
The build2 Toolchain Introduction

 

 

 

 

 

 

 

 

 

Copyright © 2014-2025 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT 

License.

Revision 0.18, June 2025

This revision of the document describes the build2 toolchain 0.18.x series.





Table of Contents

................... 1Preface

............... 11 Getting Started Guide

................ 11.1 Hello, World

.............. 121.2 Package Repositories

.......... 151.3 Adding and Removing Dependencies

......... 191.4 Upgrading and Downgrading Dependencies

....... 211.5 Build-Time Dependencies and Linked Configurations

.......... 271.6 Versioning and Release Management

......... 331.7 Developing Multiple Packages and Projects

.............. 391.8 Package Consumption

.......... 431.9 Using System-Installed Dependencies

........... 461.10 Using Unpackaged Dependencies

.............. 482 Canonical Project Structure

.............. 502.1 Source Subdirectory

............... 542.2 Source Naming

............... 552.3 Source Contents

.................. 562.4 Tests

................ 582.5 Build Output

iRevision 0.18, June 2025 The build2 Toolchain Introduction

Table of Contents





Preface

This document is an overall introduction to the build2 toolchain that shows how the main 

components, namely the build system, the package dependency manager, and the project depen­

dency manager are used together to handle the entire C/C++ project development lifecycle:

creation, development, testing, and delivery. For additional information, including documentation

for individual toolchain components, man pages, HOWTOs, etc., refer to the build2 project 

Documentation page.

1 Getting Started Guide

The aim of this guide is to get you started developing C/C++ projects with the build2
toolchain. All the examples in this section include the relevant command output so if you just

want to get a sense of what build2 is about, then you don’t have to install the toolchain and run

the commands in order to follow along. Or, alternatively, you can take a short detour to the Instal­

lation Instructions and then try the examples for yourself.

One of the primary goals of the build2 toolchain is to provide a uniform interface across all the 

platforms and compilers. While most of the examples in this document assume a UNIX-like oper­

ation system, they will look pretty similar if you are on Windows. You just have to use appropri­

ate paths, compilers, and options.

The question we will try to answer in this section can be summarized as:

$ git clone .../hello.git && now-what?

That is, we clone an existing C/C++ project or would like to create a new one and then start

hacking on it. We want to spend as little time and energy as possible on the initial and ongoing 

infrastructure maintenance: setting up build configurations, managing dependencies, continuous 

integration and testing, release management, etc. Or, as one C++ user aptly put it, "All I want to

do is program."

1.1 Hello, World

Let’s see what programming with build2 feels like by starting with a customary "Hello, 

World!" program (here we assume our current working directory is /tmp):

$ bdep new -l c++ -t exe hello
created new executable project hello in /tmp/hello/

The bdep-new(1) command creates a build2 project. In this case it is an executable imple­

mented in C++.

1Revision 0.18, June 2025 The build2 Toolchain Introduction

Preface

https://build2.org/doc.xhtml
https://build2.org/install.xhtml
https://build2.org/install.xhtml


To create a library, pass -t lib. By default new also initializes a git repository and generates 

suitable .gitignore files (pass -s none if you don’t want that). And for details on naming

your projects, see Package Name.

Note to Windows users: the build2-baseutils package includes core git utilities that are 

sufficient for the bdep functionality.

Let’s take a look inside our new project:

$ tree hello
hello/
|-- .git/
|-- .bdep/
|-- build/
|-- hello/
|   |-- hello.cxx
|   |-- buildfile
|   ·-- testscript
|-- buildfile
|-- manifest
|-- README.md
·-- repositories.manifest

See Canonical Project Structure for a detailed discussion and rationale behind this layout. While

it is recommended, especially for new projects, build2 is flexible enough to support various 

arrangements used in today’s C and C++ projects. Furthermore, the bdep-new(1) command

provides a number of customization options and chances are good you will be able to create your

preferred layout automatically. See SOURCE LAYOUT for more information and examples.

Similar to version control tools, we normally run all build2 tools from the project’s source 

directory or one of its subdirectories, so:

$ cd hello

While the project layout is discussed in more detail in later sections, let’s examine a couple of 

interesting files to get a sense of what’s going on. We start with the source file which should look 

familiar:

$ cat hello/hello.cxx

#include <iostream>

int main (int argc, char* argv[])
{
  using namespace std;

  if (argc < 2)
  {
    cerr << "error: missing name" << endl;
    return 1;

Revision 0.18, June 20252 The build2 Toolchain Introduction

1.1 Hello, World



  }

  cout << "Hello, " << argv[1] << ’!’ << endl;
}

If you prefer the .?pp extensions over .?xx for your C++ source files, pass -l c++,cpp to

the new command. See bdep-new(1) for details on this and other customization options.

Let’s take a look at the accompanying buildfile:

$ cat hello/buildfile

libs =
#import libs += libhello%lib{hello}

exe{hello}: {hxx ixx txx cxx}{**} $libs testscript

As the name suggests, this file describes how to build things. While its content might look a bit

cryptic, let’s try to infer a couple of points without going into too much detail (for details see the

build system Introduction).

That exe{hello} on the left of : is a target (executable named hello) and what we have on

the right are prerequisites (C++ source files, libraries, etc). This buildfile uses wildcard

patterns (that **) to automatically locate all the C++ source files. This means we don’t have to

edit our buildfile every time we add, remove, or rename a source file in our project. There

also appears to be some (commented out) infrastructure for importing and linking libraries (that 

libs variable). We will see how to use it in a moment.

In simple projects that follow the canonical structure we can often completely ignore the presence

of the build definition files thus approaching the build system-less workflow found in languages

like Rust and Go.

Finally, the buildfile also lists testscript as a prerequisite of hello. This file tests our

target. Let’s take a look inside:

$ cat hello/testscript

: basics
:
$* ’World’ >’Hello, World!’

: missing-name
:
$* 2>>EOE != 0
error: missing name
EOE

3Revision 0.18, June 2025 The build2 Toolchain Introduction

1.1 Hello, World



Again, we are not going into detail here (see Testscript Introduction for a proper introduction),

but to give you an idea, here we have two tests: the first (with id basics) verifies that our

program prints the expected greeting while the second makes sure it handles the missing name

error condition. Tests written in Testscript are concise, portable, and executed in parallel.

Next up is manifest:

$ cat manifest
: 1
name: hello
version: 0.1.0-a.0.z
language: c++
summary: hello C++ executable
license: other: proprietary
description-file: README.md
url: https://example.org/hello
email: you@example.org
#depends: libhello ^1.0.0

The manifest file is what makes a build system project a package. It contains all the metadata

that a user of a package might need to know: its name, version, license, dependencies, etc., all in

one place.

Refer to Manifest Format for the general format of build2 manifest files and to Package Mani­

fest for details on the package manifest values.

As you can see, manifest created by bdep-new(1) contains some dummy values which you

would want to adjust before publishing your package. Specifically, you would want to review 

summary, license, url, and email as well as the README.md file referenced by 

description-file. Let’s, however, resist the urge to adjust that strange looking 

0.1.0-a.0.z until we discuss package versioning.

Next to manifest you might have noticed the repositories.manifest file – we will

discuss its function later, when we talk about dependencies and where they come from.

Project in hand, let’s build it. Unlike other programming languages, C++ development usually

involves juggling a handful of build configurations: several compilers and/or targets (build2 is

big on cross-compiling), debug/release, different sanitizers and/or static analysis tools, and so on.

As a result, build2 is optimized for multi-configuration usage. However, as we will see shortly,

one build configuration can be designated as the default with additional conveniences.

The bdep-init(1) command is used to initialize a project in a build configuration. As a 

shortcut, it can also create a new build configuration in the process, which is just what we need 

here.

Revision 0.18, June 20254 The build2 Toolchain Introduction

1.1 Hello, World



To create build configurations separately from initialization and to manage them after that, use

the bdep-config(1) subcommands.

Let’s start with GCC (remember we are in the project’s root directory):

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++
initializing in project /tmp/hello/
created configuration @gcc /tmp/hello-gcc/ default,auto-synchronized
synchronizing:
  new hello/0.1.0-a.0.19700101000000

The --config-create|-C option instructs init to create a new configuration in the speci­

fied directory (../hello-gcc in our case). To make referring to configurations easier, we can

give it a name, which is what we do with @gcc.

Note to Windows users: a command line argument with leading @ has a special meaning in 

PowerShell. To work around this, you can use the alternative -@gcc syntax or the -n gcc 

option.

The next argument (cc, stands for C-common) is the build system module we would like to 

configure. It implements compilation and linking rules for the C and C++ languages. Finally, 

config.cxx=g++ is (one of) this module’s configuration variables that specifies the C++

compiler we would like to use (the corresponding C compiler will be determined automatically).

Let’s for now also ignore that synchronizing:... bit along with strange-looking 

19700101000000 in the version – it will become clear what’s going on here in a moment.

If you would like to generate a JSON compilation database for this project so that, for example,

you can edit its source files from your IDE, then change the above init command to read:

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++ -- \
  config.cc.compiledb=./

Once you build this project for the first time (see below), you will find the 

compile_commands.json file in its root directory. See Compilation Database for details on

this functionality.

Now the same for Clang:

$ bdep init -C ../hello-clang @clang cc config.cxx=clang++
initializing in project /tmp/hello/
created configuration @clang /tmp/hello-clang/ auto-synchronized
synchronizing:
  new hello/0.1.0-a.0.19700101000000

If we check the parent directory, we should now see two build configurations next to our project:

5Revision 0.18, June 2025 The build2 Toolchain Introduction

1.1 Hello, World



$ ls ..
hello/
hello-gcc/
hello-clang/

If, as in the above examples, our configuration directories are next to the project and their names

are in the prj-name-cfg-name form, then we can use the shortcut version of the init 

command:

$ bdep init -C @clang cc config.cxx=clang++

Things will also look pretty similar if you are on Windows instead of a UNIX-like operating

system. For example, to initialize our project on Windows with Visual Studio, start a command

prompt and then run:

> bdep init -C ..\hello-debug @debug cc ^
  "config.cxx=cl /MDd"                  ^
  "config.cc.coptions=/Od /Zi"          ^
  config.cc.loptions=/DEBUG:FULL

> bdep init -C ..\hello-release @release cc ^
  config.cxx=cl                             ^
  config.cc.coptions=/O2

For Visual Studio, build2 by default will use the latest available version and build for the 

x86_64 target (x64 in the Microsoft’s terminology). You can, however, override these defaults

by either running from a suitable Visual Studio development command prompt or by specifying

an absolute path to cl.exe that you wish to use. For example:

> bdep init -C ..\hello-debug-32 @debug-32 cc                       ^
  "config.cxx=...\VC\Tools\MSVC\14.23.28105\bin\Hostx64\x86\cl.exe"
  ...

In case of the command prompt, you may also want to make your configuration hermetic 

(Hermetic Build Configurations):

> bdep init -C ... cc ... config.config.hermetic=true

Hermetically configuring our project in a suitable Visual Studio command prompt makes us free

to build it from any other prompt or shell, IDE, etc.

Besides the coptions (compile options) and loptions (link options), other commonly used 

cc module configuration variables are poptions (preprocess options) and libs (extra

libraries to link). Here is the complete list with their rough make equivalents:

*.poptions   preprocess        CPPFLAGS
*.coptions   compile           CFLAGS/CXXFLAGS
*.loptions   link              LDFLAGS
*.aoptions   archive           ARFLAGS
*.libs       extra libraries   LIBS/LDLIBS

Revision 0.18, June 20256 The build2 Toolchain Introduction

1.1 Hello, World



We can also use their config.c.* (C compilation) and config.cxx.* (C++ compilation) 

variants if we only want them applied during the respective language compilation/linking. For 

example:

$ bdep init ... cc                       \
  config.cxx=g++                         \
  config.cc.poptions=-D_FORTIFY_SOURCE=2 \
  config.cxx.poptions=-D_GLIBCXX_ASSERTIONS

Finally, we can specify the "compiler mode" options as part of the compiler executable in 

config.c and config.cxx. Such options cannot be modified by buildfiles and they will

appear last on the command lines. For example:

$ bdep init ... cc      \
  config.c="clang -m32" \
  config.cxx="clang++ -m32 -stdlib=libc++"

The compiler mode options are also the correct place to specify system-like header (-I) and

library (-L, /LIBPATH) search paths. Where by system-like we mean common installation 

directories like /usr/include or /usr/local/lib which may contain older versions of

the libraries we are trying to build and/or use. By specifying these paths as part of the mode

options (as opposed to config.*.poptions and config.*.loptions) we make sure

they will be considered last, similar to the compiler’s build-in search paths. For example:

$ bdep init ... cc config.cxx="g++ -L/opt/install"

One difference you might have noticed when creating the gcc and clang configurations above

is that the first one was designated as the default. The default configuration is used by bdep
commands if no configuration is specified explicitly (see bdep-projects-configs(1) for

details). It is also the configuration that is used if we run the build system in the project’s source 

directory. So, normally, you would make your every day development configuration the default.

Let’s try that:

$ bdep status
hello configured 0.1.0-a.0.19700101000000

$ b
c++ hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}
ld ../hello-gcc/hello/hello/exe{hello}
ln ../hello-gcc/hello/hello/exe{hello} -> hello/

$ b test
test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

$ hello/hello World
Hello, World!

7Revision 0.18, June 2025 The build2 Toolchain Introduction

1.1 Hello, World



To see the actual compilation command lines, run b -v and for even more details, run b -V.

See b(1) for more information on these and other build system options.

In contrast, the Clang configuration has to be requested explicitly:

$ bdep status @clang
hello configured 0.1.0-a.0.19700101000000

$ b ../hello-clang/hello/
c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}
ld ../hello-clang/hello/hello/exe{hello}

$ b test: ../hello-clang/hello/
test ../hello-clang/hello/hello/exe{hello} +
     hello/testscript{testscript}

$ ../hello-clang/hello/hello/hello World
Hello, World!

As you can see, using the build system directly on configurations other than the default requires 

explicitly specifying their paths. It would have been more convenient if we could refer to them by

names. The bdep-update(1) and bdep-test(1) commands allow us to do exactly that:

$ bdep test @clang
c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}
ld ../hello-clang/hello/hello/exe{hello}
test ../hello-clang/hello/hello/exe{hello} +
     hello/testscript{testscript}

And we can also perform the desired build system operation on several (or --all|-a) configu­

rations at once:

$ bdep test @gcc @clang
in configuration @gcc:
test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

in configuration @clang:
test ../hello-clang/hello/hello/exe{hello} +
     hello/testscript{testscript}

As we will see later, the bdep-test(1) command also allows us to test immediate (--imme­
diate|-i) or all (--recursive|-r) dependencies of our project. We call it deep testing.

While we are here, let’s also check how hard it would be to cross-compile:

Revision 0.18, June 20258 The build2 Toolchain Introduction

1.1 Hello, World



$ bdep init -C @mingw cc config.cxx=x86_64-w64-mingw32-g++
initializing in project /tmp/hello/
created configuration @mingw /tmp/hello-mingw/ auto-synchronized
synchronizing:
  new hello/0.1.0-a.0.19700101000000

$ bdep update @mingw
c++ hello/cxx{hello} -> ../hello-mingw/hello/hello/obje{hello}
ld ../hello-mingw/hello/hello/exe{hello}

As you can see, cross-compiling in build2 is nothing special. In our case, on a properly setup

GNU/Linux machine (that automatically uses wine as an .exe interpreter) we can even run

tests (in build2 this is called cross-testing):

$ bdep test @mingw
test ../hello-mingw/hello/hello/exe{hello} +
     hello/testscript{testscript}

$ ../hello-mingw/hello/hello/hello.exe Windows
Hello, Windows!

Let’s review what it takes to initialize a project’s infrastructure and perform the first build. For an 

existing project:

$ git clone .../hello.git
$ cd hello
$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++
$ b

For a new project:

$ bdep new -l c++ -t exe hello
$ cd hello
$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++
$ b

If you prefer, the new and init steps can be combined into a single command:

$ bdep new -l c++ -t exe hello -C hello-gcc @gcc cc config.cxx=g++

And if you need to deinitialize a project in one or more build configurations, there is the 

bdep-deinit(1) command for that:

$ bdep deinit @gcc @clang
deinitializing in project /tmp/hello/
in configuration @gcc:
synchronizing:
  drop hello

in configuration @clang:
synchronizing:
  drop hello

9Revision 0.18, June 2025 The build2 Toolchain Introduction

1.1 Hello, World



By default bdep initializes a project for development by automatically passing 

config.<project>.develop=true unless a custom value is specified. For example:

$ bdep init ... @gcc cc config.cxx=g++ config.hello.develop=false

To change the development mode of an already initialized project, use bdep-sync(1):

$ bdep sync @gcc config.hello.develop=false

See Project Configuration for background on the development mode.

As mentioned earlier, by default bdep-new(1) initializes a git repository for us. Now that we

have successfully built and tested our project, it might be a good idea to make a first commit and

publish it to a remote repository where others can find it. Using GitHub as an example:

$ git add .
$ git commit -m "Initial implementation"
$ git remote add origin git@github.com:john-doe/hello.git
$ git push -u

We could have also done it the other way around: first created a project on one of the hosting

services (GitHub, GitLab, etc) cloned it, and then ran new on that. One advantage of this

approach is the new command’s ability to automatically extract the license and description from

the existing LICENSE and README.md files and use that to generate the manifest file. This

way we only need to specify things once and everything is nice and consistent. Here is an

example of this streamlined project creation workflow (notice also the omitted project name in

the new command):

# Create a project with LICENSE and README.md on one of the Git
# hosting services (GitHub, GitLab, etc) and then:

$ git clone .../hello.git
$ cd hello

$ bdep new -l c++ -t exe

While we have managed to test a couple of platforms (Linux and Windows) and compiler

versions (Clang and GCC) locally, there are quite a few combinations that we haven’t tried (Mac

OS with Apple Clang and Windows with MSVC, to name the major ones). We could test them 

manually, some with the help of virtualization while for others (such as Mac OS) we may need 

physical hardware. Add a few versions for each compiler and we are looking at a dozen build 

configurations. Needless to say, testing on all of them manually is a lot of work. Now that we

have our project available from a public remote repository, we can instead use the remote testing 

functionality offered by the bdep-ci(1) command. For example:

Revision 0.18, June 202510 The build2 Toolchain Introduction

1.1 Hello, World



$ bdep ci
submitting:
  to:      https://ci.cppget.org
  in:      https://github.com/john-doe/hello.git#master@93e1dbc94baa
  package: hello
  version: 0.1.0-a.0.20180907091517.93e1dbc94baa
continue? [y/n] y
############################################################# 100.0%
CI request is queued:
  https://ci.cppget.org/@d6ee90f4-21a9-47a0-ab5a-7cd2f521d3d8

Let’s see what’s going on here. By default ci submits a test request to ci.cppget.org, a public CI

service run by the build2 project (see available Build Configurations and Use Policies). In our

case it will be testing the current working tree state (branch and commit) of our package which

should be available from our remote repository (on GitHub in this example) since that’s where

the CI service expects to get it from. In response we get a URL where we can see the build and

test results, logs, etc.

This push CI model works particularly well with the "feature branch" development workflow. 

Specifically, you would develop a new feature in a separate branch, publishing and remote-testing

it as necessary. When the feature is ready, you would merge any changes from master, test the

result one more time, and then merge (fast-forward) the feature into master.

Now is a good time to get an overview of the build2 toolchain. After all, we have already used

two of its tools (bdep and b) without a clear understanding of what they actually are.

Unlike most other programming languages that encapsulate the build system, package depen­

dency manager, and project dependency manager into a single tool (such as Rust’s cargo or

Go’s go), build2 is a hierarchy of several tools that you will be using directly and which

together with your version control system (VCS) will constitute the core of your project manage­

ment toolset.

While build2 can work without a VCS, this will result in reduced functionality.

At the bottom of the hierarchy is the build2 build system, which we invoke using the b(1)

driver. Next comes the package dependency manager, bpkg(1). It is primarily used for package 

consumption and depends on the build system. The top of the hierarchy is the project dependency

manager, bdep(1). It is used for project development and relies on bpkg for building project 

packages and their dependencies.

The main reason for this separation is modularity and the resulting flexibility: there are situations

where we only need the build system (for example, when building a package for a system

package manager where all the dependencies should be satisfied from the system repository), or

only the build system and package manager (for example, when a build bot is building a package

for testing).

11Revision 0.18, June 2025 The build2 Toolchain Introduction

1.1 Hello, World

https://ci.cppget.org/
https://ci.cppget.org?build-configs/
https://ci.cppget.org?ci/


Note also that strictly speaking build2 is not C/C++-specific; its build model is general enough

to handle any DAG-based operations and its package/project dependency management can be

used for any compiled language.

As we will see in a moment, build2 also integrates with your VCS in order to automate project 

versioning. Note that currently only git(1) is supported.

Now that we understand the tooling, let’s also revisit the notion of build configuration (those 

hello-gcc and hello-clang directories). While we often talk of build configurations in the

abstract, as a set of common options used to build our code, in build2 this term also has a very

concrete meaning – a directory where our projects and their dependencies are built with such a set

of common options.

The concept of a build configuration appears prominently throughout the toolchain: a bdep build 

configuration is actually a bpkg build configuration which, in the build system terms, is a special

kind of an amalgamation – a project that contains subprojects. In our case, the subprojects in

these amalgamations will be the projects we have initialized with init and, as we will see in a

moment, packages that they depend on. For example, here is what our hello-gcc contains:

$ tree hello-gcc
hello-gcc/
|-- .bpkg/
|-- build/
|   ·-- config.build
·-- hello/
    |-- build/
    |   ·-- config.build
    ·-- hello/
        |-- hello
        ·-- hello.o

Underneath bdep-init(1) with the --config-create|-C option calls 

bpkg-cfg-create(1) which, in turn, performs the build system create meta-operation

(see b(1) for details).

The important point here is that the bdep build configuration is not a black box that you should

never look inside of. On the contrary, it is a well-defined concept of the package manager and the

build system and as long as you understand what you are doing, you should feel free to interact

with it directly.

Let’s now move on to the reason why there is dep in the bdep name: dependency management.

Revision 0.18, June 202512 The build2 Toolchain Introduction

1.1 Hello, World



1.2 Package Repositories

Say we have realized that writing "Hello, World!" programs is a fairly common task and that

someone must have written a library to help with that. So let’s see if we can find something suit­

able to use in our project.

Where should we look? That’s a good question. But before we can try to answer it, we need to 

understand where build2 can source dependencies. In build2 packages usually come from 

package repositories. Two commonly used repository types are version control and 

archive-based (see bpkg-repository-types(1) for details).

As the name suggests, a version control-based repository uses a VCS as its distribution mecha­

nism. Currently, only git is supported. Such a repository normally contains multiple versions of

a single package or, perhaps, of a few related packages.

An archive-based repository contains multiple, potentially unrelated packages/versions as

archives along with some metadate (package list, prerequisite/complement repositories, signa­

tures, etc) that are all accessible via HTTP(S).

Version control and archive-based repositories have different trade-offs. Version control-based 

repositories are great for package developers since with services like GitHub they are trivial to

setup. In fact, your project’s (already existing) VCS repository will normally be the build2
package repository – you might need to add a few files, but that’s about it.

However, version control-based repositories are not without drawbacks: It will be hard for your

users to discover your packages (try searching for "hello library" on GitHub – most of the results

are not even in C++ let alone packaged for build2). There is also the issue of continuous avail­

ability: users can delete their repositories, services may change their policies or go out of busi­

ness, and so on. Version control-based repositories also lack repository authentication and

package signing. Finally, obtaining the available package list for such repositories can be slow.

A central, archive-based repository would address all these drawbacks: It would be a single place

to search for packages. Published packages will never disappear and can be easily mirrored. 

Packages are signed and the repository is authenticated (see bpkg-reposi­

tory-signing(1) for details). And, last, but not least, archive-based repositories are fast.

cppget.org is the build2 community’s central package repository. While centralized, it is also

easy to mirror since its contents are accessible via plain HTTPS (you can browse pkg.cppget.org

to get an idea). As an added benefit, packages on cppget.org are continuously built and tested on

all the major platform/compiler combinations with the results available as part of the package 

description.

13Revision 0.18, June 2025 The build2 Toolchain Introduction

1.2 Package Repositories

https://cppget.org/
https://pkg.cppget.org/
https://cppget.org/
https://cppget.org/?builds


The main drawback of archive-based repositories is the setup cost. Getting a basic repository

going is relatively easy – all you need is an HTTP(S) server. Adding a repository web interface

like that on cppget.org will require running brep. And adding CI will require running a bunch of

build bots (bbot). Note also that in build2 archive-based repositories can be federated with 

different sections of the repository being hosted/managed potentially independently.

To summarize, version control-based repositories are great for package developers while a

central, archive-based repository is convenient for package consumers. A reasonable strategy then

is for package developers to publish their releases to a central repository. Package consumers can

then decide which repository to use based on their needs. For example, one could use cppget.org

as a (fast, reliable, and secure) source of stable versions but also add, say, git repositories for

select packages (perhaps with the #HEAD fragment filter to improve download speed) for testing 

development snapshots. In this model the two repository types complement each other.

Publishing of packages to archive-based repositories is discussed in Versioning and Release 

Management.

Let’s see how all this works in practice. Go over to cppget.org and type "hello library" in the

search box. At the top of the search result you should see the libhello package and if you

follow the link you will see the package description page along with a list of available versions.

Pick a version that you like and you will see the package version description page with quite a bit

of information, including the list of platform/compiler combinations that this version has been 

successfully (or unsuccessfully) tested with. If you like what you see, copy the repository
value – this is the repository location where this package version can be sourced from.

The cppget.org repository is split into several sections: stable, testing, beta, alpha and 

legacy, with each section having its own repository location (see the repository’s about page

for details on each section’s policies). Note also that testing is complemented by stable, 

beta by testing, and so on, so you only need to choose the lowest stability level and you will 

automatically "see" packages from the more stable sections.

The cppget.org stable sections will always contain the libhello library version 1.0.X that

was generated using the following bdep-new(1) command line:

$ bdep new -l c++ -t lib libhello

It can be used as a predictable test dependency when setting up new projects.

Let’s say we’ve visited the libhello project’s home page (for example by following a link

from the package details page) and noticed that it is being developed in a git repository. How

can we see what’s available there? If the releases are tagged, then we can infer the available

released versions from the tags. But that doesn’t tell us anything about what’s happening on the 

HEAD or in the branches. For that we can use the package manager’s bpkg-rep-info(1) 

command:

Revision 0.18, June 202514 The build2 Toolchain Introduction

1.2 Package Repositories

https://cppget.org/
https://cppget.org/brep
https://cppget.org/bbot
https://cppget.org/
https://cppget.org/
https://cppget.org/libhello
https://cppget.org/
https://cppget.org/?about
https://cppget.org/
https://git.build2.org/cgit/hello/libhello/


$ bpkg rep-info https://git.build2.org/hello/libhello.git
libhello/1.0.0
libhello/1.1.0

As you can see, besides 1.0.0 that we have seen in cppget.org/stable, there is also 

1.1.0 (which is perhaps being tested in cppget.org/testing). We can also check what

might be available on the HEAD (see bpkg-repository-types(1) for details on the git 

repository URL format):

$ bpkg rep-info https://git.build2.org/hello/libhello.git#HEAD
libhello/1.1.1-a.0.20180504111511.2e82f7378519

We can also use the rep-info command on archive-based repositories, however, if available,

the web interface is usually more convenient and provides more information.

To summarize, we found two repositories for the libhello package: the archive-based 

cppget.org that contains the released versions as well as its development git repository where

we can get the bleeding edge stuff. Let’s now see how we can add libhello to our project.

1.3 Adding and Removing Dependencies

So we found libhello that we would like to use in our hello project. First, we edit the 

repositories.manifest file found in the root directory of our project and add one of the 

libhello repositories as a prerequisite. Let’s start with cppget.org:

role: prerequisite
location: https://pkg.cppget.org/1/stable

Refer to Repository Manifest for details on the repository manifest values.

Next, we edit the manifest file (again, found in the root of our project) and specify the depen­

dency on libhello with optional version constraint. For example:

depends: libhello ^1.0.0

Let’s briefly discuss version constraints (for details see the depends value documentation). A

version constraint can be expressed with a comparison operator (==, >, <, >=, <=), a range short­

cut operator (~ and ^), or a range. Here are a few examples:

depends: libhello == 1.2.3
depends: libhello >= 1.2.3

depends: libhello ~1.2.3
depends: libhello ^1.2.3

depends: libhello [1.2.3 1.2.9)

15Revision 0.18, June 2025 The build2 Toolchain Introduction

1.3 Adding and Removing Dependencies

https://cppget.org/
https://cppget.org/


You may already be familiar with the tilde (~) and caret (^) constraints from dependency

managers for other languages. To recap, tilde allows upgrades to any further patch versions while

caret also allows upgrades to further minor versions. They are equivalent to the following ranges:

~X.Y.Z  [X.Y.Z  X.Y+1.0)

^X.Y.Z  [X.Y.Z  X+1.0.0)  if X >  0
^0.Y.Z  [0.Y.Z  0.Y+1.0)  if X == 0

Zero major version component is customarily used during early development where the minor

version effectively becomes major. As a result, the caret constraint has a special treatment of this 

case.

Unless you have good reasons not to (for example, a dependency does not use semantic version­

ing), we suggest that you use the ^ constraint which provides a good balance between compatibil­

ity and upgradability with ~ being a more conservative option.

Besides the version constraint, the dependency declaration supports a number of more advanced

features, including conditional dependencies, dependency alternatives, and dependency configu­

ration. For details, see the depends value documentation.

Ok, we’ve specified where our package comes from (repositories.manifest) and which

versions we find acceptable (manifest). The next step is to edit hello/buildfile and

import the libhello library into our build:

import libs += libhello%lib{hello}

Finally, we modify our source code to use the library:

#include <libhello/hello.hxx>
...

int main (int argc, char* argv[])
{
  ...
  hello::say_hello (cout, argv[1]);
}

You are probably wondering why we have to specify this repeating information in so many

places. Let’s start with the source code: we can’t specify the version constraint or location there

because it will have to be repeated in every source file that uses the dependency.

Moving up, buildfile is also not a good place to specify this information for the same reason

(a library can be imported in multiple buildfiles) plus the build system doesn’t really know

anything about version constraints or repositories which is the purview of the dependency 

management tools.

Revision 0.18, June 202516 The build2 Toolchain Introduction

1.3 Adding and Removing Dependencies



Finally, we have to separate the version constraint and the location because the same package can

be present in multiple repositories with different policies. For example, when a package from a

version control-based repository is published in an archive-based repository, its reposito­
ries.manifest file is ignored and all its dependencies should be available from the

archive-based repository itself (or its fixed set of prerequisite repositories). In other words, 

manifest belongs to a package while repositories.manifest – to a repository.

Also note that this is unlikely to become burdensome since adding new dependencies is not some­

thing that happens often. There are also ideas to automate this with a bdep-add(1) command

in the future.

To summarize, these are the files we had to modify to add a dependency to our project:

repositories.manifest   # add https://pkg.cppget.org/1/stable
manifest                # add ’depends: libhello ^1.0.0’
buildfile               # import libhello library
hello.cxx               # include libhello header (or import module)

While the repository URL and package name are easy to find on the cppget.org’s package 

description page, the C/C++ library ecosystem unfortunately does not follow any predictable

library or header naming scheme. If the library documentation does not provide any clues, then

another place to check are the library tests and examples that can often be found in the package

source directory (or source repository). In particular, every library in the stable section of the 

cppget.org repository should provide at least a basic test.

With a new dependency added, let’s check the status of our project:

$ bdep status
fetching pkg:cppget.org/stable (prerequisite of dir:/tmp/hello)
warning: authenticity of the certificate for pkg:cppget.org/stable
         cannot be established
certificate is for cppget.org, "Code Synthesis" <admin@cppget.org>
certificate SHA256 fingerprint:
70:64:FE:E4:E0:F3:60:F1:B4:<...>:E5:C2:68:63:4C:A6:47:39:43
trust this certificate? [y/n] y

hello configured 0.1.0-a.0.19700101000000
      available  0.1.0-a.0.19700101000000#1

The bdep-status(1) command has detected that the dependency information has changed

and tells us that a new iteration of our project (that #1) is now available for synchronization with

the build configuration.

We’ve also been prompted to authenticate the prerequisite repository. This will have to happen

once for every build configuration we initialize our project in and can quickly become tedious. To 

overcome this, we can mention the certificate fingerprint that we wish to automatically trust in

the repositories.manifest file (replace it with the actual fingerprint from the reposi­

tory’s about page):

17Revision 0.18, June 2025 The build2 Toolchain Introduction

1.3 Adding and Removing Dependencies

https://cppget.org/
https://cppget.org/


role: prerequisite
location: https://pkg.cppget.org/1/stable
trust: 70:64:FE:E4:E0:F3:60:F1:B4:<...>:E5:C2:68:63:4C:A6:47:39:43

To synchronize a project with one or more build configurations we use the bdep-sync(1) 

command:

$ bdep sync
synchronizing:
  new libhello/1.0.0 (required by hello)
  upgrade hello/0.1.0-a.0.19700101000000#1

Or we could just build the project without an explicit sync – if necessary, it will be automati­

cally synchronized:

$ b
synchronizing:
  new libhello/1.0.0 (required by hello)
  upgrade hello/0.1.0-a.0.19700101000000#1
c++ ../hello-gcc/libhello-1.0.0/libhello/cxx{hello} ->
    ../hello-gcc/libhello-1.0.0/libhello/objs{hello}
ld ../hello-gcc/libhello-1.0.0/libhello/libs{hello}
c++ hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}
ld ../hello-gcc/hello/hello/exe{hello}
ln ../hello-gcc/hello/hello/exe{hello} -> hello/

The synchronization as performed by the sync command is two-way: dependency packages are

first added, removed, upgraded, or downgraded in build configurations according to the project’s

version constraints and user input. Then the actual versions of the dependencies present in the

build configurations are recorded in the project’s lockfile so that if desired, the build can be 

reproduced exactly. The lockfile functionality is not yet implemented. For a new dependency

the latest available version that satisfies the version constraint is used.

Synchronization is also the last step in the bdep-init(1) command’s logic.

Let’s now examine the status in all (--all|-a) the build configurations and include the imme­

diate dependencies (--immediate|-i):

$ bdep status -ai
in configuration @gcc:
hello configured 0.1.0-a.0.19700101000000#1
  libhello ^1.0.0 configured 1.0.0

in configuration @clang:
hello configured 0.1.0-a.0.19700101000000
      available 0.1.0-a.0.19700101000000#1

Since we didn’t specify a configuration explicitly, only the default (gcc) was synchronized.

Normally, you would try a new dependency in one configuration, make sure everything looks

good, then synchronize the rest with --all|-a (or, again, just build what you need directly).

Revision 0.18, June 202518 The build2 Toolchain Introduction

1.3 Adding and Removing Dependencies



Here are a few examples (see bdep-projects-configs(1) for details):

$ bdep sync -a
$ bdep sync @gcc @clang
$ bdep sync -c ../hello-mingw

After adding a new (or upgrading/downgrading existing) dependency, it’s a good idea to 

deep-test our project: run not only our own tests but also of its immediate (--immediate|-i)

or even all (--recursive|-r) dependencies. For example:

$ bdep test -ai
in configuration @gcc:
test ../hello-gcc/libhello-1.0.0/tests/basics/exe{driver}
test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

in configuration @clang:
test ../hello-clang/libhello-1.0.0/tests/basics/exe{driver}
test ../hello-clang/hello/hello/exe{hello} +
     hello/testscript{testscript}

To get rid of a dependency, we simply remove it from the manifest file and synchronize the

project. For example, assuming libhello is no longer mentioned as a dependency in our 

manifests:

$ bdep status
hello configured 0.1.0-a.0.19700101000000#1
      available  0.1.0-a.0.19700101000000#2

$ bdep sync
synchronizing:
  drop libhello/1.0.0 (unused)
  upgrade hello/0.1.0-a.0.19700101000000#2

If instead of building a dependency from source you would prefer to use a version that is installed

by your system package manager, see Using System-Installed Dependencies. And for information

on using dependencies that are not build2 packages refer to Using Unpackaged Dependencies.

1.4 Upgrading and Downgrading Dependencies

Let’s say we would like to try that 1.1.0 version we have seen in the libhello git reposi­

tory. First, we need to add the repository to the repositories.manifest file:

role: prerequisite
location: https://git.build2.org/hello/libhello.git

Note that we don’t need the trust value since git repositories are not authenticated.

19Revision 0.18, June 2025 The build2 Toolchain Introduction

1.4 Upgrading and Downgrading Dependencies



To refresh the list of available dependency versions we use the bdep-fetch(1) command (or

the --fetch|-f option to status):

$ bdep fetch
$ bdep status libhello
libhello configured 1.0.0 available [1.1.0]

To upgrade (or downgrade) dependencies we again use the bdep-sync(1) command. We can

upgrade one or more specific dependencies by listing them as arguments to sync:

$ bdep sync libhello
synchronizing:
  new libformat/1.0.0 (required by libhello)
  new libprint/1.0.0 (required by libhello)
  upgrade libhello/1.1.0
  upgrade hello/0.1.0-a.0.19700101000000#3

Without an explicit version or the --patch|-p option, sync will upgrade the specified depen­

dencies to the latest available versions. For example, if we don’t like version 1.1.0, we can 

downgrade it back to 1.0.0 by specifying the version explicitly (we pass --old-avail­
able|-o to status to see the old versions):

$ bdep status -o libhello
libhello configured 1.1.0 available (1.1.0) [1.0.0]

$ bdep sync libhello/1.0.0
synchronizing:
  drop libprint/1.0.0 (unused)
  drop libformat/1.0.0 (unused)
  downgrade libhello/1.0.0
  reconfigure hello/0.1.0-a.0.19700101000000#3

The available versions are listed in the descending order with [] indicating that the version is

only available as a dependency and () marking the current version.

Instead of specific dependencies we can also upgrade (--upgrade|-u) or patch 

(--patch|-p) immediate (--immediate|-i) or all (--recursive|-r) dependencies of

our project.

As a more realistic example, version 1.1.0 of libhello depends on two other libraries: 

libformat and libprint. Here is our project’s dependency tree while we were still using

that version:

$ bdep status -r
hello configured 0.1.0-a.0.19700101000000#3
  libhello ^1.0.0 configured 1.1.0
    libformat ^1.0.0 configured 1.0.0
    libprint ^1.0.0 configured 1.0.0

Revision 0.18, June 202520 The build2 Toolchain Introduction

1.4 Upgrading and Downgrading Dependencies



A typical conservative dependency management workflow would look like this:

$ bdep status -fi  # refresh and examine immediate dependencies
hello configured 0.1.0-a.0.19700101000000#3
  libhello configured 1.1.0 available [2.0.0] [1.2.0] [1.1.2] [1.1.1]

$ bdep sync -pi    # upgrade immediate to latest patch version
synchronizing:
  upgrade libhello/1.1.2
  reconfigure hello/0.1.0-a.0.19700101000000#3
continue? [Y/n] y

Notice that in case of such mass upgrades you are prompted for confirmation before anything is 

actually changed (unless you pass --yes|-y).

In contrast, the following would be a fairly aggressive workflow where we upgrade everything to

the latest available version (version constraints permitting; here we assume ^1.0.0 was used for

all the dependencies):

$ bdep status -fr  # refresh and examine all dependencies
hello configured 0.1.0-a.0.19700101000000#3
  libhello configured 1.1.0 available [2.0.0] [1.2.0] [1.1.1]
    libprint configured 1.0.0 available [2.0.0] [1.1.0] [1.0.1]
    libformat configured 1.0.0 available [2.0.0] [1.1.0] [1.0.1]

$ bdep sync -ur    # upgrade all to latest available version
synchronizing:
  upgrade libprint/1.1.0
  upgrade libformat/1.1.0
  upgrade libhello/1.2.0
  reconfigure hello/0.1.0-a.0.19700101000000#3
continue? [Y/n] y

We can also have something in between: patch all (sync -pr), upgrade immediate 

(sync -ui), or even upgrade immediate and patch the rest (sync -ui followed by 

sync -pr).

1.5 Build-Time Dependencies and Linked Configurations

The libhello dependency we’ve been playing with in the previous two sections is a runtime 

dependency, that is, our hello executable needs it at run-time. This is typical of libraries and

most of our dependencies will be of this kind. However, sometimes we may only wish to use a 

dependency during the build, typically a tool, such as a source code generator. This kind of 

dependency is called a build-time dependency.

Build-time dependencies are an advanced topic and if you don’t have an immediate need for this 

functionality, you may skip this section without any loss of continuity.

21Revision 0.18, June 2025 The build2 Toolchain Introduction

1.5 Build-Time Dependencies and Linked Configurations



Why do we need to distinguish between the two kinds of dependencies? The primary reason is 

cross-compilation: if we build a tool in the same (cross-compiling) build configuration as our

project, then we will not be able to execute it during the build (since it’s built for a different target

than what we are running). But even if you are not planning to cross-compile, there are other

good reasons: if you have multiple build configurations for your project, you may want to share a

single build of your tool between them (why waste time building the same thing multiple times).

And even if you only have a single build of your project, you may want to build the tool with 

different options (for example, optimized instead of debug).

You can probably see where this is going: in order to properly support build-time dependencies,

we need to distinguish them from runtime and we need an ability to build them in a separate build 

configuration.

Let’s see how all this works using the xxd tool as an example. If you are not familiar, xxd is a

hexdump utility which can be used to embed external binary data into C/C++ code in a portable

manner. Specifically, it can read a binary file and produce a C array definition of its contents. For 

example:

$ xxd -i names.txt

unsigned char names_txt[] = {
  0x57, 0x6f, 0x72, 0x6c, 0x64, 0x0a, 0x55, 0x6e, 0x69, 0x76, 0x65,
  0x72, 0x73, 0x65, 0x0a, 0x50, 0x65, 0x6f, 0x70, 0x6c, 0x65, 0x0a,
  0x4d, 0x61, 0x72, 0x74, 0x69, 0x61, 0x6e, 0x73, 0x0a
};
unsigned int names_txt_len = 31;

While the above output is a bit old school (using unsigned int instead of size_t) and the

array/length names are derived from the input file name (including directories), xxd can also

produce just the array values allowing us to wrap it into an array of our choice. See the xxd
package description for examples of build2 recipes that do that.

So here is an idea: instead of failing if the user did not specify the name to greet, let’s improve

our hello program to greet a random generic name from a pre-defined list. To make this list

easier to maintain, let’s keep it in a separate file called names.txt and use xxd to embed it

into our hello executable. We can use the one name per line format, for example:

$ cat names.txt
World
Universe
People
Martians

The first step in our plan is to add a build-time dependency on xxd to our project’s manifest,

similar to how we did for libhello:

Revision 0.18, June 202522 The build2 Toolchain Introduction

1.5 Build-Time Dependencies and Linked Configurations

https://cppget.org/xxd
https://cppget.org/xxd


...
depends: libhello ^1.0.0
depends: * xxd >= 8.2.0

The * mark in front of the xxd name indicates that it’s a build-time dependency.

Next we import xxd in our buildfile:

...

import libs += libhello%lib{hello}

import! [metadata] xxd = xxd%exe{xxd}

...

There are two main differences compared to the way we import the libhello library: we

request metadata ([metadata]) and we do immediate importation (import!). Let’s briefly

discuss what this means (for details, refer to Target Importation in the build system manual). 

Metadata for an executable contains information that helps the build system do a better job when

an executable is used as part of the build. For example, it includes the uniform program name to

be used for low-verbosity diagnostics as well as the version, checksum, and environment that are

used to detect changes. And immediate importation instructs the build system to skip rule-specific 

importation (for example, search for libraries in compiler-specific search paths) and import the

target here and now, failing if that’s not possible. It is usually appropriate for importing executa­

bles. Note also that the metadata can only be requested in immediate importation.

While requesting the metadata means that you will have a simpler buildfile and a more reli­

able build, it also likely means that you won’t be able to use the system-installed version of the

executable since it needs to be patched to provide the metadata.

Now that we have the xxd tool, let’s use it from an ad hoc recipe to convert names.txt to 

names.cxx. Here is the complete buildfile for our hello executable:

libs =
import libs += libhello%lib{hello}

import! [metadata] xxd = xxd%exe{xxd}

exe{hello}: {hxx ixx txx cxx}{** -names} cxx{names} $libs testscript

cxx{names}: file{names.txt} $xxd
{{
  i = $path($<[0])
  env --cwd $directory($i) -- $xxd -i $leaf($i) >$path($>)
}}

23Revision 0.18, June 2025 The build2 Toolchain Introduction

1.5 Build-Time Dependencies and Linked Configurations



The last bit that we need to do is to modify hello.cxx to use the list of fallback names (the

actual implementation is left as an exercise for the reader):

#include <iostream>

extern unsigned char names_txt[];
extern unsigned int names_txt_len;

int main (int argc, char* argv[])
{
  using namespace std;

  if (argc < 2)
  {
    // TODO: pick a random name from names_txt using newline as
    //       a name separator.
  }

  ...
}

Let’s recap what we’ve achieved so far: we’ve added a build-time dependency on xxd, we’ve

imported it in our buildfile and used it in an ad hoc recipe to generate names.cxx, and

we’ve modified hello.cxx to use the generated list of names. The only step left is to actually

try to build it. But before doing that, let’s also print the list of build configurations we currently

have associated with our project (see the list subcommand in bdep-config(1)):

$ bdep config list
@gcc /tmp/hello-gcc/ 1 target default,forwarded,auto-synchronized
@clang /tmp/hello-clang/ 2 target auto-synchronized

$ b
creating configuration of host type in /tmp/hello-host/ and
associating it with project(s):
  /tmp/hello/
as if by executing command(s):
  bdep config create @host --type host --no-default /tmp/hello-host \
  cc config.config.load=~host
while searching for configuration for build-time dependency xxd of
package hello/0.1.0-a.0.19700101000000#4
while synchronizing configuration /tmp/hello-gcc/
continue? [Y/n] y

synchronizing /tmp/hello-gcc/:
  new xxd/8.2.3075 [/tmp/hello-host/] (required by hello)
  upgrade hello/0.1.0-a.0.19700101000000#4

c ../hello-host/xxd-8.2.3075+1/c{xxd} ->
  ../hello-host/xxd-8.2.3075+1/obje{xxd}
ld ../hello-host/xxd-8.2.3075/exe{xxd}
xxd hello/file{names.txt} -> ../hello-gcc/hello/hello/cxx{names}

Revision 0.18, June 202524 The build2 Toolchain Introduction

1.5 Build-Time Dependencies and Linked Configurations



c++ ../hello-gcc/hello/hello/cxx{names} ->
    ../hello-gcc/hello/hello/obje{names}
c++ hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}
ld ../hello-gcc/hello/hello/exe{hello}

While the diagnostics is hopefully fairly self-explanatory, let’s go over the key points. The first

part goes exactly as in the previous section: because we’ve added a new dependency, the build 

configuration needs to be synchronized with the project state. However, this is a build-time 

dependency and build-time dependencies are built in configurations of type host. So bdep first

looks for such a configuration among the configurations already associated with the project. In

our case there isn’t one (from the listing above we can see that all our configurations are of type 

target). In this case, bdep offers to create one automatically. We accept this offer by answer­

ing y at the prompt and the rest should again look familiar: the new dependency is configured and

built (but now in the host configuration) and our project is updated (which involves running the

new dependency). If we now again print the list of build configurations associated with our

project, we will see the new configuration among them:

$ bdep config list
@gcc /tmp/hello-gcc/ 1 target default,forwarded,auto-synchronized
@clang /tmp/hello-clang/ 2 target auto-synchronized
@host /tmp/hello-host/ 3 host forwarded,auto-synchronized

Let’s also try to update our project in the clang configuration:

$ bdep update @clang
synchronizing:
  upgrade hello/0.1.0-a.0.19700101000000#4

xxd hello/file{names.txt} -> ../hello-clang/hello/hello/cxx{names}
c++ ../hello-clang/hello/hello/cxx{names} ->
    ../hello-clang/hello/hello/obje{names}
c++ hello/cxx{hello} -> ../hello-clang/hello/hello/obje{hello}
ld ../hello-clang/hello/hello/exe{hello}

This time we are neither prompted to create another configuration nor is a new instance of xxd
built – as we would have expected, the existing host configuration with the already built xxd is 

reused.

From the above output we can see that bdep creates the host configuration using the default host

compiler and build options (~host) which means the result will most likely be optimized. But if

we don’t like something about the host configuration that bdep offers us to create, we can

answer n at the prompt, create one ourselves (by perhaps copying and tweaking the command

line bdep was going to use), and then restart the build.

Besides the target and host types, the third pre-defined configuration type is build2, which

is used for build system modules. If you would like to try a build-time dependency on a build

system module, there is a dummy libbuild2-hello module that you can use. Simply add the 

following line to your manifest:

25Revision 0.18, June 2025 The build2 Toolchain Introduction

1.5 Build-Time Dependencies and Linked Configurations



depends: * libbuild2-hello

And the following line somewhere in your buildfile:

using hello

Then build the project and see what happens.

The target type signifies a configuration for the end-result of our build. If no type is specified

during the configuration creation with the --type option (or --config-type if using 

bdep-new), then target is assumed.

The host type signifies a configuration corresponding to the host machine, that is, the machine

on which the build is performed. It is expected that an executable built in the host configuration

can be executed. Oftentimes, target and host are the same. In this case, if you would prefer not to

have separate configurations, then you can make your target configuration self-hosted by using

the host type rather than target. For example:

$ bdep init -C ../hello-gcc @gcc --type host cc config.cxx=g++

The build2 type is a special kind of host configuration that is used to build build system

modules. It cannot be self-hosted.

Building build-time dependencies in separate configurations is just one application of the more

general configuration linking mechanism which allows us to build a package in one configuration

while its dependencies – in one or more linked configurations. This, for example, can be used to

create a "base" configuration with common dependencies that are shared between multiple 

configurations (sometimes also referred to as build configuration overlaying).

Let’s see how this works on our hello project. Imagine libhello that we depend on is very

big and takes a while to compile. We also aren’t really interested in building it in both gcc and 

clang configurations (it’s our project that we are interested in building with different compil­

ers). Since these two compilers are ABI-compatible (at least on Linux), we could build 

libhello with just one of them and reuse the result with the other. Let’s see how we can

achieve this with linked configurations (refer to bdep-config(1) for details on subcommands 

involved):

$ bdep config create ../hello-base @base --no-default cc config.cxx=g++
$ bdep config create ../hello-gcc @gcc --default cc config.cxx=g++
$ bdep config create ../hello-clang @clang cc config.cxx=clang++

$ bdep config link @gcc @base
$ bdep config link @clang @base

$ bdep init @gcc { @base }+ ?libhello
$ bdep init @clang

Revision 0.18, June 202526 The build2 Toolchain Introduction

1.5 Build-Time Dependencies and Linked Configurations



Most of the commands are hopefully self-explanatory except for the { @base }+ 
?libhello part. Here ? is a package flag that instructs bdep to treat libhello as a depen­

dency. And { @base }+ tells it to build this dependency in the base configuration (we don’t

have to do the same for clang since the dependency is already built). See bdep-sync(1) for

details on this syntax.

1.6 Versioning and Release Management

Let’s now discuss versioning and release management and, yes, that strange-looking 

0.1.0-a.0.19700101000000 we keep seeing. While a build system project doesn’t need a

version and a bpkg package can use custom versioning schemes (see Package Version), a project

managed by bdep must use standard versioning. A dependency, which is a bpkg package, need

not use standard versioning.

Standard versioning (stdver) is a semantic versioning (semver) scheme with a more precisely

defined pre-release component and without any build metadata.

If you believe that semver is just major.minor.patch, then in your worldview stdver would

be the same as semver. In reality, semver also allows loosely defined pre-release and build meta­

data components. For example, 1.2.3-beta.1+build.23456 is a valid semver.

A standard version has the following form:

major.minor.patch[-prerel]

The major, minor, and patch components have the same meaning as in semver. The 

prerel component is used to provide continuous versioning of our project between releases. 

Specifically, during development of a new version we may want to publish several pre-releases,

for example, alpha or beta. In between those we may also want to publish a number of snapshots,

for example, for CI. With continuous versioning all these releases, pre-releases, and snapshots are

assigned unique, properly ordered versions.

Continuous versioning is a cornerstone of the build2 project dependency management. In case

of snapshots, an appropriate version is assigned automatically in cooperation with your VCS.

The prerel component for a pre-release has the following form:

(a|b).num

Here a stands for alpha, b stands for beta, and num is the alpha/beta number. For example:

27Revision 0.18, June 2025 The build2 Toolchain Introduction

1.6 Versioning and Release Management

https://semver.org/


1.1.0        # final              release  for 1.1.0
1.2.0-a.1    # first  alpha   pre-release  for 1.2.0
1.2.0-a.2    # second alpha   pre-release  for 1.2.0
1.2.0-b.1    # first  beta    pre-release  for 1.2.0
1.2.0        # final              release  for 1.2.0

The prerel component for a snapshot has the following form:

(a|b).num.snapsn[.snapid]

Where snapsn is the snapshot sequence number and snapid is the snapshot id. In case of 

git, snapsn is the commit timestamp in the YYYYMMDDhhmmss form and UTC timezone

while snapid is a 12-character abbreviated commit id. For example:

1.2.3-a.1.20180319215815.26efe301f4a7

Notice also that a snapshot version is ordered after the corresponding pre-release version. That is, 

1.2.3-a.1 < 1.2.3-a.1.1. As a result, it is customary to start the development of a new

version with X.Y.Z-a.0.z, that is, a snapshot after the (non-existent) zero’th alpha release.

We will explain the meaning of z in this version momentarily. The following chronologi­

cally-ordered versions illustrate a typical release flow of a project that uses git as its VCS:

0.1.0-a.0.19700101000000               # snapshot (no commits yet)
0.1.0-a.0.20180319215815.26efe301f4a7  # snapshot (first commit)
...                                    # more commits/snapshots
0.1.0-a.1                              # pre-release (first alpha)
0.1.0-a.1.20180319221826.a6f0f41205b8  # snapshot
...                                    # more commits/snapshots
0.1.0-a.2                              # pre-release (second alpha)
0.1.0-a.2.20180319231937.b701052316c9  # snapshot
...                                    # more commits/snapshots
0.1.0-b.1                              # pre-release (first beta)
0.1.0-b.1.20180319242038.c812163417da  # snapshot
...                                    # more commits/snapshots
0.1.0                                  # release
0.2.0-a.0.20180319252139.d923274528eb  # snapshot (first in 0.2.0)
...

For a more detailed discussion of standard versioning and its support in build2 refer to 

version Module.

Let’s now see how this works in practice by publishing a couple of versions for our hello
project. By now it should be clear what that 0.1.0-a.0.19700101000000 means – it is the

first snapshot version of our project. Since there are no commits yet, it has the UNIX epoch as its

commit timestamp. Let’s see what changes after we’ve made our first commit:

Revision 0.18, June 202528 The build2 Toolchain Introduction

1.6 Versioning and Release Management



$ git add .
$ git commit -m "Initial implementation"

$ bdep status
hello configured 0.1.0-a.0.19700101000000
      available  0.1.0-a.0.20180507062614.ee006880fc7e

Just like with changes to dependency information, status has detected that a new (snapshot)

version of our project is available for synchronization.

Another way to view the project’s version (which works even if we are not using bdep) is with

the build system’s info meta-operation:

$ b info
project: hello
version: 0.1.0-a.0.20180507062614.ee006880fc7e
summary: hello C++ executable
...

Let’s synchronize with the default build configuration:

$ bdep sync
synchronizing:
  upgrade hello/0.1.0-a.0.20180507062614.ee006880fc7e

$ bdep status
hello configured 0.1.0-a.0.20180507062614.ee006880fc7e

Notice that we didn’t have to manually change the version anywhere. All we had to do was

commit our changes and a new snapshot version was automatically derived by build2 from the

new git commit. Without this automation continuous versioning would hardly be practical.

If we now make another commit, we will see a similar picture:

$ bdep status
hello configured 0.1.0-a.0.20180507062614.ee006880fc7e
      available  0.1.0-a.0.20180507062615.8fb9de05b38f

Note that you don’t need to manually run sync after every commit. As discussed earlier, you can

simply run the build system to update your project and things will get automatically synchronized

if necessary.

Ok, time for our first release. Let’s start with 0.1.0-a.1. Unlike snapshots, for pre-releases as

well as final releases we have to change the version in the manifest file:

version: 0.1.0-a.1

The manifest file is the singular place where we specify the package version. The build

system’s version module makes it available in various forms in buildfiles and even source 

code.

29Revision 0.18, June 2025 The build2 Toolchain Introduction

1.6 Versioning and Release Management



To ensure continuous versioning, this change to version must be the last commit for this

(pre-)release which itself must be immediately followed by a second change to the version start­

ing the development of the next (pre-)release. We also recommend that you tag the release

commit with a tag name in the vX.Y.Z form.

Having regular release tag names with the v prefix allows one to distinguish them from other

tags, for example, with wildcard patterns.

Here is the release workflow for our example:

$ git commit -a -m "Release version 0.1.0-a.1"
$ git tag -a v0.1.0-a.1 -m "Tag version 0.1.0-a.1"
$ git push --follow-tags

# Version 0.1.0-a.1 is now public.

$ edit manifest  # change ’version: 0.1.0-a.1.z’
$ git commit -a -m "Change version to 0.1.0-a.1.z"
$ git push

# Master is now open for business.

Notice also that when specifying a snapshot version in manifest we use the special z snapshot

value (for example, 0.1.0-a.1.z) which is recognized and automatically replaced by 

build2 with, in case of git, the current commit timestamp and id (refer to version Module

for details).

While not particularly complicated, performing the release steps manually is both tedious and

error-prone. Instead, this process can be automated with the bdep-release(1) command. 

Specifically, in its default mode, this command will update the version in the manifest file,

commit and tag this change, open the next development cycle (again, by changing manifest
and committing), and, finally, if --push is specified, push everything to the remote. So, instead

of the above manual steps, we could have simply run:

$ bdep release --alpha --push
releasing:
  package: hello
  current: 0.1.0-a.0.z
  release: 0.1.0-a.1
  open:    0.1.0-a.1.z
  commit:  yes
  tag:     v0.1.0-a.1
  push:    origin/master
continue? [y/n] y
[master 82a7e65] Release version 0.1.0-a.1
[master e6cf3c0] Change version to 0.1.0-a.1.z
pushing branch master, tag v0.1.0-a.1
To github.com:john-doe/hello.git
   26ec5c9..e6cf3c0  master -> master
 * [new tag]         v0.1.0-a.1 -> v0.1.0-a.1

Revision 0.18, June 202530 The build2 Toolchain Introduction

1.6 Versioning and Release Management



The release command has a number of alternative modes, such as for releasing a package revi­

sion, as well as a number of options that control which version will be released and which version

will be opened. See bdep-release(1) for details.

Publishing the final release to the version control repository is exactly the same. This time,

however, let’s see how we can also publish it to an archive-based repository. The first step is

again to make the release, which we will do with the help of the release command. Except

now we will delay opening the next development cycle by passing --no-open (there is also no 

--alpha since this is the final release):

$ bdep release --no-open --push
releasing:
  package: hello
  current: 0.1.0-a.1.z
  release: 0.1.0
  commit:  yes
  tag:     v0.1.0
  push:    origin/master
continue? [y/n] y
[master 00ed45a] Release version 0.1.0
pushing branch master, tag v0.1.0
To github.com:john-doe/hello.git
   5d5094c..00ed45a  master -> master
 * [new tag]         v0.1.0 -> v0.1.0

To publish our project to an archive-based repository we use the bdep-publish(1)

command. For example:

$ bdep publish
publishing:
  to:      https://cppget.org
  as:      John Doe <john@example.org>
  package: hello
  version: 0.1.0
  project: hello
  section: alpha
  control: https://github.com/john-doe/hello.git
continue? [y/n] y
pushing branch build2-control
submitting hello-0.1.0.tar.gz
############################################################# 100.0%
package submission is queued: https://queue.cppget.org/hello/0.1.0
reference: 0c596fca2017

Let’s see what’s going on here. By default publish submits to the cppget.org repository. On 

cppget.org package names are assigned on a first come first serve basis. But instead of using

logins or emails to authenticate package ownership, cppget.org uses your version control 

repository as a proxy. In a nutshell, when we submit a package for the first time, its control repos­

itory is associated with its name and all subsequent submissions have to use the same control 

repository (the authentication part). When submitting a package, publish also adds a file to the 

build2-control branch of the control repository with the package archive checksum. On the

31Revision 0.18, June 2025 The build2 Toolchain Introduction

1.6 Versioning and Release Management

https://cppget.org/


other side, cppget.org checks for the presence of this file to make sure that whomever is

making this submission has write access to the control repository (the authorization part). See 

bdep-publish(1) for details.

The rest should be pretty straightforward: publish prepares and uploads a distribution of our

package which goes into the alpha section of the repository (because it has 0 major version). In

response we get a URL which we can use to check the status of our submission on 

queue.cppget.org. And after some basic testing and verification, our package should appear on 

cppget.org (the exact steps are described in Submission Policies). Note also that package 

submissions to cppget.org are public and permanent and cannot be removed under any 

circumstances.

Finally, we also shouldn’t forget to increment the version for the next development cycle. For that

we can use the --open mode of the release command. For example:

$ bdep release --open --push
opening:
  package: hello
  current: 0.1.0
  open:    0.2.0-a.0.z
  commit:  yes
  push:    origin/master
continue? [y/n] y
[master ace2f6e] Change version to 0.2.0-a.0.z
pushing branch master
To github.com:john-doe/hello.git
   00ed45a..ace2f6e  master -> master

One sticky point of continuous versioning is choosing the next version. For example, above

should we continue with 0.1.1-a.0, 0.2.0-a.0, or 1.0.0-a.0? The important rule to

keep in mind is that we can jump forward to any further version at any time and without breaking 

continuous versioning. But we can never jump backwards.

For example, we can start with 0.2.0-a.0 but if we later realize that this will actually be a new

major release, we can easily change it to 1.0.0-a.0. As a result, the general guideline is to

start conservatively by either incrementing the patch or the minor version component. And the 

recommended strategy is to increment the minor component and, if required, release patch

versions from a separate branch (created by branching off from the release commit). This is the

default behavior of the release command.

Note also that you don’t have to make any pre-releases if you don’t need them. While during 

development you would still keep the version as X.Y.Z-a.0, at release you simply change it

directly to the final X.Y.Z.

Revision 0.18, June 202532 The build2 Toolchain Introduction

1.6 Versioning and Release Management

https://queue.cppget.org/
https://cppget.org?submit/


When publishing the final release you may also want to clean up now obsolete pre-release tags.

For example:

$ git tag -l ’v0.1.0-*’ | xargs git push --delete origin
$ git tag -l ’v0.1.0-*’ | xargs git tag --delete

While at first removing such tags may seem like a bad idea, pre-releases are by nature temporary

and their use only makes sense until the final release is published.

Also note that having a git repository with a large number of published but unused version tags

may result in a significant download overhead.

Let’s also briefly discuss in which situations we should increment each of the version compo­

nents. While semver gives basic guidelines, there are several ways to apply them in the context of

C/C++ where there is a distinction between binary and source compatibility. We recommend that

you reserve patch releases for specific bug fixes and security issues that you can guarantee with a

high level of certainty to be binary-compatible. Otherwise, if the changes are source-compatible, 

increment minor. And if they are breaking (that is, the user code likely will need adjustments), 

increment major. During early development, when breaking changes are frequent, it is customary

to use the 0.Y.Z versions where Y effectively becomes the major component. Again, refer to the 

version Module for a more detailed discussion of this topic.

1.7 Developing Multiple Packages and Projects

How does a library like libhello get developed? It’s possible someone woke up one day and 

realized that they were going to build a useful library that everyone was going to use. But

somehow this doesn’t feel like how it really works. In the real world things start organically:

someone had a project like hello and then needed the same functionality in another project. Or

someone else needed it and asked the author to factor it out into a library. For this approach to

work, however, moving such common functionality into a library and then continue its parallel 

development must be a simple, frictionless process. Let’s see how this works in build2.

First, we need to decide whether to make libhello another package in our hello project (that

is, in the same git repository) or a separate project (with a separate repository). Both arrange­

ments are equally well supported.

A multi-package project works best if all the packages have the same version and are released

together. While the packages themselves can have different versions (since each has its own 

manifest), in this scenario following the release tagging recommendations discussed earlier

will be problematic.

Let’s start with a separate project since it is simpler. As the first step we use bdep-new(1) to

create a new library project next to our hello:

33Revision 0.18, June 2025 The build2 Toolchain Introduction

1.7 Developing Multiple Packages and Projects



$ bdep new -l c++ -t lib libhello
created new library project libhello in /tmp/libhello/

$ ls
hello/
libhello/
hello-gcc/
hello-clang/

$ tree libhello
libhello/
|-- build/
|   ·-- ...
|-- libhello/
|   |-- hello.hxx
|   |-- hello.cxx
|   ·-- buildfile
|-- buildfile
|-- manifest
|-- README.md
·-- repositories.manifest

Similar to the executable project, this layout is not mandatory and bdep-new(1) can create a

number of alternative library structures. For example, if you prefer the include/src split, try:

$ bdep new -l c++ -t lib,split libhello

See SOURCE LAYOUT for more examples.

Let’s edit the generated manifest file and add the project value (customarily after 

version) to indicate that our library belongs to the same overall project as our executable:

$ cat libhello/manifest
: 1
name: libhello
version: 0.1.0-a.0.z
project: hello
summary: hello C++ library
...

The project value is used to group related packages together in order to help with their organi­

zation and discovery. For example, if later we create libhello2 or libhello-extra, then

it would make sense for them to also belong to the hello project. See the project value 

documentation for details.

Our two projects will be sharing the same set of build configurations, so next we initialize 

libhello in hello-gcc and hello-clang (notice the use of --config-add|-A
instead of --config-create|-C):

Revision 0.18, June 202534 The build2 Toolchain Introduction

1.7 Developing Multiple Packages and Projects



$ cd libhello

$ bdep init -A ../hello-gcc @gcc
initializing in project /tmp/libhello/
added configuration @gcc /tmp/hello-gcc/ default,auto-synchronized
synchronizing:
  new libhello/0.1.0-a.0.19700101000000

$ bdep init -A ../hello-clang @clang
initializing in project /tmp/libhello/
added configuration @clang /tmp/hello-clang/ auto-synchronized
synchronizing:
  new libhello/0.1.0-a.0.19700101000000

If two or more projects share the same build configuration, then all of them are always synchro­

nized at once, regardless of the originating project. It also makes sense to have the same default 

configuration and use identical configuration names in all the projects.

The last step is to move the desired functionality from hello to libhello and at the same

time add a dependency on libhello, just as we did earlier (add a depends entry to mani­
fest, then import the library in buildfile, and so on). One interesting question is what to put

as a prerequisite repository in repositories.manifest. Our own setup will work even if

we don’t put anything there – the dependency will be automatically resolved to our local version

of libhello since we have initialized it in all our build configurations. However, in case our 

hello repository is used by someone else, it’s a good idea to add the remote git repository for 

libhello as a prerequisite.

By now you have probably realized that our project directory is just another type of package 

repository. See bpkg-repository-types(1) for more information.

And that’s it, now we can build and test our new arrangement:

$ cd ../hello   # back to hello project root
$ bdep test -i
c++ ../libhello/libhello/cxx{hello} ->
    ../hello-gcc/libhello/libhello/objs{hello}
c++ ../libhello/tests/basics/cxx{driver} ->
    ../hello-gcc/libhello/tests/basics/obje{driver}
c++ hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}
ld ../hello-gcc/libhello/libhello/libs{hello}
ld ../hello-gcc/libhello/tests/basics/exe{driver}
ld ../hello-gcc/hello/hello/exe{hello}
test ../hello-gcc/libhello/tests/basics/exe{driver}
test ../hello-gcc/hello/hello/exe{hello} + hello/testscript{testscript}

This is also the approach we would use if we wanted to fix a bug in someone else’s library. That

is, we would clone their library repository and initialize it in the build configurations of our

project which will "upgrade" the dependency to use the local version. Then we make the fix,

submit it upstream, and continue using the local version until our fix is merged/published, at

which point we deinitialize their library repository and our project will be automatically switched

35Revision 0.18, June 2025 The build2 Toolchain Introduction

1.7 Developing Multiple Packages and Projects



back to using the new upstream version of the library. Here is the summary of the steps in this 

workflow:

$ cd hello/                      # Our project.
$ bdep init -C @gcc ...          # Configures libhello as a dependency.

$ git clone .../libhello.git     # Need to fix a bug in libhello.
$ cd libhello
$ bdep init -A ../hello-gcc @gcc # Upgrades libhello to local version.

# Fix the bug in libhello, test, and submit upstream.
# Continue using local libhello until the bugfix is published.

$ cd libhello                    # Bugfix has been published.
$ bdep deinit @gcc               # Switches libhello back to dependency.

$ rm -r libhello                 # If no longer needed.

Let’s now examine the second option: making libhello a package inside hello. Here is the 

original structure of our hello project:

hello/
|-- .git/
|-- build/
|-- hello/
|   |-- hello.cxx
|   ·-- buildfile
|-- buildfile
|-- manifest
|-- README.md
·-- repositories.manifest

As the first step, we move the hello program into its own subdirectory:

hello/
|-- .git/
|-- hello/
|   |-- build/
|   |-- hello/
|   |   |-- hello.cxx
|   |   ·-- buildfile
|   |-- buildfile
|   |-- manifest
|   ·-- README.md
·-- repositories.manifest

Next we again use bdep-new(1) to create a new library but this time as a package inside an

already existing project:

$ cd hello
$ bdep new --package -l c++ -t lib libhello
created new library package libhello in /tmp/hello/libhello/

Revision 0.18, June 202536 The build2 Toolchain Introduction

1.7 Developing Multiple Packages and Projects



Let’s see what our project looks like now:

hello/
|-- .git/
|-- hello/
|   |-- ...
|   ·-- manifest
|-- libhello/
|   |-- ...
|   ·-- manifest
|-- buildfile
|-- packages.manifest
·-- repositories.manifest

Notice that, as discussed earlier, repositories.manifest belongs to the project (reposi­

tory) while manifest – to the package.

Besides the libhello directory the new command also created the buildfile and pack­
ages.manifest files in the root directory of our project. First let’s take a look inside build­
file:

import pkgs = */

./: $pkgs

This is what we call a glue buildfile. Its purpose is to "pull" together several packages so that

we are able to invoke the build system driver from the project root. See Target Importation for 

details.

Now let’s examine packages.manifest:

$ cat packages.manifest
: 1
location: libhello/

Up until now our hello was a simple, single-package project that didn’t need this file – mani­
fest in its root directory was sufficient (see bpkg-repository-types(1) for details on

the project repository structure). But now it contains several packages and we need to specify

where they are located within the project. So let’s go ahead and add the location of the hello 

package:

$ cat packages.manifest
: 1
location: libhello/
:
location: hello/

37Revision 0.18, June 2025 The build2 Toolchain Introduction

1.7 Developing Multiple Packages and Projects



Packages in a project can reside next to each other or in subdirectories but they cannot nest.

When published to an archive-based repository, each such package will be placed into its own 

archive.

Next we initialize the new package in all our build configurations:

$ cd libhello
$ bdep init -a
initializing in project /tmp/hello/
in configuration @gcc:
synchronizing:
  upgrade hello/0.1.0-a.0.19700101000000#1
  new libhello/0.1.0-a.0.19700101000000

in configuration @clang:
synchronizing:
  upgrade hello/0.1.0-a.0.19700101000000#1
  new libhello/0.1.0-a.0.19700101000000

Notice that the hello package has been "upgraded" to reflect its new location.

Finally, as before, we move the desired functionality from hello to libhello and at the same

time add a dependency on libhello. Note, however, that in this case we don’t need to add

anything to repositories.manifest since both packages are in the same project (reposi­

tory). And that’s it, now we can build and test our new arrangement:

$ cd ..      # back to hello project root
$ bdep test
c++ libhello/libhello/cxx{hello} ->
    ../hello-gcc/libhello/libhello/objs{hello}
c++ libhello/tests/basics/cxx{driver} ->
    ../hello-gcc/libhello/tests/basics/obje{driver}
c++ hello/hello/cxx{hello} -> ../hello-gcc/hello/hello/obje{hello}
ld ../hello-gcc/libhello/libhello/libs{hello}
ld ../hello-gcc/libhello/tests/basics/exe{driver}
ld ../hello-gcc/hello/hello/exe{hello}
test ../hello-gcc/libhello/tests/basics/exe{driver}
test ../hello-gcc/hello/hello/exe{hello} +
     hello/hello/testscript{testscript}

A multi-package project could have several files, such as README.md and LICENSE, which,

while shared by all the packages, must nevertheless reside within each package’s directory. The 

recommended way to avoid the duplication is to use symlinks. For example:

hello/
|-- .git/
|-- hello/
|   |-- ...
|   |-- LICENSE  -> ../LICENSE
|   ·-- manifest
|-- libhello/
|   |-- ...

Revision 0.18, June 202538 The build2 Toolchain Introduction

1.7 Developing Multiple Packages and Projects



|   |-- LICENSE  -> ../LICENSE
|   ·-- manifest
|-- LICENSE
|-- buildfile
|-- packages.manifest
·-- repositories.manifest

See Using Symlinks in build2 Projects for details.

1.8 Package Consumption

Ok, now that we have published a few releases of hello, how would the users of our project get

them? While they could clone the repository and use bdep just like we did, this is more of a 

development than a consumption workflow. For consumption it is much easier to use the package 

dependency manager, bpkg(1), directly.

Note that this approach also works for libraries in case you wish to use them in a project with a

build system other than build2. See Using Unpackaged Dependencies for background on

cross-build system library consumption.

First, we create a suitable build configuration with the bpkg-cfg-create(1) command. We

can use the same place for building all our tools so let’s call the directory tools. Seeing that we

are only interested in using (rather than developing) such tools, let’s build them optimized and

also configure a suitable installation location:

$ bpkg create -d tools cc        \
  config.cxx=g++                 \
  config.cc.coptions=-O3         \
  config.install.root=/usr/local \
  config.install.sudo=sudo
created new configuration in /tmp/tools/

The same step on Windows using Visual Studio would look like this:

$ bpkg create -d tools cc ^
  config.cxx=cl           ^
  config.cc.coptions=/O2  ^
  config.install.root= C:\install

To fetch and build packages (as well as all their dependencies) we use the 

bpkg-pkg-build(1) command. We can use either an archive-based repository like 

cppget.org or build directly from git:

$ cd tools

$ bpkg build hello@https://git.build2.org/hello/hello.git
fetching from https://git.build2.org/hello/hello.git
  new libformat/1.0.0 (required by libhello)
  new libprint/1.0.0 (required by libhello)
  new libhello/1.1.0 (required by hello)

39Revision 0.18, June 2025 The build2 Toolchain Introduction

1.8 Package Consumption

https://build2.org/article/symlinks.xhtml
https://cppget.org/


  new hello/1.0.0
continue? [Y/n] y
configured libformat/1.0.0
configured libprint/1.0.0
configured libhello/1.1.0
configured hello/1.0.0
c++ libprint-1.0.0/libprint/cxx{print} ->
    libprint-1.0.0/libprint/objs{print}
c++ hello-1.0.0/hello/cxx{hello} -> hello-1.0.0/hello/obje{hello}
c++ libhello-1.1.0/libhello/cxx{hello} ->
    libhello-1.1.0/libhello/objs{hello}
c++ libformat-1.0.0/libformat/cxx{format} ->
    libformat-1.0.0/libformat/objs{format}
ld libprint-1.0.0/libprint/libs{print}
ld libformat-1.0.0/libformat/libs{format}
ld libhello-1.1.0/libhello/libs{hello}
ld hello-1.0.0/hello/exe{hello}
updated hello/1.0.0

Passing a repository URL to the build command is a shortcut to the following sequence of 

commands:

$ bpkg add https://git.build2.org/hello/hello.git  # add repository
$ bpkg fetch                             # fetch package list
$ bpkg build hello                       # build package by name

If building a package involves building a build-time dependency and no configuration of type 

host (or build2, if the dependency is a build system module) is linked with the target configu­

ration, then a private configuration of a suitable type is automatically created and linked. See 

Build-Time Dependencies and Linked Configurations for background on build-time dependencies

and bpkg-cfg-create(1) for more information on bpkg configuration linking.

Once built, we can install the package to the location that we have specified with 

config.install.root using the bpkg-pkg-install(1) command:

$ bpkg install hello
...
install libformat-1.0.0/libformat/libs{format} -> /usr/local/lib/
install libprint-1.0.0/libprint/libs{print} -> /usr/local/lib/
install libhello-1.1.0/libhello/libs{hello} -> /usr/local/lib/
install hello-1.0.0/hello/exe{hello} -> /usr/local/bin/

$ hello World
Hello, World!

If on your system the installed executables don’t run from /usr/local because of the unre­

solved shared libraries (or if you are installing somewhere else, such as /opt), then the easiest

way to fix this is with rpath. Simply add the following configuration variable when creating the

build configuration (or as an argument to the install command):

Revision 0.18, June 202540 The build2 Toolchain Introduction

1.8 Package Consumption



config.bin.rpath=/usr/local/lib

Note to Windows users: this is not an issue on this platform since executables and shared (DLL)

libraries are installed into the same subdirectory (bin) of the installation directory.

The installation contents and layout under config.install.root would be along these 

lines:

/usr/local/
|-- bin/
|Â Â  ·-- hello
|-- lib/
|Â Â  |-- libformat-1.0.so
|Â Â  |-- libhello-1.1.so
|Â Â  ·-- libprint-1.0.so
·-- share/
    ·-- doc/
        ·-- hello/
            |-- manifest
            ·-- README.md

The installation locations of various types of files (executables, libraries, headers, documentation,

etc) can be customized using a number of the config.install.* variables with the most

commonly used ones and their defaults (relative to config.install.root) listed below (see

the install build system module documentation for the complete list).

config.install.bin     = root/bin/
config.install.lib     = root/lib/
config.install.doc     = root/share/doc/
config.install.man     = root/share/man/
config.install.include = root/include/

If we need to uninstall a previously installed package, there is the bpkg-pkg-uninstall(1) 

command:

$ bpkg uninstall hello
uninstall hello-1.0.0/hello/exe{hello} <- /usr/local/bin/
uninstall libhello-1.1.0/libhello/libs{hello} <- /usr/local/lib/
uninstall libprint-1.0.0/libprint/libs{print} <- /usr/local/lib/
uninstall libformat-1.0.0/libformat/libs{format} <- /usr/local/lib/
...

From the above listing we can gather that only the shared library binaries were installed. In 

particular, neither static library binaries nor headers and other development-related files (such as

non-versioned shared library symlinks, pkg-config .pc files, etc) were installed.

The reason for this behavior is that by default the bpkg-pkg-install(1) command only

instructs the build system to install packages that were specified on the command line (hello in

out case) while the build system in turn installs from dependency packages only what’s necessary

for the packages it was instructed to install. In our case, installing the hello also requires

41Revision 0.18, June 2025 The build2 Toolchain Introduction

1.8 Package Consumption



installing the shared library binaries that it uses but none of the development-related files (we

don’t need library headers in order to run an executable).

However, this default behavior of bpkg-pkg-install(1) (and bpkg-pkg-unin­

stall(1)) can be changed with the --recursive option, which instructs bpkg to addition­

ally fully install/uninstall dependency packages.

Rather than installing the package locally we could instead generate a binary distribution package

for it using the bpkg-pkg-bindist(1) command. Such a binary package can then be

installed on a different machine. Currently, the bindist command supports producing Debian

(and alike, such as Ubuntu) and Fedora (and alike, such as RHEL) packages as well as installa­

tion archives for all operating systems. For example, to generate a Debian package for our 

hello (running on Debian or alike):

$ bpkg bindist --recursive=auto --private -o /tmp/hello-deb/ hello
...
generated debian package for hello/1.0.0:
  /tmp/hello-deb/hello_1.0.0-0~debian12_amd64.deb
  /tmp/hello-deb/hello-dbgsym_1.0.0-0~debian12_amd64.deb
  /tmp/hello-deb/hello_1.0.0-0~debian12_amd64.buildinfo
  /tmp/hello-deb/hello_1.0.0-0~debian12_amd64.changes

$ sudo apt-get install /tmp/hello-deb/hello_1.0.0-0~debian12_amd64.deb

And to generate a Fedora package (running on Fedora or alike):

$ bpkg bindist --recursive=auto --private hello
...
generated fedora package for hello/1.0.0:
  ~/rpmbuild/RPMS/x86_64/hello-1.0.0-1.fc38.x86_64.rpm
  ~/rpmbuild/RPMS/x86_64/hello-debuginfo-1.0.0-1.fc38.x86_64.rpm

$ sudo dnf install ~/rpmbuild/RPMS/x86_64/hello-1.0.0-1.fc38.x86_64.rpm

And to generate an installation archive (running on Windows in this example):

$ bpkg bindist --recursive=auto   ^
  --private                       ^
  --distribution=archive          ^
  -o C:\tmp\hello-zip\            ^
  config.install.relocatable=true ^
  hello
...
generated archive package for hello/1.0.0:
  C:\tmp\hello-zip\hello-1.0.0-x86_64-windows10.zip

To upgrade or downgrade packages we again use the build command. Here is a typical upgrade 

workflow:

Revision 0.18, June 202542 The build2 Toolchain Introduction

1.8 Package Consumption



$ bpkg fetch              # refresh available package list
$ bpkg status             # see if new versions are available

$ bpkg uninstall hello    # uninstall old version
$ bpkg build     hello    # upgrade to the latest version
$ bpkg install   hello    # install new version

Similar to bdep, to downgrade we have to specify the desired version explicitly. There are also

the --upgrade|-u and --patch|-p as well as --immediate|-i and --recur­
sive|-r options that allow us to upgrade or patch packages that we have built and/or their 

immediate or all dependencies (see bpkg-pkg-build(1) for details). For example, to make

sure everything is patched, run:

$ bpkg fetch
$ bpkg build -pr

If a package is no longer needed, we can remove it from the configuration with 

bpkg-pkg-drop(1):

$ bpkg drop hello
following dependencies were automatically built but
will no longer be used:
  libhello
  libformat
  libprint
drop unused packages? [Y/n] y
  drop hello
  drop libhello
  drop libformat
  drop libprint
continue? [Y/n] y
purged hello
purged libhello
purged libformat
purged libprint

1.9 Using System-Installed Dependencies

Our operating system might already have a package manager (which we will refer to as system

package manager) and for various reasons we may want to use the system-installed version of a 

dependency rather than building one from source.

Using system-installed versions works best for mature rather than rapidly-developed packages

since for the latter you often need to track the latest version (which may not yet be available from

the system repository) and/or test with multiple versions (which is not something that many

system package managers support).

43Revision 0.18, June 2025 The build2 Toolchain Introduction

1.9 Using System-Installed Dependencies



We can also have some build configurations using a system-installed version of a dependency

while in others building it from source, for example, for testing.

We can instruct build2 to configure a dependency package as available from the system rather

than building it from source. Specifically, we can install a suitable version manually (for

example, using the system package manager) and then communicate this fact as well as the

version installed to build2 so that it can use this information when resolving version

constraints. Furthermore, for Debian (and alike, such as Ubuntu) and Fedora (and alike, such as

RHEL) build2 can automatically query the system package manager for the installed version

and, if requested, automatically install a suitable version from the system repository if none is

already installed.

Let’s see how all this works in an example. Say, we want to use libsqlite3 in our hello 

project.

The first step is to add it as a dependency, just like we did for libhello. That is, add another 

depends entry to manifest, then import it in buildfile, and so on.

Now, if we just run sync or try to build our project, build2 will download and build the new 

dependency from source, just like it did for libhello. Instead, we can issue an explicit sync
command that configures the libsqlite3 package as coming from the system:

$ bdep sync ?sys:libsqlite3

Here ? is a package flag that instructs build2 to treat it as a dependency and sys is a package

scheme that tells build2 it comes from the system. See bpkg-pkg-build(1) for details.

Now what exactly happens in this case depends on which operating system we are running as

well as whether libsqlite3 is already installed. Let’s examine each combination in turn.

If we are running on an operating system for which there is build2 support for the system

package manager interactions (currently Debian, Fedora, or alike) and libsqlite3 is already

installed, then build2 will get its version from the system package manager and use that when 

resolving version constraints. For example, running the above command on Debian with 

libsqlite3-dev version 3.42.0 already installed:

$ bdep sync ?sys:libsqlite3
synchronizing:
  configure sys:libsqlite3/3.42.0 (required by hello)
  upgrade hello/0.1.0-a.0.19700101000000#3

If, on the other hand, we are running on an operating system for which there is build2 support

for the system package manager interactions but libsqlite3 is not installed, then build2
will fail:

Revision 0.18, June 202544 The build2 Toolchain Introduction

1.9 Using System-Installed Dependencies

https://cppget.org/libsqlite3


$ bdep sync ?sys:libsqlite3
error: no installed system package for libsqlite3
  info: specify --sys-install to try to install it
  info: specify libsqlite3/* if package is not installed with system
        package manager
  info: specify --sys-no-query to disable system package manager
        interactions

As you can see, build2 will not attempt to automatically install system packages unless explic­

itly requested with the --sys-install option. Let’s try to add that (again, running on 

Debian):

$ bdep sync --sys-install ?sys:libsqlite3
updating debian package index...
synchronizing:
  sys-install libsqlite3-0/3.42.0-1 (required by sys:libsqlite3)
  configure sys:libsqlite3/3.42.0 (required by hello)
  upgrade hello/0.1.0-a.0.19700101000000#3
installing debian packages...
The following NEW packages will be installed:
  libsqlite3-dev
The following packages will be upgraded:
  libsqlite3-0 sqlite3
Do you want to continue? [Y/n] y
...
Setting up libsqlite3-0:amd64 (3.42.0-1) ...
Setting up libsqlite3-dev:amd64 (3.42.0-1) ...
Setting up sqlite3 (3.42.0-1) ...

You can suppress the system package manager confirmation prompt with the --sys-yes
option. By default build2 uses sudo for system package manager interactions that normally

require administrative privileges (fetch package metadata, install packages, etc). This can be

customized with the --sys-sudo option.

Finally, if we are running on an operating system for which there is no build2 support for the

system package manager interactions, then, as mentioned earlier, it is the user’s responsibility to

make sure a suitable package is installed and, optionally, communicate its version. In this case,

unless we specify the installed version explicitly, a system-installed package is assumed to satisfy

any dependency constraint (indicated with the * wildcard instead of the version):

$ bdep sync ?sys:libsqlite3
synchronizing:
  configure sys:libsqlite3/* (required by hello)
  upgrade hello/0.1.0-a.0.19700101000000#3

You can reduce the supported system package manager case to this case by disabling the system

package manager interactions with the --sys-no-query option.

45Revision 0.18, June 2025 The build2 Toolchain Introduction

1.9 Using System-Installed Dependencies



The system-installed dependency doesn’t really have to come from the system package manager.

It can also be manually installed and, as discussed in Using Unpackaged Dependencies, not 

necessarily into the system-default location like /usr/local.

In the above examples our dependency (libsqlite3) still has to be packaged and available

from one of the project’s prerequisite repositories. But it can be a stub – a package that does not

contain any source code and that can only be "obtained" from the system.

The purpose of a stub is to provide the build2 package to system package name and version

mapping, in case it cannot be deduced automatically. See Package Version and *-{name,
version, to-downstream-version} package manifest values for details.

If we would like to use a completely unpackaged dependency, then, for the supported system

package manager case, we will need to pass the --sys-no-stub option:

$ bdep sync --sys-install --sys-no-stub ?sys:libsqlite3

And for the unsupported system package manager case we will have to specify the system version 

explicitly either as the actual version or as the * wildcard, for example:

$ bdep sync ?sys:libsqlite3/* ?sys:libcurl/7.47.0

The reason at least a stub is required by default is due to the automatic mapping between 

build2 and system packages often being unreliable.

1.10 Using Unpackaged Dependencies

Generally, we will have a much better time if all our dependencies come as build2 packages. 

Unfortunately, this won’t always be the case in the real world and some libraries that you may

need will use other build systems.

There is also the opposite problem: you may want to consume a library that uses build2 in a

project that uses a different build system. For that refer to Package Consumption.

The standard way to consume such unpackaged libraries is to install them (not necessarily into a

system-default location like /usr/local) so that we have a single directory with their headers

and a single directory with their libraries. We can then configure our builds to use these directo­

ries when searching for imported libraries.

Needless to say, none of the build2 dependency management mechanisms such as version

constraints or upgrade/downgrade will work on such unpackaged libraries. You will have to

manage all these yourself manually.

Revision 0.18, June 202546 The build2 Toolchain Introduction

1.10 Using Unpackaged Dependencies



Let’s see how this all works in an example. Say, we want to use libextra that uses a different

build system in our hello project. The first step is to manually build and install this library for

each build configuration that we have. For example, we can install all such unpackaged libraries

into unpkg-gcc and unpkg-clang, next to our hello-gcc and hello-clang build 

configurations:

$ ls
hello/
hello-gcc/
unpkg-gcc/
hello-clang/
unpkg-clang/

If you would like to try this out but don’t have a suitable libextra, you can create and install

one with these commands:

$ bdep new -l c++ -t lib libextra -C libextra-gcc cc config.cxx=g++
$ b install: libextra-gcc/ config.install.root=/tmp/unpkg-gcc

If we look inside one of these unpkg-* directories, we should see something like this:

$ tree unpkg-gcc
unpkg-gcc/
|-- include/
|   ·-- libextra/
|       ·-- extra.hxx
·-- lib/
    |-- libextra.a
    |-- libextra.so
    ·-- pkgconfig/
        ·-- libextra.pc

Notice that libextra.pc – it’s a pkg-config(1) file that contains any extra compile and

link options that may be necessary to consume this library. This is the de facto standard for build

systems to communicate library build information to each other and is today supported by most

commonly used implementations. Speaking of build2, it both recognizes .pc files when 

consuming third-party libraries and automatically produces them when installing its own.

While this may all seem foreign to Windows users, there is nothing platform-specific about this

approach, including support for pkg-config, which, at least in case of build2, works equally

well on Windows.

Next, we create a build configuration and configure it to use one of these unpkg-* directories

(replace ... with the absolute path):

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++ \
  config.cc.poptions=-I.../unpkg-gcc/include       \
  config.cc.loptions=-L.../unpkg-gcc/lib

47Revision 0.18, June 2025 The build2 Toolchain Introduction

1.10 Using Unpackaged Dependencies



If using Visual Studio, replace -I with /I and -L with /LIBPATH:.

Alternatively, if you want to reconfigure one of the existing build configurations, then simply edit

the build/config.build file (that is, hello-gcc/build/config.build in our case)

and adjust the poptions and loptions values. Or you can use the build system directly to 

reconfigure the build configuration (see b(1) for details):

b configure: ../hello-gcc/                    \
  config.cc.poptions+=-I.../unpkg-gcc/include \
  config.cc.loptions+=-L.../unpkg-gcc/lib

If all the unpackaged libraries included .pc files, then the -L alone would have been sufficient.

However, it doesn’t hurt to also add -I, for good measure.

Once this is done, adjust your buildfile to import the library:

import libs += libextra%lib{extra}

And your source code to use it:

#include <libextra/extra.hxx>

Notice that we don’t add the corresponding depends value to the project’s manifest since

this library is not a package. However, it is a good idea to instead add a requires entry as a 

documentation to users of our project.

2 Canonical Project Structure

The goal of establishing a canonical build2 project structure is to create an ecosystem of pack­

ages that can coexist, are easy to comprehend by both humans and tools, scale to complex,

real-world requirements, and, last but not least, are pleasant to work with.

Here by canonical we mean a structure that on balance achieves these objectives in the simplest 

possible way. However, not everyone agrees with where that balance should be struck. As a

result, this structure is only recommended and build2 is flexible enough to support various 

arrangements used in modern C and C++ projects. Furthermore, the bdep-new(1) command

provides a number of customization options and chances are you will be able to create your

preferred layout automatically. See SOURCE LAYOUT for more information and examples.

This canonical structure is primarily meant for a package – a single library or program (or, some­

times, a collection of related libraries or programs) with a specific and well-defined function.

While it may be less suitable for more elaborate, multi-library/program end-products that are not

meant to be packaged, most of the recommendations discussed below would still apply. Often­

times, you would start with a canonical project and expand from there. Note also that while the 

discussion below focuses on C++, most of it applies equally to C projects.

Revision 0.18, June 202548 The build2 Toolchain Introduction

2 Canonical Project Structure



We often find ourselves factoring common functionality out of such end-products and into sepa­

rate packages, for example, in order to be reused in another end-product. In this light, it can be

helpful to organize a new end-product project as a composition of individual packages or source 

subdirectories that follow the canonical structure. The bdep-new(1) --package and 

--source modes can be used to automate this process.

By default, projects created by the bdep-new(1) command have the canonical structure. The

overall layouts for executable (-t exe) and library (-t lib) projects are presented below.

<name>/
|-- build/
|-- <name>/
|   |-- <name>.cxx
|   |-- <name>.test.cxx
|   |-- testscript
|   ·-- buildfile
|-- buildfile
|-- manifest
·-- README.md

lib<name>/
|-- build/
|-- lib<name>/
|   |-- <name>.hxx
|   |-- <name>.cxx
|   |-- <name>.test.cxx
|   |-- export.hxx
|   |-- version.hxx.in
|   ·-- buildfile
|-- tests/
|-- buildfile
|-- manifest
·-- README.md

The canonical structure for both project types is discussed in detail in the following sections with

a short summary of the key points presented below.

Header and source files (or module interface and implementation files) are next to each

other (no include/ and src/ split). 

Headers are included with <> and contain the project name as a subdirectory prefix, for

example, <libhello/hello.hxx>. 

Header and source file extensions are either .hpp/.cpp or .hxx/.cxx (.mpp or .mxx

for module interfaces). 

No special characters other than _ and - in file names with . only used for extensions. 

Let’s start with naming our projects: A project name should only contain ASCII alphabetic char­

acters ([a-zA-Z]), digits ([0-9]), underscores (_), plus/minus (+-), and dots (.) as well as be

at least two characters long (see Package Name for additional restrictions and recommendations).

49Revision 0.18, June 2025 The build2 Toolchain Introduction

2 Canonical Project Structure



If a project consists of a library and an executable, then they should be split into separate pack­

ages (see Developing Multiple Packages and Projects for some common arrangements). In this

case, by convention, the library name should start with the lib prefix, for example, libhello
and hello. It is also recommended (but not required) to follow this convention in new projects,

even if there are no plans to have a related executable.

Using the lib prefix consistently offers several benefits:

1.  It is clear from the name to both humans and tools what kind of project it is. 

2.  All libraries are consistently named (as opposed to some with the lib prefix and some

without). 

3.  All library names are future-proofed to co-exist with executables. If one starts with a library

without the lib prefix but later decides to add an executable, renaming the library would

unlikely be an option. And there is no need to spend mental energy on thinking whether it’s 

possible that an executable will be added later. 

The project’s root directory should contain the root buildfile and package manifest file.

Other recommended top-level subdirectory names are examples/ (for libraries it is normally a 

subproject like tests/, as discussed below), doc/, and etc/ (sample configurations, scripts,

third-party contributions, etc). See also build system Project Structure for details on the

build-related files (buildfile) and subdirectories (build/) as well as the available alterna­

tive naming scheme.

2.1 Source Subdirectory

The project’s source code is placed into a subdirectory of the root directory named the same as

the project, for example, hello/hello/ or libhello/libhello/. It is called the

project’s source subdirectory.

There are several reasons for this layout: It implements the canonical inclusion scheme (discussed

below) where each header is prefixed with its project name as a subdirectory. It also has a

predictable name where users (and tools) can expect to find our project’s source code. Finally,

this layout prevents clutter in the project’s root directory which usually contains various other

files (like README, LICENSE) and directories (like doc/, tests/, examples/).

Another popular approach is to place public headers into the include/ subdirectory and source

files as well as private headers into src/. The cited advantage of this layout is the predictable 

location (include/) that contains only the project’s public headers (that is, its API). This can

make the project easier to navigate and understand while harder to misuse, for example, by 

including a private header.

Revision 0.18, June 202550 The build2 Toolchain Introduction

2.1 Source Subdirectory



However, this split layout is not without drawbacks:

Navigating between corresponding headers and sources is cumbersome. This affects editing,

grep’ing, as well as code browsing (for example, on GitHub). 

Implementing the canonical inclusion scheme would require an extra level of subdirectories

(for example, include/libhello/ and src/libhello/), which only amplifies the 

previous issue. 

Supporting generated source code can be challenging: Source code generators rarely provide

support for writing headers and sources into different directories. Even if we can move

things around post-generation, build systems may not support this arrangement (for example, 

build2 does not currently support target groups with members in different directories). 

Also, the stated advantage of this layout – separation of public headers from private – is not as

clear cut as it may seem at first. The common assumption of the split layout is that only headers

from include/ are installed and, conversely, to use the headers in-place, all one has to do is

add -I pointing to include/. On the other hand, it is common for public headers to include

private headers to, for example, call an implementation detail function in inline or template code

(note that the same applies to private modules imported in public module interfaces). Which

means such private (or probably now more accurately called implementation detail) headers have

to be placed in the include/ directory as well, perhaps into a subdirectory (such as 

details/) or with a file name suffix (such as -impl) to signal to the user that they are still

"private". Needless to say, in an actively developed project, keeping track of which private

headers can still stay in src/ and which have to be moved to include/ (and vice versa) is a

tedious, error-prone task. As a result, practically, the split layout quickly degrades into the "all

headers in include/" arrangement which negates its main advantage.

It is also not clear how the split layout will translate to modularized projects. With modules, both

the interface and implementation (including non-inline/template function definitions) can reside

in the same file with a substantial number of C++ developers finding this arrangement appealing.

If a project consists of only such single-file modules, then include/ and src/ have effectively

become the same thing (note that there couldn’t be any "private" modules in src/ since there

would be nobody to import them). In a sense, we already have this situation with header-only

libraries except that, in the case of modules, calling the directory include/ would be an 

anachronism.

To summarize, the split directory arrangement offers little benefit over the combined directory

layout, has a number of real drawbacks, and does not fit modularized projects well. In practice,

private headers are placed into include/, often either in a subdirectory or with a special file

name suffix, a mechanism that is readily available in the combined directory layout.

All headers within a project should be included using the <> style inclusion and contain the

project name as a subdirectory prefix. And all headers means all headers – public, private, or 

implementation detail, in executables or in libraries.

51Revision 0.18, June 2025 The build2 Toolchain Introduction

2.1 Source Subdirectory



As an example, let’s say we’ve added utility.hxx to our hello project. This is how it

should be included in hello.cxx:

// #include "utility.hxx"           // Wrong.
// #include <utility.hxx>           // Wrong.
// #include "../hello/utility.hxx"  // Wrong.

#include <hello/utility.hxx>

Similarly, if we want to include hello.hxx from libhello, then the inclusion should look

like this:

#include <libhello/hello.hxx>

The problem with the "" style inclusion is if the header is not found relative to the including file,

most compilers will continue looking for it in the include search paths, the same as for <>. As a

result, if the header is not present in the right place (for example, because it was mistakenly not

listed as to be installed), chances are that a completely unrelated header with the same name will

be found and included. Needless to say, debugging situations like these is unpleasant.

Prefixing all inclusions with the project name as subdirectory also makes sure that headers with

common names (for example, utility.hxx) can coexist (for example, when installed into a

system-wide directory, such as /usr/include). The subdirectory prefix also plays an impor­

tant role in supporting auto-generated headers.

Note also that this header inclusion scheme is consistent with the module importation, for 

example:

import hello.utility;

Finally, note that while adding the subdirectory prefix to the "" style inclusion (for example, 

"libhello/hello.hxx") will make finding an unrelated header unlikely, there is still a 

possibility. And it is not clear why take the chance when there are no benefits. So let’s imagine

the "" style inclusion does not exist and we will all have a much better time.

If you have to disregard every rule and recommendation in this section but one, for example,

because you are working on an existing library, then at minimum insist on this: public header 

inclusions must use the library name as a subdirectory prefix.

The project’s source subdirectory can have subdirectories of its own, for example, to organize the

code into components. Naturally, header inclusions will need to contain such subdirectories, for

example <libhello/core/hello.hxx>. When the project’s headers are installed (for

example, into /usr/include), this subdirectory hierarchy is automatically recreated.

Revision 0.18, June 202552 The build2 Toolchain Introduction

2.1 Source Subdirectory



If you would like to separate public API headers/modules from implementation details, the 

convention is to place them into the details/ subdirectory. For example:

libhello/
·-- libhello/
    |-- details/
    |   ·-- utility.hxx
    ·-- ...

If a project has truly private headers (for example, proprietary code) that must be clearly sepa­

rated from public and implementation detail headers, then they can be placed into the private/ 

subdirectory, next to details/. In a sense, this arrangement mimics the C++

public/protected/private member access.

It is recommended that you still install the implementation detail headers and modules for the

reasons discussed above. If, however, you would like to disable their installation, you can add the 

following line to your source subdirectory buildfile:

details/hxx{*}: install = false

If you are creating a family of libraries with a common name prefix, then it may make sense to

use a nested source subdirectory layout with a common top-level directory. As an example, let’s

say we have the libstud-path and libstud-url libraries that belong to the same 

libstud family. Their source subdirectory layouts could look like this:

libstud-path/
·-- libstud/
    ·-- path/
        |-- path.hxx
        |-- path-io.hxx
        |-- ...
        ·-- buildfile

libstud-url/
·-- libstud/
    ·-- url/
        |-- url.hxx
        |-- url-io.hxx
        |-- ...
        ·-- buildfile

With the header inclusion paths adjusted accordingly:

#include <libstud/path/path.hxx>
#include <libstud/url/url.hxx>

The bdep-new(1) command provides the subdir project type sub-option that allows us to

customize the source subdirectory within a project. For example:

53Revision 0.18, June 2025 The build2 Toolchain Introduction

2.1 Source Subdirectory



$ bdep new -l c++ -t lib,subdir=libstud/path libstud-path

2.2 Source Naming

When naming source files, only use ASCII alphabetic characters, digits, as well as _ (underscore)

and - (minus). Use . (dot) only for extensions, that is, trailing parts of the name that classify your

files. Examples of good names:

SmallVector.hxx
small-vector.hxx
small_vector.hxx
small-vector.test.cxx

Examples of bad names:

small+vector.hxx
small.vector.hxx

If you are using _ or - as word separators in filesystem names, pick one and use it consistently 

throughout the project.

The C source file extensions are always .h/.c. The two alternative C++ source file extension

schemes are .?pp and .?xx:

file        .?pp  .?xx

header      .hpp  .hxx
module      .mpp  .mxx
inline      .ipp  .ixx
template    .tpp  .txx
source      .cpp  .cxx

The .mxx/.mpp extension is for the module interface translation units with module implementa­

tion units (if any) using the .cxx/.cpp extension. If both are present, then it makes sense to use

the same base name, similar to headers. For example:

hello-core.mxx
hello-core.cxx

The use of inline and template files is a matter of taste. If used, they are included at the end of the

header/module files and contain definitions of inline and non-inline template functions, respec­

tively. The .?xx/.?pp files with the same name (or, sometimes, name prefix) are assumed to be

related and are collectively called a module. This term is meant to correspond directly to a C++ 

module.

By default the bdep-new(1) command uses the naming .?xx scheme. To use .?pp instead,

pass -t c++,cpp.

Revision 0.18, June 202554 The build2 Toolchain Introduction

2.2 Source Naming



There are several reasons not to "reuse" the .h C header extension for C++ files:

There can be a need for both C and C++ headers for the same module. 

It allows tools to accurately determine the language from the file name. 

It is easier to search for C++ source code using wildcard patterns (*.?pp). 

The last two reasons are also why headers without extensions are probably not worth the trouble.

Source files corresponding to C++ modules need to embed a sufficient amount of "module name

tail" in their names to unambiguously resolve all the modules used in a project. When deriving

file names from C++ module names, . (dot) should be replaced with either _ (underscore), -
(minus), a case change, or a directory separator, according to your project’s file naming scheme.

For example, if our libhello had two modules, hello.core and hello.extra, then their 

interface units could be named as follows:

hello-core.mxx
hello-extra.mxx

hello_core.mxx
hello_extra.mxx

HelloCore.mxx
HelloExtra.mxx

hello/core.mxx
hello/extra.mxx

core.mxx
extra.mxx

As discussed in the next section, public module names should start with the project name and for

such modules it is customary to omit this first component from file names (the last variant in the

above example). See also Building Modules for a more detailed discussion of the module name to

file name mapping.

2.3 Source Contents

Let’s now move inside our source files. All macros defined by a project, such as include guards,

version and symbol export macros, etc., must all start with the project name (including the lib
prefix for libraries), for example LIBHELLO_VERSION. Similarly, the library’s namespace and

module names (both public and implementation detail) should all start with the library name but

without the lib prefix. For example:

55Revision 0.18, June 2025 The build2 Toolchain Introduction

2.3 Source Contents



// libhello/hello.mxx

export module hello.core;

namespace hello
{
  ...
}

An executable project may use a namespace (in which case it is natural to name it after the

project) and its (private) modules shouldn’t be qualified with the project name (in order not to

clash with similarly named modules from the corresponding library, if any). A library may also

have private modules in which case they shouldn’t be qualified either.

Hopefully by now the recommendation for the lib prefix should be easy to understand: often­

times executables and libraries come in pairs, for example hello and libhello, with the

reusable functionality being factored out from the executable into the library. It is natural to want

to use the same name stem (hello in our case) for both.

The above naming scheme (with the lib prefix present in some names but not others) is care­

fully chosen to allow such library/executable pairs to coexist and be used together without too

much friction. For example, both the library and executable can have a header called 

utility.hxx with the executable being able to include both and even get the "merged" func­

tionality without extra effort (since they use the same namespace):

// hello/hello.cxx

#include <hello/utility.hxx>
#include <libhello/utility.hxx>

namespace hello
{
  // Contains names from both utilities.
}

A canonical library project contains two special headers: export.hxx (or export.hpp) that

defines the library’s symbol exporting macro as well as version.hxx (or version.hpp)

that defines the library’s version macros (see version Module for details).

2.4 Tests

A project may have unit and/or functional/integration tests. Unit tests exercise each module’s 

(potentially private) functionality in isolation. In contrast, functional/integration tests exercise the

project via its public API, just like the real users of the project would.

Revision 0.18, June 202556 The build2 Toolchain Introduction

2.4 Tests



A source file that implements a module’s unit tests should be placed next to that module’s files

and be called with the module’s name plus the .test second-level extension. It is expected to 

implement an executable (that is, define main()). If a module uses Testscript for unit testing,

then the corresponding file should be called with the module’s name plus the 

.test.testscript extension. For example:

libhello/
·-- libhello/
    |-- hello.hxx
    |-- hello.cxx
    |-- hello.test.cxx
    ·-- hello.test.testscript

All source files (that is, headers, modules, etc) with the .test second-level extension are

assumed to belong to unit tests and are automatically excluded from the library/executable 

sources.

A library’s functional/integration tests should go into the tests/ subdirectory. Each such test

should reside in a separate subdirectory, potentially organized into nested subdirectories (for

instance, to correspond to the source subdirectory components). For example, if we were creating

an XML parsing and serialization library, then our tests/ could have the following layout:

tests/
|-- basics/
|   |-- driver.cxx
|   ·-- buildfile
|-- parser/
|   |-- pull/
|   |   |-- driver.cxx
|   |   ·-- buildfile
|   ·-- push/
|       |-- driver.cxx
|       ·-- buildfile
·-- serializer/
    ·-- ...

In the canonical library project created by bdep-new the tests/ subdirectory is an unnamed 

subproject (in the build system terms). This allows us to build and run tests against an installed

version of the library (see Testing for more information on the contents of this directory).

The build2 CI implementation will automatically perform the installation test if a project

contains the tests/ subproject. See bbot Worker Logic for details.

By default executable projects do not have the tests/ subprojects instead placing integration

tests next to the source code (the testscript file; see The build2 Testscript Language for

details). However, if desired, executable projects can have the tests/ subproject, the same as 

libraries.

57Revision 0.18, June 2025 The build2 Toolchain Introduction

2.4 Tests



By default projects created by bdep-new include support for functional/integration testing but

exclude support for unit testing. These defaults, however, can be overridden with no-tests and 

unit-tests options, respectively. For example:

$ bdep new -l c++ -t lib,unit-tests libhello

The rationale behind these defaults is that if a functionality can be tested through the public API,

then we should generally prefer integration to unit testing. And in simple projects the entire func­

tionality is often exposed through the public API. At the same time, support for unit testing adds

extra complexity to the build infrastructure. Note also that it is fairly straightforward to add

support for unit testing at a later stage. The relevant build logic is localized in the source subdi­

rectory buildfile so you can simply generate a new project with unit tests enabled and copy

over the relevant parts.

2.5 Build Output

There are no bin/ or obj/ subdirectories: build output (object files, libraries, executables, etc)

go into a parallel directory structure (in case of an out of source build) or next to the sources (in

case of an in source build). See Output Directories and Scopes for details on in and out of source 

builds.

Projects managed with bdep(1) are always built out of source. However, by default, the source 

directory is configured as forwarded to one of the out of source builds. This has two effects: we

can run the build system driver b(1) directly in the source directory and certain "interesting"

targets (such as executables, documentation, test results, etc) will be automatically backlinked to

the source directory (see Configuration for details on forwarded configurations). The following

listing illustrates this setup for our hello project (executables are marked with *):

                 hello-gcc/
hello/    ~~>    ·-- hello/
|-- build/    ~~>    |-- build/
·-- hello/    ~~>    ·-- hello/
    |-- hello.cxx        |-- hello.o
    ·-- hello     -->    ·-- *hello

The result is an as-if in source build with all the benefits (such as having both source and relevant

output in the same directory) but without any of the drawbacks (such as the inability to have 

multiple builds or source directory cluttered with object files).

The often cited motivation for placing executables into bin/ is that in many build systems it is

the only way to make things runnable in a reasonably cross-platform manner. The major draw­

back of this arrangement is the need for unique executable names which is especially constraining

when writing tests where it is convenient to call the executable just driver or test.

Revision 0.18, June 202558 The build2 Toolchain Introduction

2.5 Build Output



In build2 there is no such restriction and all executables can run in-place. This is achieved with 

rpath which is emulated with DLL assemblies on Windows.

59Revision 0.18, June 2025 The build2 Toolchain Introduction

2.5 Build Output


	Preface
	1 Getting Started Guide
	1.1 Hello, World
	1.2 Package Repositories
	1.3 Adding and Removing Dependencies
	1.4 Upgrading and Downgrading Dependencies
	1.5 Build-Time Dependencies and Linked Configurations
	1.6 Versioning and Release Management
	1.7 Developing Multiple Packages and Projects
	1.8 Package Consumption
	1.9 Using System-Installed Dependencies
	1.10 Using Unpackaged Dependencies

	2 Canonical Project Structure
	2.1 Source Subdirectory
	2.2 Source Naming
	2.3 Source Contents
	2.4 Tests
	2.5 Build Output


