration. The

configuration values are pretty similar to the previous step and you may want/need to make

similar adjustments.

> cd .. # Back to build2-build\
> md build2-toolchain-X.Y
> cd build2-toolchain-X.Y

> bpkg-stage create ^
 cc ^
 config.config.hermetic=true ^
 config.cxx=g++ ^
 config.cc.coptions=-O3 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

The above configuration will only build shared libraries. If you would like to build both

shared and static, remove config.bin.lib=shared.

To add a custom prefix/suffix to the toolchain executables names, add

config.bin.exe.prefix=... and/or config.bin.exe.suffix=....

The config.config.hermetic=true configuration variable in the above command

makes sure the embedded ~host and ~build2 configurations include the current environ­

ment. This is especially important for ~build2 which is used to dynamically build and

load ad hoc recipes and build system modules and must therefore match the environment

Revision 0.18, June 202516 The build2 Toolchain Installation and Upgrade

2.3 Bootstrapping on Windows with MinGW

that was used to build the build system itself.

Next, we add the package repository, build, and install:

> bpkg-stage add https://pkg.cppget.org/1/alpha
> bpkg-stage fetch
> bpkg-stage build --for install build2 bpkg bdep
> bpkg-stage install --all

By default bpkg will build the latest available version of each package. You can, however,

specify the desired versions explicitly, for example:

> bpkg-stage build --for install build2/X.Y.Z bpkg/X.Y.Z bdep/X.Y.Z

To verify the result, run (note that the where command is not available on Windows XP

without the Resource Kit installed):

> where b
C:\build2\bin\b.exe

> where bpkg
C:\build2\bin\bpkg.exe

> where bdep
C:\build2\bin\bdep.exe

> b --version
> bpkg --version
> bdep --version

Finally, we build and install the standard build system modules:

> bpkg build --for install libbuild2-autoconf libbuild2-kconfig
> bpkg install !config.install.scope=project ^
 --all-pattern=libbuild2-*

To get a list of the standard pre-installed build system modules in a specific version of the

toolchain, run:

> cd ..\build2-toolchain-X.Y.Z
> dir /B libbuild2-*

To verify the build system modules installation you can load them with the following

command:

> b noop: ..\build2-toolchain-X.Y.Z\tests\libbuild2-*\

5. Clean

The last thing we need to do is uninstall the staged tools:

17Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

2.3 Bootstrapping on Windows with MinGW

> cd ..\build2-toolchain-X.Y.Z # Back to bootstrap.
> b uninstall: build2\ bpkg\

3 Bootstrapping on Mac OS X

The build2 toolchain requires Mac OS version 10.5 (Leopard) or later. We will also be using

the system C++ toolchain that comes with the Xcode Command Line Tools. You should be able

to use other/custom C++ toolchains, however, this is the only configuration that is tested and

guaranteed to work.

To verify that Command Line Tools are installed, run:

$ clang++ --version

It should produce something along these lines:

Apple LLVM version X.Y.Z (clang-A.B.C) (based on LLVM M.N.P)

To install Command Line Tools, run:

$ xcode-select --install

Once this is done continue with Bootstrapping on UNIX.

4 Bootstrapping on UNIX

The following instructions are for bootstrapping build2 on UNIX-like operating systems

(GNU/Linux, FreeBSD, etc). For Mac OS X first see Bootstrapping on Mac OS X. These instruc­

tions should also be used for UNIX emulation layers on Windows (for example, WSL, MSYS, or

Cygwin) where you already have a UNIX shell with standard utilities.

1. Create Build Directory

You will want to keep this directory around in order to upgrade to new toolchain versions in

the future. In this guide we use ~/build2-build/ as the build directory and

/usr/local/ as the installation directory but you can use other paths.

$ cd
$ mkdir build2-build
$ cd build2-build

2. Download, Verify, and Unpack

Download build2-toolchain-X.Y.Z.tar.xz (or its .tar.gz variant if you don’t

have xz(1)) as well as its .sha256 checksum from Download page.

Revision 0.18, June 202518 The build2 Toolchain Installation and Upgrade

3 Bootstrapping on Mac OS X

https://build2.org/download.xhtml

Place everything into ~/build2-build/ (build directory) and verify the archive check­

sum matches:

Linux, WSL, MSYS, Cygwin:
#
$ sha256sum -c build2-toolchain-X.Y.Z.tar.xz.sha256

Mac OS X:
#
$ shasum -a 256 -c build2-toolchain-X.Y.Z.tar.xz.sha256

FreeBSD (compare visually):
#
$ cat build2-toolchain-X.Y.Z.tar.xz.sha256
$ sha256 -r build2-toolchain-X.Y.Z.tar.xz

Unpack the archive and change to its directory:

> tar -xf build2-toolchain-X.Y.Z.tar.xz
> cd build2-toolchain-X.Y.Z

Next you can either perform the rest of the steps manually or, if after reviewing the steps, you are

happy with using the defaults, run the build.sh shell script. It performs (and echoes) the same

set of steps as outlined below but only allows you to customize the compiler, installation direc­

tory, and a few other things (run build.sh -h for usage).

For example, this command will use g++ and install the toolchain into /usr/local/.

$./build.sh g++

While this will use Clang and install into /opt/build2:

$./build.sh --install-dir /opt/build2 --sudo sudo clang++

If you would like to speed the process up by compiling in parallel, then you can instruct

build.sh to bootstrap using GNU make (can be called gmake instead of make on some plat­

forms), for example:

$./build.sh --make make --make -j8 g++

Note that at about half way through (bpkg fetch at step 4 below) the script will stop and

prompt you to verify the authenticity of the repository certificate. To run the script unattended

you can specify the certificate fingerprint with the --trust option (see build.sh -h for

details).

The end result of the bootstrap process (performed either with the script or manually) is the

installed toolchain as well as the bpkg configuration in build2-toolchain-X.Y/ that can

be used to upgrade to newer versions. It can also be used to uninstall the toolchain:

19Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

4 Bootstrapping on UNIX

$ cd build2-toolchain-X.Y
$ bpkg uninstall --all

Note that in both cases (manual or scripted bootstrap), if something goes wrong and you need to

restart the process, you must start with a clean toolchain source by unpacking it afresh from the

archive.

The rest of this section outlines the manual bootstrap process.

You should either run build.sh or the manual commands below, but not both.

1. Bootstrap, Phase 1

First, we build a minimal build system with the provided bootstrap.sh script. Normally,

the only argument you will pass to this script is the C++ compiler to use but there is also a

way to specify compile options and a few other things; run bootstrap.sh -h and see

the build2/INSTALL file for details.

$ cd build2
$./bootstrap.sh g++ -w

$ b/b-boot --version

Alternatively, we can use the bootstrap.gmake GNU makefile to bootstrap in parallel:

$ cd build2
$ make -f bootstrap.gmake -j 8 CXX=g++ CXXFLAGS=-w

$ b/b-boot --version

2. Bootstrap, Phase 2

Then, we rebuild the build system with the result of Phase 1 linking libraries statically.

$ b/b-boot config.cxx=g++ config.bin.lib=static b/exe{b}
$ mv b/b b/b-boot

$ b/b-boot --version

3. Stage

At this step the build system and package manager are built with shared libraries and then

staged. Here you may want to adjust a few things, such as the installation directory or the

sudo program (remove the config.install.sudo line if you don’t need one).

You may also need to remove the config.bin.rpath line if your target doesn’t support

rpath. Specifically, if building on Windows (with MSYS or Cygwin), remove both .rpath
and .sudo. But if unsure, leave .rpath in – if your target doesn’t support it, you will get

an error and will need to reconfigure without it.

Revision 0.18, June 202520 The build2 Toolchain Installation and Upgrade

4 Bootstrapping on UNIX

$ cd .. # Back to build2-toolchain-X.Y.Z/

$ build2/b/b-boot configure \
 config.cxx=g++ \
 config.bin.lib=shared \
 config.bin.suffix=-stage \
 config.bin.rpath=/usr/local/lib \
 config.install.root=/usr/local \
 config.install.data_root=root/stage \
 config.install.sudo=sudo

$ build2/b/b-boot install: build2/ bpkg/

The strange-looking config.install.data_root=root/stage means install data

files (as opposed to executable files) into the stage/ subdirectory of wherever

config.install.root points to (so in our case it will be /usr/local/stage/).

Note that this subdirectory is temporary and will be removed in a few steps. But if you don’t

like the default location, feel free to change it (for example, to /tmp/stage).

Depending on the installation directory, the installed build2 binaries may not be automati­

cally found. On most platforms /usr/local/bin/ is in the PATH environment variable

by default and you should be able to run:

$ which b-stage
/usr/local/bin/b-stage

$ which bpkg-stage
/usr/local/bin/bpkg-stage

$ b-stage --version
$ bpkg-stage --version

If, however, you installed, say, into /opt/build2, then you will need to add its bin/

subdirectory to PATH (re-run the above commands to verify):

$ export PATH="/opt/build2/bin:$PATH"

Strictly speaking this is not absolutely necessary and you can adjust the rest of the

commands to use absolute paths. This, however, does not make for very readable examples

so below we assume the installation’s bin/ subdirectory is in PATH.

At the next step we will use bpkg to build and install the entire toolchain. If for some

reason you prefer not to build from packages (for example, because the machine is offline),

then you can convert this step into a local installation and skip the rest of the steps.

To perform a local installation with the build.sh script, pass the --local option.

21Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

4 Bootstrapping on UNIX

To perform a local installation you will need to change the configure and install
command lines above along these lines (see also notes on the following step about only

building shared libraries, toolchain executables prefix/suffix, etc):

$ build2/b/b-boot configure \
 config.config.hermetic=true \
 config.cxx=g++ \
 config.cc.coptions=-O3 \
 config.bin.lib=shared \
 config.bin.rpath=/usr/local/lib \
 config.install.root=/usr/local \
 config.install.sudo=sudo

$ build2/b/b-boot install: build2/ bpkg/ bdep/

You will also need to build and install the standard build system modules:

$ b install: ’!config.install.scope=project’ libbuild2-*/

To verify the build system modules installation you can load them with the following

command:

$ b noop: tests/libbuild2-*/

To uninstall such a local installation, run:

$ b uninstall: build2/ bpkg/ bdep/ libbuild2-*/

4. Install

Next, we use the staged tools to build and install the entire toolchain from the package

repository with the bpkg package manager. First, we create the bpkg configuration. The

configuration values are pretty similar to the previous step and you may want/need to make

similar adjustments.

$ cd .. # Back to build2-build/
$ mkdir build2-toolchain-X.Y
$ cd build2-toolchain-X.Y

$ bpkg-stage create \
 cc \
 config.config.hermetic=true \
 config.cxx=g++ \
 config.cc.coptions=-O3 \
 config.bin.lib=shared \
 config.bin.rpath=/usr/local/lib \
 config.install.root=/usr/local \
 config.install.sudo=sudo

The above configuration will only build shared libraries. If you would like to build both

shared and static, remove config.bin.lib=shared.

Revision 0.18, June 202522 The build2 Toolchain Installation and Upgrade

4 Bootstrapping on UNIX

To add a custom prefix/suffix to the toolchain executables names, add

config.bin.exe.prefix=... and/or config.bin.exe.suffix=....

The config.config.hermetic=true configuration variable in the above command

makes sure the embedded ~host and ~build2 configurations include the current environ­

ment. This is especially important for ~build2 which is used to dynamically build and

load ad hoc recipes and build system modules and must therefore match the environment

that was used to build the build system itself.

Next, we add the package repository, build, and install:

$ bpkg-stage add https://pkg.cppget.org/1/alpha
$ bpkg-stage fetch
$ bpkg-stage build --for install build2 bpkg bdep
$ bpkg-stage install --all

By default bpkg will build the latest available version of each package. You can, however,

specify the desired versions explicitly, for example:

$ bpkg-stage build --for install build2/X.Y.Z bpkg/X.Y.Z bdep/X.Y.Z

To verify the result, run:

$ which b
/usr/local/bin/b

$ which bpkg
/usr/local/bin/bpkg

$ which bdep
/usr/local/bin/bdep

$ b --version
$ bpkg --version
$ bdep --version

Finally, we build and install the standard build system modules:

$ bpkg build --for install libbuild2-autoconf libbuild2-kconfig
$ bpkg install ’!config.install.scope=project’ \
 --all-pattern=libbuild2-*

To get a list of the standard pre-installed build system modules in a specific version of the

toolchain, run:

$ cd ../build2-toolchain-X.Y.Z
$ ls -d libbuild2-*

23Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

4 Bootstrapping on UNIX

To verify the build system modules installation you can load them with the following

command:

$ b noop: ../build2-toolchain-X.Y.Z/tests/libbuild2-*/

5. Clean

The last thing we need to do is uninstall the staged tools:

$ cd ../build2-toolchain-X.Y.Z # Back to bootstrap.
$ b uninstall: build2/ bpkg/

5 Upgrading

At this point we assume that you have the build2 toolchain installed and would like to upgrade it

to a newer version. We also expect that you have the toolchain bpkg configuration in the

build2-toolchain-X.Y/ directory, as produced by the bootstrap process. If you don’t have

the bpkg configuration but do have the toolchain installed somehow (for example, using your

distribution’s package manager), then you can create the configuration as shown at the end. If you

have neither, then you will need to go through the bootstrap process.

There are two ways to upgrade: dirty (but quick) and staged (but more involved). In the dirty

upgrade we override the existing installation without first uninstalling it. If some installed files no

longer exist in the new version, they will remain "installed" until cleaned up manually. Also, with

this approach we never get a chance to make sure the new build is functional.

In the staged upgrade we first install a -stage build of the new toolchain (similar to what we

did during bootstrap), test it, uninstall the old toolchain, install the new toolchain as "final", and

finally uninstall -stage.

We recommend that you use a dirty upgrade for toolchain patch releases with the same X.Y

(MAJOR.MINOR) version and a staged upgrade otherwise. With patch releases we guarantee not

to alter the installation file set.

Without periodic upgrades your version of the toolchain may become too old to be able to

upgrade itself. In this case you will have to fall back onto the bootstrap process.

The below upgrade process does not cover upgrading the baseutils and mingw packages on

Windows (see Bootstrapping on Windows for details). We recommend using the bootstrap

process to upgrade these packages since all the straightforward upgrade sequences would lead to

either the old toolchain using the new utilities or vice versa.

For both ways of upgrading we need to make sure that the build system modules are built and

installed with the new version of the toolchain. The set of build system modules can also change

from version to version.

Revision 0.18, June 202524 The build2 Toolchain Installation and Upgrade

5 Upgrading

If using the Windows command prompt, the !config.install.scope=project
command line argument should not be quoted.

The dirty upgrade is straightforward:

$ cd build2-toolchain-X.Y
$ bpkg uninstall ’!config.install.scope=project’ \
 --all-pattern=libbuild2-*
$ bpkg drop --all-pattern=libbuild2-*
$ bpkg fetch
$ bpkg build --for install -pr
$ bpkg install --all
$ bpkg build --for install libbuild2-autoconf libbuild2-kconfig
$ bpkg install ’!config.install.scope=project’ \
 --all-pattern=libbuild2-*

The -pr options stands for --patch and --recursive – upgrade the built packages and

their dependencies to the latest patch version, recursively. See bpkg-pkg-build(1) for

details.

You can also issue the status command after fetch to examine which versions are available.

The above build command will upgrade all the packages to the latest available patch versions

but you can override this by specifying the desired packages and/or versions explicitly, for

example:

$ bpkg status
!build2 configured 1.0.0 available 1.0.1 1.0.2 2.0.0
...

$ bpkg build --for install build2/1.0.1

The staged upgrade consists of several steps:

0. Check for Updates

There is no harm in running bpkg fetch in the existing configuration so we can use it to

determine if any updates are available, whether we can use the simpler dirty upgrade, and, if

not, the target X.Y (MAJOR.MINOR) version for the staged upgrade:

$ cd build2-toolchain-X.Y
$ bpkg fetch
$ bpkg status build2 bpkg bdep

Let’s say the new version is X.Z.

1. Create New Configuration

First we make a copy of the old configuration. We will need the original later to cleanly

uninstall the old toolchain, and, maybe, to rollback the installation if the new version doesn’t

work out.

25Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

5 Upgrading

$ cd ..
$ cp -rp build2-toolchain-X.Y build2-toolchain-X.Z

Or, using Windows command prompt:

> cd ..
> xcopy /s /q /i build2-toolchain-X.Y build2-toolchain-X.Z

2. Build and Install as -stage

This step is similar to the dirty upgrade except that we use the copied configuration, upgrade

(--upgrade|-u) instead of patching (--patch|-p), and install the new toolchain with

the -stage suffix:

$ cd build2-toolchain-X.Z
$ bpkg drop --all-pattern=libbuild2-*
$ bpkg build --for install -ur

Once this is done, we can proceed to installing:

$ bpkg install \
 config.bin.suffix=-stage \
 config.install.data_root=root/stage \
 --all

If during installation you have added a custom prefix/suffix to the toolchain executables

names with config.bin.exe.prefix and/or config.bin.exe.suffix, add

config.bin.exe.prefix=[null] and/or config.bin.exe.suffix=[null]
to suppress them in the executables being staged.

You can also specify the desired packages and/or versions explicitly, again, similar to the

dirty upgrade.

3. Test Staged

Now you can test the new toolchain on your projects, etc. Remember to use the

-stage-suffixed binaries (bdep-stage will automatically use bpkg-stage which in

turn will use b-stage):

$ b-stage --version
$ bpkg-stage --version
$ bdep-stage --version

4. Uninstall Old, Install New

Once we are satisfied that the new toolchain works, we can uninstall the old one and install

the new one:

Revision 0.18, June 202526 The build2 Toolchain Installation and Upgrade

5 Upgrading

$ cd ../build2-toolchain-X.Y
$ bpkg uninstall --all

$ cd ../build2-toolchain-X.Z
$ bpkg-stage install --all
$ bpkg build --for install libbuild2-autoconf libbuild2-kconfig
$ bpkg install ’!config.install.scope=project’ \
 --all-pattern=libbuild2-*

5. Uninstall Staged

Finally, we clean up by removing the staged toolchain (hint: use the command line history to

find the corresponding install command and change it to uninstall; see also a note

at step 2 about toolchain executables prefix/suffix):

$ bpkg uninstall \
 config.bin.suffix=-stage \
 config.install.data_root=root/stage \
 --all

You can also remove the old configuration in build2-toolchain-X.Y/ if you think

you no longer need it.

If you ever need to (re-)create the bpkg configuration for the toolchain from scratch, it is fairly

simple (you may need to adjust the compiler, options, installation directory, etc; see the bootstrap

steps for details):

For UNIX-like operating systems (GNU/Linux, Mac OS X, FreeBSD, etc):

$ bpkg-stage create \
cc \
config.config.hermetic=true \
config.cxx=g++ \
config.cc.coptions=-O3 \
config.bin.lib=shared \
config.bin.rpath=/usr/local/lib \
config.install.root=/usr/local \
config.install.private=build2 \
config.install.sudo=sudo

For Windows with MSVC (from the Visual Studio "x64 Native Tools Command Prompt"):

> bpkg-stage create ^
 cc ^
 config.config.hermetic=true ^
 config.cxx=cl ^
 config.cc.coptions=/O2 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

27Revision 0.18, June 2025 The build2 Toolchain Installation and Upgrade

5 Upgrading

For Windows with Clang (from a suitable command prompt, see Bootstrapping on Windows with

Clang for details):

> bpkg-stage create ^
 cc ^
 config.config.hermetic=true ^
 "config.cxx=clang++ -m64" ^
 config.cc.coptions=-O2 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

For Windows with MinGW (from the command prompt):

> bpkg-stage create ^
 cc ^
 config.config.hermetic=true ^
 config.cxx=g++ ^
 config.cc.coptions=-O3 ^
 config.bin.lib=shared ^
 config.install.root=C:\build2

Revision 0.18, June 202528 The build2 Toolchain Installation and Upgrade

5 Upgrading

	Preface
	1 Introduction
	2 Bootstrapping on Windows
	2.1 Bootstrapping on Windows with MSVC
	2.2 Bootstrapping on Windows with Clang
	2.3 Bootstrapping on Windows with MinGW

	3 Bootstrapping on Mac OS X
	4 Bootstrapping on UNIX
	5 Upgrading

